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Magnesium is essential for vitamin D₃ metabolism and optimum function, supporting enzymes that

synthesize 25(OH) D and calcitriol and facilitating receptor binding. Optimizing the Ca: Mg ratio likely

enhances vitamin D efficacy and improves outcomes. Beyond this, Mg is vital for G-protein-coupled

receptor function, CYP450 enzyme activity, activation of B vitamins, epigenetic methylation, glucose

metabolism, and mitigating oxidative stress and inflammaging. Assessing serum Mg (mmol/L) offers a

more physiologically relevant measure than dietary intake (mg/day). Mean ionized Ca and Mg levels

yield an iCa: iMg ratio within the optimal range; however, since Mg is distributed in both plasma and

red blood cells while Ca is largely extra-cellular, a 3:2 intake ratio may better support homeostasis than

the commonly recommended 2:1. Calcium and magnesium function as physiological opposites; their

ratio (optimal 1.7-2.6) is a key indicator of health and disease risk. An imbalanced Ca: Mg ratio—outside

this range—increases risks for cancer, cardiovascular disease, dementia, infections (including COVID-

19 complications), and post-COVID syndrome. Conversely, obesity is both a cause and consequence of

Ca: Mg imbalance. Magnesium deficiency likely contributes to the global prevalence of type 2 diabetes,

which shares features with aging. Evidence from laboratory reference ranges, NHANES data, and peer-

reviewed studies underscores the need for clinical validation of these observations. Globally,

magnesium deficiency remains prevalent and understudied in clinical trials. Study data support that

maintaining optimal Ca:Mg ratios benefits cancer prevention and common disorders. Optimizing the

Ca: Mg ratio is a cost-effective, globally impactful strategy to improve metabolic health and reduce

chronic disease risk.
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Highlights

A balanced Ca: Mg (1.7-2.6) suppresses cancer, heart disease, dementia, infections, and COVID-19.

A high molecular Ca: Mg and low Mg, often seen in those on a Western diet, herald premature aging.

Vitamin D deficiency and low molecular Ca, more frequently encountered elsewhere, tend to lower Ca:

Mg.

Mg deficiency compromises PTH-dependent Ca absorption and the synthesis and efficacy of all forms

of vitamin D.

A balanced Ca: Mg enhances the benefits of vitamin D.

A 3:2 Ca to Mg intake ratio may better support mineral balance than the traditional 2:1.

Introduction

The global decline in health, with widespread micronutrient deficiencies playing a central role, is a

growing topic. Among the most overlooked are molecualr calcium (Ca) and magnesium (Mg)—the body’s

most abundant cations after sodium and potassium. Although deficiencies in both minerals are well

documented, the benefits of supplementing one in isolation remain unclear. Researchers now view the Ca:

Mg ratio as more pertinent than their absolute levels. In 1989, Durlach proposed an ideal intake ratio of 2:1

by weight  [1][2], but the optimal method for measuring and calculating this ratio—whether through

dietary intake or blood levels—remains debated. This mini review introduces a novel approach using

laboratory reference ranges from healthy populations, comparing total serum Ca and Mg (mmol/L),

ionized Ca and Mg, and RBC Mg to define optimal physiological balance.

Physiological Roles Cell Signaling to Cell Death: Calcium (Ca) and

Magnesium (Mg)​

Ca²⁺ and Mg²⁺ are essential divalent cations that play critical—and often opposing—roles in cellular

physiology, ranging from signal transduction to apoptosis. Intracellular Ca is a ubiquitous second

messenger, regulating numerous processes, including muscle contraction, neurotransmitter release, gene

expression, enzyme activation, and programmed cell death  [3]. In contrast, Mg acts as a natural Ca

antagonist, stabilizing ATP, modulating ion channels, and maintaining membrane potential and genomic

integrity [4].
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While transient intracellular Ca²⁺ spikes initiate essential cellular responses, prolonged elevation can

induce oxidative stress and activate both caspase-dependent and -independent apoptotic pathways [5]. By

buffering Ca²⁺ influx, Mg²⁺ regulates mitochondrial permeability transition pores and protects against

calcium-induced cytotoxicity and cell death. The precise balance between these ions is critical: disruptions

in their ratio contribute to a range of pathologies, including cardiovascular diseases, neurodegeneration,

and metabolic disorders [6]. Understanding the dynamic interplay between Ca²⁺ and Mg²⁺ offers valuable

insights into cellular fate decisions and offers potential avenues for therapeutic intervention.

Importance of maintaining a balanced Ca: Mg ratio for overall health

Magnesium (Mg²⁺) deficiency and an elevated calcium-to-magnesium (Ca²⁺: Mg²⁺) ratio are recognized

increasingly as contributors to chronic low-grade inflammation and oxidative stress—key drivers of a

process known as inflammaging [7]. Inflammaging, characterized by systemic, age-related inflammation

in the absence of infection, is closely linked to the pathogenesis of numerous age-related diseases.

Research has shown that low Mg²⁺ levels can trigger the release of pro-inflammatory cytokines and

increase oxidative stress markers [8]. These responses accelerate cellular aging and dysfunction, directly

associating an elevated Ca²⁺: Mg²⁺ ratio with conditions such as cardiovascular disease, type 2 diabetes,

and neurodegenerative disorders like Alzheimer’s disease [9][10].

An imbalanced Ca²⁺: Mg²⁺ ratio has been directly linked to the onset and progression of cardiovascular

risk  [11] and mortality  [12][13], cancer, autoimmune disorders, infections, dementia  [14][15], and obesity  [16]

[17]. Although both Ca and Mg are essential minerals, their physiological actions are often antagonistic,

making their balance vital for homeostasis. Excess Ca intake without sufficient Mg can promote

uncontrolled cell proliferation—a hallmark of cancer—while Mg deficiency may impair DNA repair

mechanisms and increase oxidative DNA damage  [18]. However, the relationship between Ca, Mg, and

cancer remains inconsistent  [8], partly due to variations in study populations, dietary intake,

methodologies, and the lack of consideration for their interactive effects [19]. Thus, studies should evaluate

the Ca²⁺: Mg²⁺ ratio rather than individual mineral levels when assessing disease risk and developing

dietary guidelines.

Physiology of Calcium and Magnesium

Calcium is a vital mineral in human physiology, essential for supporting the structural integrity of bones

and teeth, supporting neuromuscular signaling, enabling blood coagulation, and facilitating hormone
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secretion. It also serves as a key intracellular messenger, regulating various cellular functions, including

muscle contraction, neurotransmitter release, and enzyme activity. Intracellular Ca²⁺ levels are controlled

tightly by calcium-binding proteins, membrane channels, and organelles such as the endoplasmic

reticulum and mitochondria to prevent cytotoxic overload  [20]. Extra-cellular Ca concentrations are

maintained within a narrow range through hormonal regulation involving parathyroid hormone,

calcitonin, and active vitamin D (calcitriol), thereby preserving physiological balance and homeostasis [21].

Magnesium, the second most abundant intracellular cation, is a critical cofactor in over 600 enzymatic

reactions, particularly in ATP metabolism, DNA replication, and protein synthesis  [22]. It plays a central

role in stabilizing nucleic acids, modulating ion channels, and mitigating calcium-mediated excitotoxicity.

Mg²⁺ is also essential for cardiovascular, neuromuscular, and immune function while maintaining cellular

electrical gradients and mitochondrial integrity [23][24]. Intestinal absorption and renal excretion regulate

Mg homeostasis. Mg²⁺ deficiency—often underdiagnosed—can result in neuromuscular disorders,

arrhythmias, insulin resistance, and chronic inflammation, highlighting its indispensable physiological

functions [25].

Calcium

Ca²⁺ and Mg²⁺ are vital to human physiology. Although there is some functional overlap, these two ions

primarily occupy opposite roles and have different counteracting functions. Ca²⁺ is predominantly extra-

cellular, with a concentration of four orders of magnitude greater than that within the cell  [1].

Nevertheless, Ca²⁺ and Ca/Mg ratio function as a second messenger from the circulation to cells and within

cells, particularly those with calcium-sensing receptors (CaSRs), such as parathyroid cells, renal tubular

cells, etc. Its primary extra-cellular role is the maintenance of skeletal and dental health. It is also vital for

muscle contraction and nerve transmission.

Serum Ca²⁺ is the primary determinant of parathyroid hormone (PTH) secretion and the release of

calcitonin in response to calcium stress situations [1]. Additionally, the intrinsic clotting cascade is highly

dependent on Ca²⁺. Although Ca²⁺ is primarily extra-cellular, its intracellular concentration is linked to

signaling, inflammaging, and oxidative stress  [7]. Half of the circulating plasma calcium is bound to

protein, primarily albumin, while the other half exists in the ionized form. Laboratory reports often

provide a corrected serum value when blood albumin is low; however, this is unnecessary [26].
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Magnesium

Intracellular versus extra-cellular concentration of magnesium varies by cell type but is typically more

than three times higher intracellularly. Meanwhile, Mg-dependent ATP maintains the high 1:10,000

gradient for Ca²⁺. The latter also maintains the 30:1 gradient for intracellular potassium [27] and the 1:50

gradient for extra-cellular sodium  [28]. Consequently, it would be challenging to maintain intracellular

potassium levels or sustain normocalemia in the face of a Mg shortfall.

Hypermagnesemia: It leads to cardiovascular complications, such as hypotension and bradycardia. In

extreme cases, it can cause cardiac arrest due to the inhibitory effect of Mg on Ca-mediated cardiac

conduction pathways  [29]. Elevated Mg²⁺ levels may lead to depressed central nervous system activity,

including respiratory depression or even coma [30]. Consequently, severe hypermagnesemia (>6.0 mg/dL)

is a medical emergency that may require interventions, including intravenous Ca gluconate and short-

term renal replacement therapy to reduce Mg levels rapidly [31]. The key is recognizing early with prompt

interventions to prevent life-threatening clinical outcomes [32].

Hypomagnesemia: Magnesium is essential for many physiological functions, including enzymatic activity,

hormone synthesis and release, neuromuscular function, cellular energy balance, and receptor

activation  [33][34]. Thus, it is unsurprising that it can seriously affect human health. Examples include

muscle weakness, cramps, tremors, and fatigue  [32]. Magnesium is crucial for maintaining proper heart

rhythm and regulating potassium and Ca ions in cardiac tissues; thus, hypomagnesemia can lead to

cardiac arrhythmias [35].

Chronic hypomagnesemia contributes to several long-term health problems, such as the increased risk of

falls, osteoporosis and fractures  [36], insulin resistance, and hypertension. Nevertheless, the circulatory

Mg concentrations do not accurately reflect tissue Mg levels [37]. As with higher levels, the lower tissue Mg

can lead to cardiac arrhythmia, nerve conduction defects, and muscle weakness  [34]. It also impairs

parathyroid gland functions, simulates hypoparathyroidism, and exacerbates conditions such as diabetes

and metabolic syndrome  [35]. In severe cases, it can lead to life-threatening complications, such as

respiratory distress and seizures  [38]. Early diagnosis and management, through dietary adjustments or

supplementation, are crucial to prevent adverse outcomes and restore Mg balance in the body [39][40].

Hypomagnesemia also disrupts hormone synthesis, release, and vitamin D activity (see below)  [41]. It is

associated with decreased synthesis and activation of vitamin D and VDR interactions, increased oxidative
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stress, and exacerbated cytotoxic activity in T lymphocytes, promoting the cytokine storm  [42][43]. In

addition, hypomagnesemia can cause endothelial dysfunction  [44][45]  and impaired myocardial

contractility, hence increasing the risk of developing heart failure [46]. Those with hypomagnesemia with

severe SARS-CoV-2 infection  [47][48][49]  or following COVID-19 vaccines can experience serious adverse

effects [50][51]. The physiological and biological functions of Mg are numerous. The renal outer medullary

potassium channel (ROMK) is an Mg-dependent ATP channel that recycles potassium. Mg²⁺ is critical in

inhibiting ROMK potassium channels in the principal cells of collecting tubules and ducts. When

magnesium levels drop, ROMK channels become hyperactive―another mechanism of hypokalemia in

hypomagnesemia.

Magnesium and Healthy Aging

Most enzymes that involve ATP/GTP, ADP/GDP, or cAMP/cGMP require physiological concentrations of

Mg²⁺ [33][52]. Mg serves many disparate functions, some of which impact aging:

1. G-protein coupled receptors (GPCRs) are Mg-dependent (GTP), including those for Ca/Mg (CaSR) [53]

[54], PTH, and insulin secretion [53]. Although VDR (vitamin D receptor) on the nuclear membrane is

well known, there is another VDR-like membrane receptor, 1,25-D3-MARRS (membrane-associated,

rapid response steroid-binding), on the cell membrane [55]. It is also a GPCR and potentiates immune

function, e.g., breast cancer prevention [56].

2. Mg-dependent cAMP (second messenger) intracellular signaling is also involved in VDR activation.

Thirty-four per cent of FDA-approved drugs target GPCRs [55]. Not surprisingly, decreased efficiency

of GPCR signaling may mediate age-related disease [53][54][57]. TRH (thyrotropin-releasing hormone)

and TSH (thyroid-stimulating hormone) are ligands for Mg-dependent GPCRs. Iodination of T4 to

form T3 is Mg-dependent.

3. All CYP450 enzymes require Mg as a cofactor, some of which are involved in synthesizing vitamin

D [56][58] (see Figure 1). CYP450 activity declines with age [59].

4. Another CYP450 enzyme, Mg-dependent 11β-hydroxysteroid dehydrogenase, degrades cortisol  [60],

tightly linked to cognitive decline and dementia [61].

Figure 1 illustrates the crucial role of magnesium in the biochemistry of vitamin D synthesis.
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Figure 1. Synthesis of not only 7-dehydrocholesterol [19][62], the substrate for UVB-dependent production of D3,

but also the storage of 25(OH) D and active form 1,25(OH)2D, metabolites of vitamin D requires ATP-Mg, cofactor

Mg, and Mg-dependent B2 and B3. The figure was created from fundamentals discussed by Han Y., et al.,

2025 [62] and Chambers P. (2025) [19].

In addition to optimal GPCR function, CYP450 enzymes, and vitamin D synthesis  [53], Mg is a required

cofactor for most glycolytic pathway and Krebs cycle enzymes. Many phosphorylation reactions are also

Mg-dependent, e.g., activation of vitamins B1 (thiamine to thiamine pyrophosphate) [63], B2 (riboflavin to

FAD)  [64], B3 (niacin to NAD)  [65], B5 (pantothenate to coenzyme A)  [66], and B6 (pyridoxine to pyridoxal

phosphate) [52]. Methylation reactions are also Mg-dependent, e.g., activation of B9 (folate to methyl folate)

and B12 (cyanocobalamin to methylcobalamin)  [67], require Mg as a cofactor  [33][52]. All but biotin (B7)

require Mg-dependent activation, and their deficiencies accelerate aging  [68]. DNA methylation protects

the genome, and decreased DNA methylation is a hallmark of aging [69]. Differential DNA methylation has

recently been reported in cancer  [70], dementia  [70], cardiovascular disease (CVD)  [71], and autoimmune

disease [72], including Covid-19 severity and post-COVID syndrome [73].
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Magnesium-dependent enzymes account for 80% of known metabolic functions [74]. Figure 1 illustrates

the crucial roles of Mg, including synthesizing the substrate for D3 and all forms of vitamin D[19][62][75].

Low levels of vitamin D intensify age-related disease, e.g., immunosenescence and inflammaging [76]. Mg

is also essential for a healthy gut microbiome  [77], and a healthy gut microbiome promotes healthy

aging [77]. The above-mentioned Mg-dependent functions support the view that Mg deficiency may drive

the physiologic hallmarks of aging  [9]. Mg deficiency profoundly affects oxidative stress and

inflammaging  [78], linked to aging  [79][80], and increased intracellular Ca²⁺  [81]. This underscores the

increased health risks associated with an imbalanced Ca²⁺: Mg²⁺ ratio.

Interrelationship Between Calcium and Magnesium

Ca²⁺ and Mg²⁺ compete for the same calcium-sensing receptors (CaSRs) [82]. Although these receptors are

found primarily in the parathyroid gland and kidneys, they are also present in other organs, including the

alimentary canal  [26]. Concomitant intake of Ca²⁺ and Mg²⁺ may lead to competition for these receptors.

Synthesis and release of parathyroid hormone (PTH) require Mg. While the PTH response to plasma Ca²⁺

and Mg2+ is similar, it is much more sensitive to plasma Ca²⁺. According to a 2018 study, reducing a high

Ca²⁺: Mg²⁺ ratio by increasing Mg intake significantly reduced circulatory 25(OH) D among those with

serum levels of 25(OH) D close to 50 ng/mL  [83]. Further study is warranted to determine whether this

change is beneficial or detrimental.

When 25(OH) D levels are below 30 ng/mL, the demands of Mg-dependent 25(OH) D synthesis

surpass those of Mg-dependent PTH synthesis. Hypomagnesemia reduces the release and synthesis of

hormones, especially PTH [84]. As Mg intake is increased, serum 25(OH) D levels also increase, up to about

25(OH) D levels 30 ng/mL, together with upregulation of Mg-dependent PTH synthesis. Beyond that, a

further increase of the cellular Mg concentration results in downregulation of 25(OH) D. Increasing D3 to

attain circulatory levels of 25(OH) D above 50 ng/mL, without first addressing an elevated Ca: Mg intake,

may result in loss of Mg. Mg is consumed during the activation process of vitamin D metabolites [84]. In

this study, BMI for both the study group and the placebo group averaged 30 kg/m. Consequently, fat cells

may also have absorbed some 25(OH) D. All participants had Ca: Mg ratios well above 3.5 and would

represent the right hypoparathyroidic wing of the bell curve (see Figure 2). This reflects the Western

fast/processed food diet. These theoretical considerations are speculative and require clinical validation.

Table 1 illustrates various combinations of Ca2+: Mg2+ ratios.
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Imbalance Etiology Reference

Hypocalcemia (low

Ca: Mg)

Seen primarily with hypoparathyroidic conditions. Vitamin D deficiency, gut

dysbiosis, and certain medications. Chronic kidney disorders (CKDs) that

suppress glomerular filtration can elevate serum phosphate, a divalent anion

that binds Ca and induces hypocalcemia. Mg insufficiency retards the synthesis

of PTH and causes hypoparathyroidism.

[85]

Hypercalcemia (high

Ca: Mg)

Primarily caused by overactive parathyroid glands, certain cancers, dehydration,

and possibly prolonged excessive vitamin D intake (greater than 10,000 IUs/d).

[86][87]

Hypomagnesemia

(high Ca: Mg)

Non-genetic origin: primarily encountered in those with low dietary intake, gut

dysbiosis, or excess loss (excretion), e.g., vomiting or diarrhea.

[41]

Hypermagnesemia

(low Ca: Mg)

Linked to CKDs, the primary culprit (other than iatrogenic). The low Ca: Mg seen

in those on a traditional Asian diet is predominantly due to low Ca, not high Mg.

CKDs associated with loss of glomerular filtration rate may not be able to

maintain Mg homeostasis with resultant hypermagnesemia.

[31][88]

Table 1. Abnormal Ca: Mg ratios and their clinical settings

Symptoms of magnesium deficiency and an elevated Ca²⁺: Mg²⁺ ratio can manifest in all three types of

muscle: cramps in skeletal muscle, palpitations in cardiac muscle, and migraines and pre-menstrual

syndrome (PMS) in smooth muscle. These two disorders and PMS have been linked to normo-

magnesemic magnesium deficiency, first reported by Mansmann [89]. Like Ca²⁺, Mg²⁺ is also essential for

neural transmission. However, for other cell types, their functions are antagonistic: in smooth muscle

cells, Mg²⁺, a Ca²⁺ channel blocker, induces relaxation, while Ca²⁺ induces constriction.

An optimal balance of Ca²⁺ and Mg²⁺ is the target. Mg-dependent flavin adenine dinucleotide (FAD) and

nicotinamide adenine dinucleotide (NAD), the active forms of vitamins B2 and B3, are vital to the electron

transport chain in the Krebs cycle [90]. An elevated Ca²⁺: Mg²⁺ ratio compromises glucose metabolism and

increases mitochondrial dysfunction. Mitochondrial dysfunction, linked to inflammaging, involves an

increase in intra-mitochondrial Ca²⁺ induced partly by the mitochondrial permeability transition pore [91].
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Pathophysiology of Ca: Mg Ratio―Relevance to Global Health and

Clinical Medicine

The Western diet typically has a high Ca-to-Mg ratio. Supplemental Ca was popular, especially among

women, but this changed significantly after the Women’s Health Initiative study [92] and similar studies

published in subsequent years. As a result, the intake ratio increased from less than 2.5 to over 3.0, which

is considered unphysiological [8]. Since Ca and Mg are ligands competing for the same Ca-sensing receptor

(CaSR), it is unsurprising that their pathological ratios can adversely affect humans. CaSR is a G-protein-

coupled receptor that detects extra-cellular Ca levels to maintain calcium homeostasis. Activation of the

CaSR in parathyroid cells reduces the secretion of PTH, while activation in renal tubular cells promotes

urinary excretion of Ca [93].

Considering the Ca: Mg ratio as a messenger (from the circulation to target cells would make it easier to

understand its biological actions, particularly in target cells with high CaSR density, such as parathyroid

cells, renal tubular cells, and the brain  [94]. The calcium-to-magnesium (Ca: Mg) ratio is equally vital in

maintaining systemic equilibrium  [95]. A high Ca intake without adequate Mg can suppress PTH levels,

negatively impacting bone remodeling and mineralization  [95]. An imbalanced Ca: Mg ratio can also

exacerbate chronic conditions, including cardiovascular diseases, due to improper Ca deposition in arterial

walls  [96]. Ensuring a balanced ratio, ideally around 2:1 (Ca: Mg), is critical to optimizing the synergistic

effects of these minerals on vitamin D₃ metabolism, bone health, and overall physiological well-being [95]

[97].

Other studies show that a high Ca: Mg ratio is associated with higher mortality in those with severe SARS-

CoV-2 infections  [98]. Others have reported that a high Ca: Mg ratio may be a biomarker of clinical

outcomes for chronic disease, and rectifying it would derive benefit [99]. Both high and low Ca: Mg ratios

are associated with higher cardiovascular and all-cause mortality  [13]. Ca: Mg ratios >2.4 and <1.6 (iCa/

iMg) are independently associated with increased risk of chronic conditions, like cardiovascular disease,

cancer, metabolic syndrome, type 2 diabetes, as well as all-cause mortality in adolescents [100].

Optimal Calcium-to-Magnesium Ratio

The Ca²⁺: Mg²⁺ intake recommendations are typically weight-to-weight (measured in mg/day). However,

the interaction between these molecules occurs on an electrostatic molar basis, not a weight basis. When
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laboratory data is involved, concentrations are usually converted from mg/dL to mmol/L to account for the

molecular interactions. Determining ionized calcium (iCa²⁺): ionized magnesium (iMg²⁺) ratios is less

straightforward, particularly in hospitalized patients, due to various factors influencing ionized levels. In

addition, different studies use different methodologies, leading to confusion in interpreting the Ca²⁺: Mg²⁺

ratio. Journal articles addressing the Ca²⁺: Mg²⁺ ratio via these varying approaches contribute to this

complexity.

The National Health and Nutrition Examination Survey (NHANES) from the Centers for Disease Control

and Prevention (CDC) uses a detailed food frequency questionnaire (FFQ) to assess the national median

Ca²⁺: Mg²⁺ intake in mg/day from a civilian, non-institutionalized population  [101]. The CDC’s selection

criteria are less stringent than those used to determine laboratory reference ranges. The recommended

1.7-2.6 (weight-to-weight in mg/day) reflects increased all-cause mortality in those outside this range [102].

One study from China involving 75,000 females and 62,000 males determined 1.7 as the lower limit for the

range [103]. Another determined 2.6 as the upper limit for the range [104]. However, a later study conducted

in a prostate, lung, colorectal, and ovarian cancer screening trial reduced the upper bound from 2.6 to

2.5 [105]

Two recent Chinese studies reported that this national intake ratio translated to actual serum reference

ranges in mmol/L for Ca: Mg in a healthy subset of this population between 2.4 and approximately 3.6 [103]

[104]. These Chinese serum mmol/L levels, with 70% of Mg unbound and 50% of calcium unbound,

translate to a Ca²⁺: Mg²⁺ ratio between 1.7 and 2.5, closely replicating the recommended 1.7-2.6 weight-to-

weight intake. Using accepted laboratory reference ranges for total serum Ca and Mg in mmol/L, the

American mean for iCa²⁺: iMg²⁺ is similar (1.66-2.51). By comparing the reference range values for total

serum Ca and Mg with their reference ranges for iCa²⁺ and iMg²⁺, for alignment, Ca²⁺ must make up about

50% of total serum calcium, and Mg²⁺ must make up about 70% of total serum magnesium. Therefore, the

recommended 1.7-2.6 range for Ca²⁺: Mg²⁺ intake (weight-to-weight, as determined by FFQs) closely

approximates the recommended range for serum Ca²⁺: Mg²⁺ (mmol to mmol).

Calcium-Magnesium Balance in Disease States

Mg deficiency and an elevated Ca²⁺: Mg²⁺ ratio are linked to inflammaging and oxidative stress.

Inflammaging and oxidative stress, in turn, are linked to cancer [105], dementia [106], cardiovascular [107],

diabetes [108], autoimmune disease [109], and obesity [17]. Not surprisingly, the Ca²⁺: Mg²⁺ ratio may predict
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cancer, metabolic disease, infections, autoimmune diseases, and obesity  [110]. However, many reports on

the relationship between Ca and cancer and Mg and cancer are contradictory. Nevertheless, when these

reports include this balance, relationships become clearer. If the Ca²⁺: Mg²⁺ ratio is balanced with

euparathyroidism, Ca and Mg levels must also be sufficient (see hypothetical Figure 2).

Cancers, and Ca2+: Mg2+

An imbalanced Ca: Mg increases cancer risks when Ca is low (decreased ratio) and Mg is low (increased

ratio). Ca and Mg compete for the same Ca-sensing receptor (CaSR). Many clinical studies have

documented this for cancers of the colorectum [110], esophagus, prostate, lung, breast, ovary, and pancreas.

(see Table 2).

Ca: Mg Clinical Outcomes Reference

Increasing Ca intake when Ca: Mg is low Decreases the risk of colorectal cancer [111][112]

Increasing Ca intake when Ca: Mg is high

Does not decrease the risk of colorectal cancer

[112]

Increasing Ca intake when Ca: Mg is low (less than 1.7) Decreases esophageal cancer risk [113]

Increasing Mg intake when Ca: Mg is low (less than 1.7) Increases esophageal cancer risk [113]

Increasing Mg intake when Ca: Mg is high Decreases the risk of prostate cancer [114][115]

A high or low Ca: Mg Increases the risk of lung cancer [115][116]

A high Ca: Mg Decreases survival in breast and ovarian cancer [117][118]

Increasing Mg when Ca: Mg is high Decreases breast cancer risks [119]

Increasing Ca when the Ca: Mg is low Decreased risks for pancreatic cancer [120]

Increasing Mg when Ca: Mg is high Decreases the risks of pancreatic cancer [121]

Table 2. Examples of different combinations of Ca” Mg ratios and reported clinical correlations
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Metabolic Disease and Ca2+: Mg2+

The balance between Ca²⁺ and Mg²⁺ plays a critical role in metabolic disease, with an imbalanced Ca²⁺:

Mg²⁺ ratio (either high or low) contributing to various metabolic disorders [122]. Elevated Ca²⁺ levels in the

presence of low Mg²⁺ may manifest insulin resistance, impaired glucose metabolism, and increased risk

for type 2 diabetes  [122]. Furthermore, the dysregulation of this ratio exacerbates inflammation and

oxidative stress, which are common pathophysiological features in metabolic diseases, including obesity

and cardiovascular conditions [123].

Research suggests that maintaining an optimal Ca²⁺: Mg²⁺ ratio could help mitigate these conditions and

improve metabolic function by enhancing insulin sensitivity and reducing systemic inflammation. For

instance, studies have highlighted the protective effects of Mg in preventing metabolic syndrome,

emphasizing the need for proper Mg²⁺ intake alongside Ca to maintain metabolic health  [124][125]. Some

specific examples appear below.

Insulin Resistance, Diabetes Mellitus, and Ca: Mg

The growing global incidence of insulin resistance plays a key role in the development of type 2 diabetes,

cardiovascular diseases, and obesity-related conditions [126][127]. Serum Mg levels may contribute to this

increasing prevalence. The laboratory reference range for total serum Mg is typically 0.75-0.95 mmol/L. A

study involving 10,000 participants showed that the risk for diabetes mellitus increased by 20% when

serum Mg was between 0.80-0.85 mmol/L and 50% when it was between 0.75-0.80 mmol/L  [128].

Additionally, conditions like PMS and migraine headaches may reflect normo-magnesemic Mg deficiency,

also known as chronic latent magnesium deficiency (CLMD), which may correspond to levels in the 0.75-

0.85 mmol/L range. Table 3 summarizes the risks and benefits of Ca to Mg ratios in common disorders [58]

[89]. Insulin resistance links all entities in Table 3, including many other cancer types. If the lower limit of

serum Mg were to be raised to.85 mmol/L, the recommended Ca: Mg range would shrink to 1.7-2.3.
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Disorder Clinical Presentations

Cardiovascular

Disease

Elevated dietary Ca: Mg intake increases the risk for CVD [11]. Other researchers have reported

that elevated serum Ca: Mg predicts mortality in CVD [12][13]. Low or high Ca intake increases

cardiovascular disease risks when Ca: Mg is outside 2.0-2.5 [129].

Dementia

Both low Ca and Mg are associated with cognitive decline [130] and dementia [131]. Low Ca in

Chinese is linked explicitly to dementia [132], while low Mg in Americans is specifically linked to

dementia [14][15]

Obesity
Low dietary Mg intake is associated with higher BMI and obesity [16]. Obesity induces a low-

grade, diffuse, pro-inflammatory state [17].

Cancer

Risks for numerous cancers increase when Ca intake is low and Ca: Mg is low or when Mg intake

is low and Ca: Mg is high. Similarly, risks decrease when Ca: Mg is low and Ca intake is increased

or when Ca: Mg is high, and Mg intake is increased [18][110][113][114][117][118][119][120][121][133].

Autoimmune

Disease

Mg deficiency increases the risk for post-COVID syndrome [134], recovery from infections [47],

and rheumatoid arthritis and lupus [135][136].

Infectious

Disease
Mg deficiency increases mortality risks for COVID-19 [47].

Table 3. Examples of disorders linked to an imbalanced Ca: Mg

Infectious and Autoimmune Diseases and Ca: Mg

Mg deficiency has been associated with T-cell dysfunction, which can impair resistance to viral and

bacterial infections [137]. However, the impact of Mg deficiency on vitamin D synthesis may have an even

more profound effect. Vitamin D receptors (VDRs) are present in virtually all cells, and Mg deficiency can

hinder vitamin D activation, further contributing to immune system dysfunction. T-cell dysfunction may

induce autoimmune diseases. Adequate dietary and supplemental Mg intake may reduce all-cause

mortality in individuals with rheumatoid arthritis [138].

Mg deficiency increases the risk of rheumatoid arthritis  [135], and oral Mg supplementation may reduce

pathogenic autoantibodies and skin disease severity in murine lupus models [136]. Post-COVID syndrome,

now recognized as an autoimmune condition by the Autoimmune Registry, may also reflect Mg levels.
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Total serum Mg level below 0.80 mmol/L increased COVID-19 mortality by 29% and the risk of developing

post-COVID syndrome by 114% [47], potentially reflecting CLMD. In conclusion, Mg deficiency negatively

affects immune regulation while exacerbating inflammation, infectious diseases, cancer, and metabolic/

autoimmune disorders  [47][121][139]. A low calcium-to-magnesium (Ca: Mg) ratio increases sickle cell

disease sickling [140].

Mechanisms Underlying Calcium and Magnesium Imbalance

Multiple factors contribute to an imbalanced calcium-to-magnesium (Ca: Mg) ratio, including

deteriorating agricultural soil, reduced essential mineral content in vegetables, and the global rise in

consumption of processed foods and phosphate-rich soft drinks [96][140]. These dietary patterns are also

associated with compromised gut microbiome diversity and function, further impairing nutrient

absorption and metabolism [96][141][142]. An imbalanced Ca: Mg ratio is frequently a surrogate marker for

vitamin D insufficiency or deficiency, as Mg is essential for synthesizing and activating vitamin D [142][143].

Furthermore, Mg deficiency often goes undetected because routine serum Mg testing is uncommon and,

even when done, does not reflect total body stores, making it easy to overlook [99][144].

The situation compounds socioeconomic disparities and cultural practices that influence diet  [145][146],

clothing habits that limit sun exposure, and uneven access to healthcare services  [147][148][149]. Besides,

individuals from low-income or traditional communities often face limited dietary diversity and reduced

availability of nutrient-rich foods, heightening their risk for micronutrient imbalances  [150]. Aging and

elevated body mass index (BMI) contribute to chronic low-grade inflammation, insulin resistance [151][152],

and micronutrient depletion, exacerbating the health consequences of an imbalanced Ca: Mg ratio [153]. A

widespread lack of public awareness and the absence of routine clinical screening for Mg status obstruct

early detection and effective prevention. Figure 2 illustrates the proposed mechanisms linking circulating

25(OH) D levels with Ca: Mg ratios.
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Figure 2. A hypothetical figure that illustrates improving Ca: Mg and BMI may enhance the

efficacy of D3. If Ca: Mg is optimal, attaining 25(OH) D >50 ng/mL may be theoretically possible

with 2000 IUs of D3 supplementation. Optimal Ca: Mg should also reflect the euparathyroid

state and sufficiency of Ca and Mg. One study suggests that the upper limit of optimal Ca: Mg be

reduced to 2.5 [129].

Notably, PTH regulates Ca and Mg similarly, but Ca is the primary determinant of PTH level. Besides, Ca

and Mg are antagonists in many ways, e.g., Mg is a Ca channel blocker, and both compete for the same

CaSR. The left side of the bell curve in Figure 2 represents the established inverse relationship between

serum 25(OH) D and parathyroid hormone (PTH). A diet low in Ca, thus, a low Ca: Mg ratio—such as a

traditional Asian diet—stimulates PTH secretion. However, increasing Ca intake to rectify the imbalance

downregulates PTH/vitamin D synthesis and Mg absorption in those already D3-deficient. This might

increase the need for higher D3 and Ca supplementation to achieve optimal 25(OH) D concentrations, at

the expense of Mg.

In contrast, the right side of the bell curve in Figure 2 reflects scenarios common in Western diets,

characterized by high Ca intake and routine D3 supplementation without adequate Mg. In this context, Mg

intake is often insufficient to support optimal PTH synthesis. Consequently, D3 supplementation alone

may downregulate Mg-dependent PTH, perpetuating a hypo-parathyroid state. This suggests that

individuals with a suboptimal (high) Ca: Mg ratio may require even higher D3 and Mg doses to achieve

target 25(OH) D levels.
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Complex pathophysiological interactions related to Ca: Mg ratios

As previously discussed, a 2018 study [83]  reported that when baseline 25(OH) D exceeded 35 ng/mL, Mg

supplementation (e.g., 200 mg/day) surprisingly reduced 25(OH) D synthesis [83]. However, that study did

not assess PTH. Further analysis showed that Ca: Mg intake ratios (mg/d) were 3.9 and 3.7 in the placebo

and treatment groups, respectively. Both groups were also overweight or obese  [83]. These findings

suggest that when Ca: Mg is elevated, Mg supplementation goes first to vitamin D synthesis and then to

PTH synthesis. Another study supports this interpretation, proposing that in overweight and obese

individuals with elevated Ca: Mg, increased Mg intake may first restore PTH synthesis  [154]. The Ca: Mg

ratio must normalize before more Mg is available for 25(OH) D synthesis sufficient to reach 50 ng/mL.

These studies support the proposed bell curve in Figure 2, placing participants from both studies on the

right wing  [83][154]  of the bell. Both findings suggest that near the lower limit of serum Mg²⁺ at 0.54

mmol/L, Mg²⁺ levels may be insufficient for adequate PTH synthesis. The lower reference value of total

serum Mg at 0.75 mmol/L corresponds to a Mg²⁺ of approximately 0.52 mmol/L. Optimal allocation of Mg²⁺

for effective 25(OH) D synthesis may require Mg²⁺ levels approaching 0.60 mmol/L. Multiple studies

recommend increasing the lower reference threshold for total serum Mg from 0.75 to 0.85 mmol/L [37][102]

[155], corresponding to a Mg²⁺ of approximately 0.60 mmol/L. As previously stated, this would lower the

recommended upper limit for iCa: iMg from 2.6 to 2.3.

Clinical Implications and Recommendations

An optimal Ca: Mg ratio works synergistically with vitamin D. While a serum 25(OH) D level of 30 ng/mL

may suffice for skeletal health, a target of 50 ng/mL is necessary to support extra-skeletal functions,

which are intracellular. Intracellular Mg²⁺ concentrations consistently exceed those of extra cellular Mg²⁺.

Both ionized Ca and Mg are integral to cellular signaling and are essential for regulating diverse cellular

functions and enzymatic processes, including ion channel activity, metabolic pathways, and intracellular

signaling mechanisms [156].

A study on FFQs in individuals not taking supplements found that a Ca: Mg ratio between 2.2 and 3.2

offered the greatest protection against osteoporosis [36][95]. While FFQ-derived data generally suggest an

ideal Ca: Mg range of 1.7 to 2.5, the higher range recommended for skeletal (primarily, extra cellular) health

implies that additional Mg may be needed for extra-skeletal (intracellular) functions of target cells—such

as intracellular signaling  [157], including in cardiovascular and immune cells  [158][159]. Adequate Mg is
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indispensable in this context, and a balanced Ca: Mg ratio enhances the effectiveness of 25(OH) D as well

as key enzymatic processes (see Figure 2). Besides, Mg supplementation when Ca: Mg is elevated, and

25(OH) D exceeds 30 ng/mL may be less effective [83].

A. Overlooked Physiological Roles of RBC Magnesium

Durlach first published his 2:1 weight-to-weight recommendation for Ca: Mg intake in 1989  [1][2]. The

medical literature and median laboratory reference range values for physiologic serum iCa and iMg

support this. In addition, the molecular weight of Ca is nearly twice that of Mg [23][24]. However, unlike Ca,

Mg occupies both intravascular compartments―plasma and RBCs, i.e., RBC Mg, a recent development.

Serum measurements of Mg do not include RBC Mg. Recommended RBC Mg concentration (the reservoir

maintaining plasma iMg homeostasis) is about three times that of plasma Mg [37]. Comparison of Chinese

and American reference range means for whole blood Mg versus plasma Mg supports this multiple.

Mg-dependent PTH responds more to circulating iCa than iMg, and because iCa and iMg are often

competitors, a conflict of interest may develop. High Ca intake translates to low PTH, low endogenous D,

and low Mg. Low Ca intake translates to high PTH and high endogenous D, but only if Mg is sufficient.

Low Mg intake may compromise the health benefits of vitamin D. The RBC reservoir of Mg may

counterbalance this. If one adjusts the 2:1 Ca: Mg weight-to-weight recommendation of Durlach for

differential molar weights (40:24) and dissociation constants (50% v 70%), then this weight-to-weight

ratio should be 2.33. However, if Ca: Mg is balanced (euparathyroidism), then this balance should optimize

vitamin D. Vitamin D enhances intestinal absorption/renal resorption of Ca. This might lower the intake

ratio and more closely reflect Durlach’s 2:1 recommendation. Nevertheless, is that ratio physiologically

correct?

Using median laboratory reference range values for serum Ca (9.5 mg/dL), serum Mg (2.0 mg/dL) [37][82]

[133], and that recommended for RBC Mg (6 mg/dL) [37] and assuming 40% hematocrit and five liters blood

volume, one can show that to maintain homeostasis (physiologic 2:1 ratio of serum iCa: iMg with adequate

RBC reservoir), absorption of Ca: Mg should theoretically yield about 3:2 weight to weight (285 mg Ca: 180

mg Mg). NHANES (FFQs) data through 2023 indicate that the intake ratio has exceeded 3:1 since the year

2000.

However, determining the general Ca: Mg intake ratio required to meet this theoretical 3:2 need and to

maintain Ca: Mg homeostasis/euparathyroidism is intake-determined but absorption-dependent. For

example, if about 30% of Ca and 35% of Mg were absorbed, then intakes of 950mg Ca and 514mg Mg,
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nearly 2:1, would be required to meet the theoretical need. If sufficient vitamin D were aboard and

absorption were equivalent, then intakes of 800 mg Ca and 514mg Mg, nearly 3:2, would be required. Since

they compete for the same CaSR absorption receptors, temporal separation of Ca and Mg intake should

also impact absorption.

A 3:2 intake ratio of Ca: Mg seems optimal for sufficient vitamin D, otherwise healthy individuals

following a Western diet (hypoparathyroid). A 1:1 ratio might be considered initially for those with Ca: Mg

> 2.6 (hypoparathyroid). Ca is often high in processed foods and carbonated colas, which are part of

Western diets. Targeting a 2:1 intake ratio might be more appropriate in those on traditional Asian diets

low in Ca (hyperparathyroid). The 3:2 ratio may also help address CLMD (e.g., pre-menstrual

syndrome/migraines [89] and early insulin resistance [128], conditions prevalent among those consuming a

Western fast-food diet. Much has changed since 1989. Deteriorating diets and lifestyle changes have

conspired to compromise both intake and absorption. These conclusions, however, are theoretical and

require clinical validation.

B. Physiological vs. Pathological Ca: Mg Ratios

Escalating BMI remains a central issue―sufficient attention to exercise and diet is necessary to lose

weight [160][161]. A diet high in leafy greens, nuts, seeds, and legumes supports better Mg status, though

supplementation is often necessary. To avoid the laxative effect—especially from Mg citrate—use varied

forms in divided doses. Synbiotics may further support Mg absorption by improving gut microbiome

health. Pyridoxal phosphate (active vitamin B₆)  [162]—not its inactive form, pyridoxine—enhances Mg

uptake. Excess pyridoxine can competitively inhibit pyridoxal phosphate  [163]. Notably, elemental Mg

typically constitutes no more than 10% of the weight per tablet in most supplements.

Compared to CRP, Ca: Mg is a more specific and actionable indicator of inflammaging and oxidative stress,

both linked to cancer, metabolic diseases, infections, autoimmune disorders like post-COVID syndrome,

and obesity. While assessing dietary intake of either Ca or Mg is challenging, obtaining relevant laboratory

data is straightforward. Mg is essential for many physiological functions. Nevertheless, for over 50% of

Americans, intake is insufficient [37].

Synthesis of D3/25(OH) D/1,25(OH)2 and binding to VDBP require Mg [96]. Therefore, it is crucial to ensure

that individuals consume the recommended amount of Mg to optimize vitamin D benefits and support all

body systems [83][96]. Unfortunately, measuring serum Mg is not routine, as it is not included in standard
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panels, requiring specific requests. If Ca: Mg is balanced, then each is within normal limits: i.e., an

euparathyroid state exists (see Figure 2).

Human physiological demands have not changed. China and America share similar long-standing

reference range limits for both Ca and Mg. Nevertheless, PTH laboratory reference ranges differ – 10-65

pg/mL in America versus 10-100 pg/mL in China  [106]. This is due to the relative availability/intake of

critical micronutrients influenced by cultural, agricultural, and food habits considerations. The shortfall

in Mg is global, albeit much more so on a Western diet. However, wealthy Western countries are ingesting

too much Ca, and the rest of the world is taking too little. The latter is better known, but the former is not

so well known.

C. The Impact of Maintaining Physiological Ca: Mg Ratio on Public Health

Magnesium is essential for enzymes involved in synthesizing and activating vitamin D 25(OH) D and

calcitriol, enhancing receptor binding, as well as for G-protein signaling, CYP450 activity, B-vitamin

activation, epigenetic methylation, glucose metabolism, and mitigating oxidative stress associated with

aging. Maintaining a balanced Ca-to-Mg intake ratio—ideally between 1.7 and 2.6 (weight-to-weight)—is

fundamental to optimizing vitamin D metabolism and supporting broad systemic health. Disruptions to

this ratio are likely to impair vitamin D efficacy and elevate the risk of chronic diseases and conditions,

including cancer and cardiovascular conditions, as well as dementia and post-viral syndromes  [110].

Notably, a Ca: Mg ratio outside the optimal range has been linked to a greater prevalence of these issues,

while adjusting it via magnesium supplementation has been shown to improve vitamin D status and

cognitive function in randomized trials [14][110].

From a public health perspective, targeting an optimal Ca: Mg ratio is a practical and highly cost-effective,

globally scalable strategy to reduce chronic disease burden. Data from NHANES indicate that many

individuals in the U.S. already exceed a Ca: Mg ratio of 3.0, mainly due to high calcium and low magnesium

intakes—a trend that correlates with worsening metabolic and cardiovascular outcomes [99]. Moreover, in

bone health studies [95], individuals with a Ca: Mg intake ratio of around 2.8 demonstrated significantly

higher bone mineral density compared to those with lower ratios. These findings suggest that public

health policies should emphasize correcting mineral imbalances—through dietary guidance, fortified

foods, and supplementation—to improve outcomes across various domains, including metabolic health,

cognitive function, and longevity [95][99].
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D. Expanded Knowledge Contributions by This Manuscript

This Perspective highlighted the importance of maintaining an optimal dietary calcium-to-magnesium

(Ca: Mg) ratio—targeted between approximately 1.7 and 2.6, as a critical global public health issue [36]. It

underpins efficient vitamin D metabolism and supports a wide range of physiological processes  [164].

Magnesium is indispensable for the enzymatic activation of vitamin D in the liver and kidneys, enhancing

receptor binding and downstream benefits for bone, metabolic, and immune health [164].

Furthermore, this study illustrates that a balanced Ca: Mg ratios contribute to proper G-protein–coupled

receptor function, CYP450 enzyme activity, epigenetic regulation, glucose metabolism, and control of

oxidative stress and chronic inflammation. Disruption of this balance is implicated in elevated risks of

cancer, cardiovascular disease, dementia, post-viral syndromes (including post-COVID conditions), and

type 2 diabetes—conditions that burden global health systems. Laboratory data, large-scale

epidemiological observations (e.g., NHANES), and emerging cohort studies corroborate these associations,

highlighting the need for clinically validated guidelines.

Beyond its clinical implications, the manuscript advances public health knowledge by positioning Ca: Mg

optimization as a cost-effective, globally relevant strategy for chronic disease prevention. NHANES

analyses show that U.S. adults have had mean Ca: Mg intake ratios >3.0 since 2000, and a ratio-based

guidance of ~1.7-2.6 has been proposed to support metabolic and bone health [99]. Correcting high Ca: Mg

ratios has been associated with better health and vitamin D utilization in a randomized trial, lower

systemic inflammation in meta-analyses, and improved brain structure/function in population studies of

aging  [83][99][165]. These are substantiated by illustrating Mg supplementation significantly reduced

inflammatory markers like plasma fibrinogen, tartrate-resistant acid phosphatase type 5, tumor necrosis

factor-ligand superfamily member 13B, ST2 protein, and IL-1 [83][166]. In conclusion, Mg supplementation

significantly reduces different human inflammatory markers, in particular serum CRP and nitric oxide

levels, aiding better health outcomes [83]. For example, calcium intake is inversely associated with CRC (P-

trend  .03) when the Ca: Mg ratio is maintained between 1.7 and 2.5 [110].

These findings challenge calcium-centric recommendations: the Ca: Mg ratio modifies associations with

colorectal neoplasia, and reducing the ratio to ~2.3 via magnesium improved vitamin D status in trial

settings  [95][110]. From a population health perspective, optimizing the Ca: Mg ratio represents an

affordable, scalable strategy to prevent chronic disease and enhance metabolic resilience  [166]. For

example, higher dietary Ca: Mg ratios have been linked with increased risk of non-alcoholic fatty liver
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disease  [95], while prospective cohort data show that individuals—particularly men—with Ca: Mg ratios

above 1.7 benefit from reduced all-cause and cardiovascular mortality when calcium and magnesium

intake is sufficient [99][166].

Additionally, elevated magnesium intake, especially when combined with adequate vitamin D, is

associated with reduced risk of vitamin D deficiency and may modify mortality outcomes in large

population-based studies  [95]. These findings underscore the manuscript’s novel contribution:

illuminating the Ca: Mg ratio as a pivotal determinant of public health, beyond isolated mineral intake,

and advancing the imperative for dietary policy and clinical practice to incorporate this nuanced

perspective. Increased dietary Mg intake also improves brain health in the general population, particularly

in women [165]. Table 4 summarizes the importance of maintaining a physiological Ca: Mg ratio between

1.7 and 2.6.

Benefiting tissue or system Specific benefit from maintaining the physiological ratio of Ca: Mg

Vitamin D and the skeletal system
Maintaining the above-mentioned balanced Ca: Mg ratio optimizes vitamin D

and skeletal metabolism, immune function, and systemic health.

Increase the risks of several

chronic disorders

Higher Ca: Mg ratios (>3.0), common in many populations, are linked to higher

risks of cancer, cardiovascular disease, diabetes, neurodegeneration, and worse

infectious disease outcomes.

An explanation for the vitamin D

replacement clinical trial outcomes

Most vitamin D studies overlook magnesium status (failure to replace Mg in

deficiency) and Ca: Mg balance, which may explain conflicting results in

supplementation trials.

Lowers inflammation and

improves multiple body system

functions

Optimizing the Ca: Mg ratio improves vitamin D efficacy, lowers

inflammation, and supports bone, metabolic, and cognitive health.

A broader recommendation

Public health guidelines should shift from focusing on calcium intake alone to

Ca: Mg ratio-based recommendations for preventing chronic disease and

reducing healthcare costs.

Table 4. Specific reasons and benefits of maintaining the physiological Ca: Mg ratios
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Conclusion

Maintaining an optimal calcium-to-magnesium (Ca: Mg) ratio is crucial for numerous physiological

functions and for preventing chronic and infectious diseases. An imbalanced ratio—below 1.7 or above 2.6

—may prompt increased risks of cancer, cardiovascular disease, neurodegenerative disorders like

dementia, autoimmune conditions such as post-COVID syndrome, and greater susceptibility to infections.

Rising body mass index (BMI), which influences and is influenced by Ca: Mg imbalance, may further

heighten these risks. Some meta-analyses report no benefit from D3 supplementation when 25(OH) D

levels exceed 30 ng/mL. Unfortunately, these meta-analyses do not include Mg or Ca: Mg status.

If 30 ng/mL of 25(OH) D is sufficient for skeletal (endocrine) needs, despite Ca: Mg imbalance and

parathyroid dysfunction  [83][155], then additional supplemental D3 might provide even greater benefit

when 25(OH) D > 30 ng/mL and 1.7 < Ca: Mg < 2.6 with euparathyroidism. Optimum Ca: Mg improves

extra-skeletal health (see Tables 2,3). This feature is not dependent on the endocrine (hormonal) role of

vitamin D but on its intracrine role, suppressing inflammaging and improving systemic immunity. This

requires higher doses of D3, enough to reach 50 ng/mL 25(OH) D. Meta-analyses that refute this benefit

overlook the key role Ca: Mg plays in the body’s ability to synthesize and utilize vitamin D, whether from

solar UVB exposure or supplementation with cholecalciferol (D3), impacting metabolic regulation.

Furthermore, outside this recommended Ca: Mg range, other benefits are lost, e.g., the anti-cancer

benefits of physical activities  [164][167]. Symptoms of aging other than cancer, e.g., dementia, CVD,

autoimmunity, infections, and obesity, intensify. Many of these symptoms mimic those of Mg deficiency.

Given the complex roles of these minerals in health and disease, further research should explore their

interactions and establish evidence-based clinical guidelines for optimal intake and monitoring.
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