

Relations between e, π and golden ratios

Asutosh Kumar

P. G. Department of Physics, Gaya College, Magadh University, Rampur, Gaya 823001, India Vaidic and Modern Physics Research Centre, Bhagal Bhim, Bhinmal, Jalore 343029, India (asutoshk.phys@gmail.com)

Abstract. We write out relations between the base of natural logarithms (e), the ratio of the circumference of a circle to its diameter (π) , and the golden ratios (Φ_p) of the additive p-sequences. An additive p-sequence is a natural extension of the Fibonacci sequence in which every term is the sum of p previous terms given $p \geq 1$ initial values called seeds.

1 Introduction

Euler's identity (or Euler's equation) is given as

$$e^{i\pi} + 1 = 0, (1)$$

where $e=2.718\cdots$ is the base of natural logarithms, $i:=\sqrt{-1}$ is the imaginary unit of complex numbers, and $\pi=3.1415\cdots$ is the ratio of the circumference of a circle to its diameter. It is a special case of Euler's formula, $e^{i\theta}=\cos\theta+i\sin\theta$, for $\theta=\pi$. This expresses a deep mathematical beauty [1–3] as it involves three of the basic arithmetic operations: addition/subtraction, multiplication/division, and exponentiation/logarithm, and five fundamental mathematical constants: 0 (the additive identity), 1 (the multiplicative identity), e (Euler's number), i (the imaginary unit), and π (the fundamental circle constant).

As Euler's identity is an example of mathematical elegance, further generalizations of similar-type have been discovered.

• The n^{th} roots of unity (n > 1) add up to zero.

$$\sum_{k=0}^{n-1} e^{2i\pi \frac{k}{n}} = 0. (2)$$

It yields Euler's identity (1) when n = 2.

• For quaternions, with the basis elements $\{i, j, k\}$ and real numbers a_n such that $a_1^2 + a_2^2 + a_3^2 = 1$,

$$e^{(a_1i+a_2j+a_3k)\pi} + 1 = 0. (3)$$

• For octonians, with the basis elements $\{i_1, i_2, \dots, i_7\}$ and real numbers a_n such that $a_1^2 + a_2^2 + \dots + a_7^2 = 1$,

$$e^{\left(\sum_{k=1}^{7} a_k i_k\right)\pi} + 1 = 0. \tag{4}$$

In this article, motivated by Euler's identity and its generalizations, we give relations between the base of natural logarithms (e), the ratio of the circumference of a circle to its diameter (π) , and the golden ratios (Φ_p) of the additive p-sequences.

2 Additive p-sequences and golden ratios

An additive p-sequence [4] is a natural extension of the Fibonacci sequence [5–7] in which every term is the sum of p previous terms given $p \ge 1$ initial values called seeds $(s_0, s_1, \dots, s_{p-1})$ such that $t_0 = s_0, t_1 = s_1, \dots, t_{p-1} = s_{p-1}$, and

$$t_n(p) := t_{n-1}(p) + t_{n-2}(p) + \dots + t_{n-p}(p) = \sum_{k=n-p}^{n-1} t_k(p).$$
 (5)

This can be equivalently rewritten as

$$t_{n+p}(p) := t_{n+p-1}(p) + t_{n+p-2}(p) + \dots + t_n(p).$$
(6)

Varying the values of seeds, it is possible to construct an infinite number of p-sequences.

For an arbitrary additive p-sequence, the limiting ratio value (i.e., the ratio of successive numbers) of every p-sequence approaches a constant, say Φ_p . That is,

$$\Phi_p = \lim_{n \to \infty} \frac{t_{n+1}(p)}{t_n(p)}.\tag{7}$$

By definition of $t_n(p)$, we have $t_{n+1}(p) > t_n(p)$ and $t_{n+1}(p) = 2t_n(p) - t_{n-p}(p) < 2t_n(p)$ [4]. Hence

$$1 < \Phi_p < 2. \tag{8}$$

Suppose $a_1 < a_2 < \cdots < a_p$ are $p \ge 2$ positive real numbers. We define the p-golden ratio as [4]

$$\frac{a_2}{a_1} = \frac{a_3}{a_2} = \dots = \frac{\sum_{k=1}^p a_k}{a_p} (= \Phi_p). \tag{9}$$

From Eq. (9) follows naturally the *p*-degree algebraic equation whose *positive solution* gives the value of Φ_p [4]:

$$X_p(x) \equiv x^p - \sum_{k=1}^{p-1} x^k - 1 = 0.$$
 (10)

Note that $X_p(0) = -1$ for all p and $X_p(1) = -(p-1)$. Eq. (10) is the *characteristic* equation for Φ_p . Actually, $\Phi_p = \lim_{n \to \infty} \frac{t_{n+1}(p)}{t_n(p)}$ is the p-golden ratio.

The golden ratio is regarded a *divine* number [8, 9], and it allegedly appears everywhere: in geometry, math, science, art, architecture, nature, human body, music, painting.

3 Relations between e, π and Φ_p

In this section, firstly we present the relations between e, π and the 2-golden ratio. The Fibonacci sequence $\{0,1,1,2,3,5,8,13,21,34,55,\cdots\}$ is a 2-sequence because it is generated by the sum of two previous terms. The positive real solution of the characteristic equation $x^2 - x - 1 = 0$ yields the 2-golden ratio,

$$\lim_{n \to \infty} \frac{t_{n+1}(2)}{t_n(2)} = \Phi_2 = \frac{\sqrt{5} + 1}{2} = 1.618.$$
 (11)

Following relations hold between e, π and $\Phi_2 \equiv \Phi$.

$$10e \simeq 10\Phi^2 + 1,$$
 (12)

$$\Phi = 2\cos 36^{\circ} = e^{i\pi/5} + e^{-i\pi/5},\tag{13}$$

$$\Phi(\Phi - 1) = e^{i2\pi} = -e^{i\pi} = -ie^{i\pi/2},\tag{14}$$

$$\Phi(e^{i\pi} + \Phi) = 1. \tag{15}$$

Because Φ_p is a solution of Eq. (10), we have

$$\Phi_p^p = \Phi_p^{p-1} + \Phi_p^{p-2} + \dots + \Phi_p + 1 = \sum_{k=0}^{p-1} \Phi_p^k, \tag{16}$$

$$\Phi_p^{p+1} = \Phi_p^p + \Phi_p^{p-1} + \dots + \Phi_p^2 + \Phi_p,
= 2\Phi_p^p - 1.$$
(17)

Using these equations, we have the following relations between e, π and Φ_p ($p \ge 3$).

$$e^{i\pi} + \Phi_p^p - \sum_{k=1}^{p-1} \Phi_p^k = 0, \tag{18}$$

$$e^{i2\pi} + \Phi_p^{p+1} - 2\Phi_p^p = 0. {19}$$

The above two equations, Eqs. (18 & 19), are basically the same. Eq. (18) has been obtained using the Euler's identity.

4 Conclusion

In summary, inspired by Euler's identity, we have provided several relations between the base of natural logarithms (e), the ratio of the circumference of a circle to its diameter (π) , and the golden ratios (Φ_p) of the additive p-sequences.

References

- [1] P. Nahin, *Dr. Euler's Fabulous Formula: Cures Many Mathematical Ills*, Princeton University Press, 2011.
- [2] D. Stipp, A Most Elegant Equation: Euler's formula and the beauty of mathematics, Basic Books, 2017.
- [3] R. Wilson, Euler's Pioneering Equation: The most beautiful theorem in mathematics, Oxford University Press, 2018.
- [4] A. Kumar, *Additive Sequences, Sums, Golden Ratios and Determinantal Identities*, arXiv:2109.09501 (2021).
- [5] N. N. Vorobyov, *The Fibonacci Numbers*, D. C. Health and company, Boston, 1963.
- [6] V. E. Hoggatt, *Fibonacci and Lucas Numbers*, Houghton-Mifflin Company, Boston, 1969.
- [7] T. Koshy, *Fibonacci and Lucas Numbers with Applications*, John Wiley and Sons, New York, 2001.
- [8] H. E. Huntley, *The Divine Proportion: A Study in Mathematical Beauty*, Dover Publications, Inc., 1970.
- [9] M. Livio, The Golden Ratio: The Story of Phi, Broadway Books, New York, 2002.