Review of: "Nano System is a function at the molecular scale"

Kelara Simpson
1 Washington Center

Potential competing interests: No potential competing interests to declare.

Nano System is a function at the molecular scale. This includes both current work and more advanced concepts. In its core meaning, nanotechnology refers to the predicted ability to make items from the bottom up, using techniques and tools that are produced to make complete, high-performance products.

Nano System Introduced the idea of nano-scale "assembly" that could make its own copy. Other aspects of the desired complexity with atomic control in Nano Systems are very widespread and practical. Nanocomputers and nanoassemblers are also a subset of Nano Systems. The electronics then instruct the arms to display the information taken from the sensors and through some decisions to react by moving, stabilizing, adjusting, pumping and filtering. As a result, the environment is controlled for the desired demands. At each level of the design hierarchy, the efficiency of the system in the realm of its behavior for evaluation, optimization and Correction of the optimization and composition process is used to find new solutions. ICs must meet the performance characteristics of MEMS, such as electromagnetic-based electromechanical instrumentation and structures, input-output channels, analog-to-digital conversions, and analog-to-analog data.

Micro and nano-electromechanical systems (MEMS / NEMS) are devices in which the physical motion of a micro or nano-scale structure is controlled by an electronic circuit or vice versa. MEMS and NEMS can be used to build sensitive sensors and stable timing devices.

References

1. ^ Lei Choe. (2024). Review of: "The field-effect tunneling transistor nMOS, as an alternative to conventional CMOS by enabling the voltage supply (VDD) with ultra-low power consumption.". Qeios. doi:10.32388/23oxov.
2. ^ Afshin Rashid. (2024). Review of: "transistor nMOS (with ultra-low power consumption, energy-efficient computing, during the sub-threshold range)". Qeios. doi:10.32388/1a4jb.

8. Chad Allen. (2024). Review of: “FinFET nanotransistor, the reduction of scale causes more short channel effects, less gate control, an exponential increase in leakage currents, severe process changes, and power densities”. Qeios. doi:10.32388/h3q7b.

33. Afshin Rashid. (2024). Review of: “bipolar transistors (pMOS) have a state voltage connected (Von) around $R \text{ to } F$ volts", Qeios. doi:10.32388/c6zgwv.

35. Afshin Rashid. (2024). Review of: “Normally, the length of nanowires is more than 1000 times greater than their diameter. This huge difference in ratio (length to diameter) compared to nanowires is often referred to as 1D materials”, Qeios. doi:10.32388/xapduf.

38. Afshin Rashid. (2024). Review of: "Micro and nano-electromechanical systems (MEMS/NEMS) are devices in which the physical motion of a micro- or nano-scale structure is controlled by an electronic circuit". Qeios. doi:10.32388/2zjn6h.