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Recent advancements in connected autonomous vehicle (CAV) technology have sparked growing

research interest in lane-free traffic (LFT). LFT envisions a scenario where all vehicles are CAVs,

coordinating their movements without lanes to achieve smoother traffic flow and higher road

capacity. This potentially reduces congestion without building new infrastructure. However, the

transition phase will likely involve non-connected actors such as human-driven vehicles (HDVs) or

independent AVs sharing the roads. This raises the question of how LFT performance is impacted

when not all vehicles are CAVs, as these non-connected vehicles may prioritize their own benefits

over system-wide improvements. This paper addresses this question through microscopic

simulation on a ring road, where CAVs follow the potential lines (PL) controller for LFT, while HDVs

adhere to a strip-based car-following model. The PL controller is also modified for safe velocities to

prevent collisions. The results reveal that even a small percentage of HDVs can significantly disrupt

LFT flow: 5% HDVs can reduce LFT’s maximum road capacity by 16%, and a 20% HDVs nearly halves

it. The study also develops an adaptive potential (APL) controller that forms APL corridors with

modified PLs in the surroundings of HDVs. APL shows a peak traffic flow improvement of 23.6%

over the PL controller. The study indicates that a penetration rate of approximately 60% CAVs in LFT

is required before significant benefits of LFT start appearing compared to a scenario with all HDVs.

These findings open a new research direction on minimizing the adverse effects of non-connected

vehicles on LFT.
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Highlights

Even a small percentage of human driver vehicles (HDVs) significantly lowers the LFT flow.

The LFT traffic flow via Potential Lines controller halves by 20% HDV penetration rate

60% CAV Penetration rate is required before observing LFT’s major advantages

Introduced Adaptive Potential Line (APL) controller to improve the LFT with HDVs

A peak improvement of 23.6% was observed via the APL strategy over PL controller

1. Introduction

With urbanization and increased usage of private vehicles (PVs), traffic congestion has been an ever-

increasing problem, especially in cities. The increased traffic has led to worldwide road construction

projects, yet the problem persists[1]. The last two decades have seen significant changes in the

automotive industry. There has been a steady increase in autonomous vehicle (AV) technology.

Multitudes of works have suggested using shared AVs (SAVs) to sway people away from using PVs in

the direction of public transport (PT) by providing first- or last-mile operation via SAVs or providing a

whole mobility-on-demand (MOD) service using AV fleet[2][3][4]. However, the experience with the

current MOD services indicates that if not appropriately regulated, these services may contribute

further to the traffic congestion with additional vehicles[1]. Therefore, the fundamental problem

remains that a vehicle occupies the same amount of road space regardless of whether a human or AV

technology drives the vehicle and would require increased road infrastructure to accommodate more

vehicles.

To address the above problem, there has also been research on increasing road capacities and safety by

utilizing new AV technologies. In this regard, connected autonomous vehicles (CAVs) play a significant

role[5][6]. The real-time data sharing from vehicle-to-vehicle (V2V), vehicle-to-infrastructure (V2I),

or vehicle-to-everything (V2X) allows the CAVs to constantly observe the environment from multiple

perspectives, enabling technologies such as advanced traffic state estimation approaches[7],

cooperative adaptive cruise control (CACC)[6], speed advisory systems[8]  or integrated intersection

control[9]. The most significant change that CAVs can bring is perhaps in the currently dominant

driving paradigm of lane-based traffic management — the CAVs show the potential to drive even

when no specific lanes are marked on the road[10]. The concept of managed lanes was introduced in

the last century to help coordinate the vehicle movements by human drivers in an era of ever-
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increasing maximum possible vehicle speed[11]. With the introduction of CAVs, the fixed lanes can be

removed since the CAVs can coordinate their movements via communication channels. This has led to

the concept of lane-free traffic (LFT) for CAVs[10]. Figure  1 shows the concept of LFT. As shown in

Figure  1(b), the LFT vehicles can communicate and influence the movements of upstream and

downstream vehicles using wireless communication. Usually, the LFT controller algorithms achieve

this by assuming artificial nudging and repulsive forces applied to vehicles in the front and the back,

respectively [10][12][13].

The LFT was inspired by the vehicles driving without strict lane discipline in some countries, referred

to as lane-less traffic[11][10]. This allows them to utilize the whole width of the road; however, with a

significantly higher risk of accidents[14]. Apart from automation that allows fast and accurate

decisions in LFT, the main difference between the two modes is that while in lane-less traffic,

communication with other drivers is limited to honking, headlight flashing, or hand gesturing, the

vehicles in LFT can fully communicate their intended trajectories and other important information to

significantly larger areas. This allows LFT vehicles to coordinate their movements in a way that

substantially improves the system-wide maximum flow rate compared to lane-based traffic for the

same road width[13]. However, the exact flow rate improvement depends on the LFT controller used.

While the LFT strategy has a high potential to improve traffic conditions, its realization may still be

decades ahead. First, significant technological developments are required to ensure flawless inter-

vehicular communication and reliable autonomous driving functionality. Second, the CAVs in LFT will

be driving in a completely new traffic mode where safety will be of primary concern. Consequently,

LFT must undergo rigorous testing before any CAV can be driven in LFT mode. However, unlike the

functionality of current AVs, which can be tested with a single vehicle, the LFT would require tests

with multiple CAVs operating in an unexplored driving mode. To solve this problem, some researchers

have suggested using a driving simulator to study the safety as perceived by the traveler in LFT  [15].

Nonetheless, it is expected that even if the cities are convinced of investing in the LFT, the transition

phase or even the actual operation of LFT may still involve some traffic participants who do not

necessarily coordinate their movements with other vehicles. This can happen for multiple reasons, for

example, the involvement of human drivers, having an older AV without a communication module, or

a CAV temporarily losing its communication capability. Under all of these circumstances, the question

remains: how will the efficiency of the LFT be affected by it? It is equally important to ask how much

the proportion of CAVs should be to achieve the benefits of LFT.
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This work attempts to answer the above questions. The paper mainly focuses on the impacts of having

some traffic participants in LFT who try to improve self-interest instead of coordinating and

optimizing the flow of the whole system. These participants are assumed to be human drivers trying

to achieve their desired speeds while maintaining a safe distance from the vehicle in the front. The

LFT traffic vehicles are assumed to be unable to exert nudging forces on these HDVs, as shown in

Figure  1(c), which is expected to disrupt the functioning of the LFT controller. The paper does not

explicitly model independent AV; instead, it is assumed that these HDVs can also partially represent

independent AVs since AVs may already be trying to replicate human driving behavior. Nonetheless,

the main focus of the paper is not on accurately modeling the human or independent AV’s behavior

but rather on the disruption it causes to the LFT.

To study the impact of the whole setup, microscopic simulations of a 1    ring road are used. The

human drivers are modeled using the car-following model by[16], designed to simulate lane-less

traffic. For the CAVs, the paper uses the potential line (PL) controller introduced by[13]. Inspired by the

human model of[16], the paper also introduces the concept of safe acceleration into the PL controller

as a secondary measure to avoid any potential collision. Finally, an adaptive potential lines (APL)

controller is introduced that improves the flow of CAVs mixed with HDVs in LFT. The new controller

forms APL corridors with modified PLs in the vicinity of HDVs.

Figure 1. Traditional lane-based traffic, lane-free traffic (LFT) and LFT wtih a mixture of CAVs and HDVs.

1.1. Background

To address the ever-increasing traffic demand, modern roads were designed to accommodate more

vehicles and alleviate congestion by rerouting traffic away from city centers. This includes the

introduction of beltways or ring roads, which provide more direct and faster connections to areas

around the city. However, investigations worldwide reveal the immediate benefits of beltways have

been diminished due to the induced demand and relocation of jobs and housing to suburban areas[17]

km
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[18][19]. Consequently, innovative approaches using advanced Vehicle Automation and Communication

Systems (VACS) are gaining the center stage for sustainable long-term solutions to ensure smooth

traffic flow, reduce congestion, and enhance safety[20]. In the last decade, the application of CAVs

comprised the vast majority of cutting-edge research towards addressing traffic congestion[6],

including LFT for more exploitation of the lateral capacity of the roads[11].

Since LFT allows for lateral freedom of CAVs, compared to lane-based traffic, novel driving strategies

have been proposed for vehicle navigation in this new environment. A common approach comprises

defining artificial potential fields around each vehicle for collision avoidance[21], as shown in

Figure 2(a), and including additional controllers for achieving other objectives such as driving close to

the desired speed, staying within the road boundary, and driving energy-efficiently.[22] formulated all

the objectives in an optimal control problem and solved it for each vehicle in real-time. A nonlinear

model predictive control (NMPC) approach is proposed in  [23]  for cooperative driving among

autonomous vehicles. A more structured lane-free traffic is proposed in  [24]. In this approach, an

artificial potential line (PL) is assigned for each vehicle as the desired lateral location, as illustrated in

2(b). This led to more laminar traffic flow, eliminating unnecessary lateral movement of vehicles.

Other approaches, such as nonlinear controllers[25], have also been proposed that use a more complex

dynamic model of vehicles. While the majority of LFT research focuses on freeway networks, few have

considered elements of urban networks such as beltways[13], intersections[26][27], and

roundabouts[28]. In addition to conventional control approaches, reinforcement learning-based

approaches have also been used, showcasing comparable benefits for driving comfort and traffic

efficiency[29][30][31][32]. In addition, LFT calls for novel ideas such as vehicle flocking[33][34] or snake-

like platooning[35].
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Figure 2. Potential fields, artificial forces and potential line (PL) controller for LFT.

It should be noted that almost all current LFT driving strategies rely highly on V2V communication,

sharing the vehicle’s current state or even planned trajectory. For example, to apply an optimal

control approach, the vehicles in [22] share planned trajectories with the surrounding vehicles. Since

the HDVs in the current work are assumed to make independent decisions by considering self-

interests, their trajectories are not available to the LFT controller and, thus, cannot be shared with

CAVs. Therefore, these latter types of LFT controllers pose a significant challenge in handling HDVs.

To simulate mixed HDVs and CAVs traffic, it is essential to have a driving model that accurately

represents human drivers. Currently, there is no data on how humans would drive in an LFT

environment. Therefore, the most suitable approach is to consider models developed for lane-less

traffic. In the literature, models for lane-less traffic often target a traffic condition where vehicles of

various types and sizes share the same road without strict lane discipline. This can include vehicles

like cars, rickshaws, motorbikes, and trucks[36][37][38].

The main challenge in modeling lane-less traffic is that most car-following models assume

homogeneous traffic driving in lanes. These models typically assume a pair of a leader and a follower

vehicle, which suits lane-based traffic and focuses mainly on longitudinal movements. However,

lane-less traffic has certain additional characteristics that are not found in lane-based traffic. For
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example, smaller vehicles tend to squeeze into gaps between larger vehicles, exhibit staggered

following, and show lateral shifting or even multiple leaders[36][39].

The literature shows a gradual improvement in models that can deal with lane-less traffic. For

instance,[40]  incorporated non-lane-based car following into the basic model of [41]. Due to the off-

centered vehicle positions, this model does not allow full leadership to the front vehicle, and thus

making staggered following possible. Although the model is designed for homogeneous traffic, it

allows weak lane discipline behavior and includes lateral discomfort.[37] modified[41] to include type-

dependent variables for the leader-follower pair. Later, inspired by approaches with a discretized

lateral axis[42], they improved the type-dependent model using the concept of strips[16]. A similar

concept of sublane was later introduced into Simulation of Urban Mobility (SUMO)[43]  for Chinese

traffic situations and became part of its standard distribution[44]. Other methods have also been used

for mixed traffic[45][46]. More recently, with the possibility of collecting lane-less traffic data more

efficiently, data-driven approaches have emerged in the literature[39][47]. However, strip-based

approaches have so far been simple and computationally effective for simulating lane-less traffic.

2. Methodology

To simulate LFT with CAVs and HDVs, the paper uses two methods simultaneously: a car-following

model for HDVs and LFT controller for CAVs. After establishing the equations for vehicle dynamics,

the section presents both in detail.

2.1. Vehicle Dynamics

The vehicles in the simulation move in discrete time steps using a double integrator model. The model

is implemented using differential equations. Let  ,   and   represent the current time step,

time step size and current simulation time, respectively. For a vehicle  , let  ,   and   represent

the longitudinal position, speed, and acceleration, respectively. Similarly, let  ,  , and   represent

the same variables for the lateral axis, respectively. Then the equations for vehicle dynamics are given

as:

k ΔT t = k ⋅ ΔT

i xi vx,i ax,i

yi vy,i ay,i

(k + 1)xi

(k + 1)yi

(k + 1)vx,i

(k + 1)vy,i

= (k) + ΔT (k) + Δ (k)xi vx,i
1

2
T 2ax,i

= (k) + ΔT (k) + Δ (k)yi vy,i
1

2
T 2ay,i

= (k) + ΔT (k)vx,i ax,i

= (k) + ΔT (k)vy,i ay,i

(1a)

(1b)

(1c)

(1d)
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According to the vehicle type (HDV or CAV), each time step calculates the accelerations in both

directions using the human driver model or the LFT controller. Then, the above equations are used to

calculate the vehicle states for the next time step. The current study also assumes that each vehicle 

 has a desired longitudinal speed  , which it aims to achieve during the simulation. To prevent the

vehicle from leaving the road boundary, the simulation models limit the lateral acceleration such that

the road boundary is not crossed.

2.2. Human Driver Model

The human driver model used is based on the strip-based model proposed by [16] for lane-less traffic.

Besides being simple, the main reason for choosing the model is that it was validated in a SUMO

simulation using video data from a highway in Mumbai, India. This model differs from traditional

lane-based simulations in that it allows continuous movement in the lateral axis by discretizing it into

strips. The current paper replicates Mathew’s model without significant changes. The following

summarizes its formulation for the longitudinal and lateral movements.

2.2.1. Longitudinal Movement

Mathew’s model based the longitudinal movement on the Gipps model[41] originally meant for lane-

based traffic. Instead of using the original Gipp’s formulation, they used its simplification as

presented in [48]. Nonetheless, both the original and its simplification are conceptually identical.

For a collision-free movement, the model uses a safe velocity   with regards to the vehicle in the

front, called the leader. This causes the subject vehicle    to maintain a safe gap and stop behind the

leading vehicle without collision if required. The formulation for the safe velocity is given as:

where   is the reaction time in seconds ( ),   is the distance from the front of the   to the back of

the leader in meters ( ),    is the maximum deceleration ability of    in    and    is the

longitudinal velocity of the leader in  .    is the minimum distance    withholds if the leader

suddenly stops.

Eq. 1 is the simplified Gipp’s model.[16] extended it to account for different combinations of follower-

leader vehicle types (e.g. trucks, rickshaws, motorbikes, cars). More specifically,[16] replaced the term 

  in Eq. 1 by a regression-based formulation to convert different combinations of vehicle

i vdes,i

v
safe
x,i

i

(k + 1) = −τ ⋅ +v
safe
x,i A−

x (τ ⋅ + (k + 2 ⋅ ⋅ ( (k) − )A−
x )2 vx,leader )2 A−

x gleader go
− −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

√ (1)

τ s gleader i

m A−
x i m/s2 vx,leader

m/s go i

( − )gleader go
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types into equivalent gap for car following car. However, since all vehicles in the current study are

supposed to be cars, this modification is ignored in the current work. Additionally,   is also set to 0

for simplification.

The next important factor in Eq. 1 is the determination of the leader vehicle. In lane-based traffic, the

leader is the immediate vehicle in the front in the same lane. However, selecting a leader in traffic

without lanes is more challenging since multiple vehicles could be in front.[16] suggested discretizing

the lateral axis strips of width  . Instead of occupying a lane, each vehicle occupies a strip. For the

vehicle  , the leader is chosen by looping through all the vehicles that occupy any of the strips that 

  occupies and then selecting the one closest to    in the longitudinal distance. For computational

efficiency, the current study only considers the vehicles within the front distance   of  . If no

such leading vehicle exists within  , the   is set to the desired speed   of the vehicle.

In the current study, after determining the  , the difference to the current speed 

 is calculated, which is then used to calculate the safe acceleration:

where   is the vehicle’s maximum acceleration ability. Eq. 2 shows that a vehicle’s acceleration and

deceleration are constrained by its abilities, i.e.   and  , respectively.

2.2.2. Lateral Movement

The lateral movements in the human model of  [16]  are also based on strips rather than lanes. The

decision to change a strip is dependent on the benefit of changing the strip, measured in terms of

speed gain. A vehicle is allowed to change only one strip in a time step; however, the model considers

multiple strips in calculating the benefits since the driver’s overtaking maneuver may require

changing multiple strips. Thus, the decision to change the strip involves multiple steps. First, for a

vehicle  , the benefit of changing the strip from a currently occupied strip   to a destination strip   is

calculated using the following formula:

where    and    are the safe velocities in strips    and  , respectively.    is calculated by

imagining   to be located at   (instead of  ), and calculating the leading vehicle and subsequently the

g0

Δs

i

i i

ΔDfront i

ΔDfront v
safe
x,i vdes,i

v
safe
x,i

= −v
diff
i vsafe vx,i

(k + 1) =a
safe
x,i

⎧

⎩
⎨

⎪⎪⎪

⎪⎪⎪

min( , )
v

diff
i

ΔT
A−
x

min( , )
v

diff
i

ΔT
A+
x

if  < 0v
diff
i

otherwise

(2)

A+
x

A−
x A+

x

i sc sd

(k) = ×b ,isd

(k) − (k)v
safe
x,i,sd

v
safe
x,i,sc

vdes,i
e−λ⋅ns (3)

v
safe
x,i,sd

v
safe
x,i,sc

sd sc v
safe
x,i,sd

i sd sc
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safe velocity using Eq. 1.    is the number of strip changes required to reach    from    and    is a

model parameter to control the impact of far-away strips. Thus, the factor   is used to reduce the

importance of benefits as the destination strip gets farther away from the currently occupied strip. In

the denominator of Eq. 3,[16] used the maximum speed possible in the current strip  . However, the

current study replaced it with the desired speed of  . This modification is done for consistency with the

PL controller for CAVs, which assumes that each CAV tries to achieve and maintain a specific desired

speed. In simple words, Eq. 3 compares the potential speed in the destination strip to the speed

possible in the current strip while considering the number of strip changes needed to reach the

destination strip. If it is possible to gain speed in the destination strip, the benefits are positive;

otherwise, they are negative.

With regards to the implementation of Eq. 3, the model assumes that the decision to change the strip

is not instantaneous; rather, the driver may keep track of the benefits for multiple time steps and only

move when there is a significant accumulated benefit. Therefore, for each HDV, variables are

maintained that represent the driver memory for observed benefits. The current study maintains

separate variables for the accumulated benefits of strip changes to the left and right sides of the

currently occupied strips. In each time step, Eq. 3 is calculated for all strips on the left and the right

side, and accumulated to the respective memory variable; when the accumulated benefit crosses a

certain threshold  , the driver changes the strip in the corresponding direction. The side that has the

largest accumulated benefit is preferred for strip change. In order to avoid continuous changing of

strips, the driver’s memory variable is halved if the observed benefit on the corresponding side of the

strip is less than or equal to zero.

The value of   models the aggressiveness of the human driver. A low value of   would mean that

the human driver makes lateral changes even for a slight gain in speed and vice versa for a high  .

On the other hand,    determines how much changes in lateral position a human considers worth

considering for the acquired benefits.

2.3. Potential Lines Controller for LFT

The PL controller introduced by  [13]  observes that the vehicles in countries with right-hand driving

rules usually overtake and move faster on the left side of the road. PL controller utilizes this

observation to laterally organize the LFT based on the desired longitudinal speeds of CAVs. The CAVs

are assigned virtual PLs from left to right based on their desired speeds, as shown in Figure 2b,

ns sd sc λ

e−λ⋅ns

sc

i

Lth

Lth Lth

Lth

λ
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encouraging the CAVs to follow the designated PL. This creates a lane-independent lateral structure

and avoids unnecessary lateral movements.

For this study, any LFT controller could have been chosen to study the impacts of HDVs. However, the

primary reason for choosing the PL controller is its simplicity and the fact that it does not require

knowledge of the paths to be taken by other traffic participants, which is usually required for some

optimization-based LFT approaches  [22]. This requirement may be problematic for the inclusion of

HDVs since the system does not exactly know the path that humans will take. However, the current

study assumes that CAVs at least know the current speed of the HDVs, which can be estimated with

high accuracy.

The PL controller of [13][24] calculates the longitudinal acceleration based on two terms: (1) the goal to

achieve the desired speed (the cruise control) and (2) the influential artificial forces of the other

vehicles that prohibit collisions. These forces are also shown in Figure 2. However, during

experiments for the current study, it was noticed that artificial forces require significant parameter

tuning to avoid collisions, which may still occur under high vehicle densities. Thus, the current study

introduced the concept of safe velocity into the PL controller, inspired by the human driver model.

Furthermore,[13][24] used additional boundary forces using the proportional controller to force CAVs

away from road boundaries. However, for consistency with the HDVs, the boundary forces are replaced

by a hard constraint on the lateral acceleration that keeps the CAVs within road boundaries.

The following details the components used for the PL controller:

2.3.1. PL based Lateral Control

The PL controller uses a PL force to guide the vehicle to the assigned PL. As the first step, a lateral

position  , referred to as the PL, is assigned to the vehicle   by linearly distributing the lateral axis

according to the minimum and maximum desired speeds of all vehicles:

where   and   are the lateral positions for the right and left boundaries of the road, respectively. The

parameter   is used to leave some gap without PLs on either side of the road. This is required since

the CAVs use the positions of their centers to align with the assigned PL. Therefore,   is determined

based on the width of the broadest vehicle.    and    are the maximum and minimum desired

speeds of all vehicles, respectively.

ypl,i i

= + + ( − )ypl,i Yr Bpl vdes,i vmin

− − 2Yl Yr Bpl

−vmax vmin

(4)

Yr Yl

Bpl

Bpl

vmax vmin
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After determining  , the PL controller tries to steer and maintain the lateral position of the vehicle

on the assigned   using a proportional controller:

where   is the controller gain for PL force. In the current study, it is set to 0.12.

2.3.2. Cruise Controller based Longitudinal Control

The fundamental aim of the cruise controller is to keep the longitudinal speed as close as possible to

the desired speed. It achieves this using a proportional controller, given as:

where   is the controller gain, allowing a gradual increase in speed.   is the target speed for the

next time step, calculated using the vehicle’s acceleration ability:

where   is the acceleration ability. [13] did not use   in their formulation. However, this study adds

it to also cater for the situation when the vehicle comes to a complete halt. The current study uses 

 value of 1.0, which makes the   to be directly determined by   and  , in consistency with

the human model (Eq. 2).

2.3.3. Potential Field based Collision Avoidance and Overtaking

In an LFT, the collision avoidance and overtaking is generally performed via the artificial potential

fields and the resulting inter-vehicular forces[12]. Each surrounding vehicle is considered a moving

obstacle, which the subject vehicle sees as an ellipsoid hemisphere. Figure 2(a) shows an example of

the potential field of vehicle V1 (as seen by other CAVs) and corresponding artificial forces as

experienced by vehicles V2 and V3.

[13]  used a modified version of the original LFT forces formulation of  [12]. However, during

experiments for the current study, no significant difference was observed in the performance of the

two formulations. With correct parameter tuning, both formulations performed quite similarly.

Therefore, the current study uses the original formulation of [12] for simplicity. For a vehicle   in the

surrounding of subject vehicle  , the artificial force is calculated as:

ypl,i

ypl,i

= ⋅ ( − )fpl,i Kplf ypl,i yi (5)

Kplf

= [ − (k)]f cc
x,i Kpx v

ts
x,i vx,i (6)

Kpx vtsx,i

= min{ (k) + ⋅ ΔT , }vtsx,i vx,i A+
x vdes,i (7)

A+
x A+

x

Kpx f cc
x,i A+

x vdes,i

j

i

=F ij 1

+ 1[ + ]( )
−xi δij

0.5sd1

p1

( )
−yi yj

0.5sd2

p2 p3
(8)
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where  ,  , and    are the function parameters, and    and    determine the longitudinal and

lateral axis of the ellipsoid, respectively.   is a function for adjusting the longitudinal position of the

ellipsoid’s center for vehicle  , considering the safety gap and speeds (refer to  [12]  for details). The

parameters  ,  , and   were set as 2, 2, and 6, respectively[12].

The calculated   is projected to the longitudinal and lateral axes, creating two components:   and 

. These two components are accumulated for all the vehicles up to distance    in the front

and   in the back, forming the nudging and repulsive forces, respectively.

2.3.4. Overall Accelerations

After calculating the cruise controller and artificial forces, the PL controller calculates the longitudinal

and lateral accelerations as:

where   and   are the weights for nudging and repulsive forces, respectively.   and   are the

set of all vehicles (including HDVs) in front and back of the vehicle    up to distance    and 

, respectively. Even though it is possible to use different values for    and  , leading to

significantly different LFT behavior[13][12], for simplicity, the current work uses a value 1.5 for both

parameters.

2.3.5. Extension of Collision Avoidance via Safe Acceleration

So far, the PL components described above have been taken from the literature without significant

modification. In contrast, the following describes an essential modification introduced by the current

study.

Even though the PL controller already considers artificial forces to avoid collisions, it is observed that

these forces may cancel each other out under certain conditions. This causes the vehicle to not

decelerate on time, leading to collisions, especially at high vehicle densities. This can be avoided by

adjusting the individual weights given to different forces; however, tuning these parameters is a time-

consuming process and may not necessarily produce a general parameter set suitable for all

situations.
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In view of the above, the current study introduces the constraint of safe acceleration into LFT

controller. The first step in this process is selecting a leader vehicle. Similar to the human model, the

vehicle with the shortest longitudinal distance and an overlap in the lateral axis is chosen as the leader

for vehicle  . However, unlike the human model, the overlap is directly calculated using vehicle widths

and lateral positions without discretizing the lateral axis into strips. After determining the leader, the

safe velocity   and the safe acceleration   are calculated using Eq. 1 and Eq. 2, respectively.   is

then used to bound the longitudinal acceleration calculated by the PL controller; thus, the overall

longitudinal acceleration is given as:

2.4. Adaptive Potential Lines

The presence of HDVs can degrade the performance of a LFT controller. This degradation primarily

occurs because CAVs in LFT cannot exert artificial forces on HDVs, which restricts the free movement

of CAVs. This will eventually affect the performance of each LFT controller differently. However, for

the PL controller, a significant restriction in CAV movement can occur when HDVs drive on PLs

assigned to CAVs. In such cases, if a CAV is following an HDV and is already on the assigned PL, there

will be no PL force ( ) to steer the CAV away from the PL and overtake the slow-moving HDV ahead,

causing a cumulative effect on upstream vehicles.

According to the functioning of the LFT controller, each controller must devise a strategy to cater to

the HDVs. Since this study uses a PL controller to study the effects of HDVs on LFT, it also modifies the

PL controller to lower the impacts of HDVs on LFT. Accordingly, this study introduces the concept of

APL controller, in which the PLs are modified in the vicinity of HDVs. This section outlines the APL

strategy for LFT, beginning with a general description of how the vicinity of modified PLs around

HDVs is calculated. It then discusses the various methods tested in the study for activating APL around

HDVs. These two steps are calculated and applied in each simulation time step.

2.4.1. Adaptive Potential Lines (APL) Corridors

The APL controller primarily compresses the PLs into the lateral spaces between HDVs, as shown in

Figure 3. This adjustment enables CAVs to overtake slow-moving HDVs and enhances the overall flow

of CAVs. Since CAVs already move in a coordinated manner due to the PL controller, they can also

overtake HDVs in a coordinated way by simply modifying the assigned PL position ( ) around HDVs.

i

v
safe
x,i a

safe
x,i a

safe
x,i

(k + 1) = min{ (k + 1), (k + 1)}ax,i a
pl
x,i a

safe
x,i

(12)

fpl,i

ypl,i

qeios.com doi.org/10.32388/TDMWHC 14

https://www.qeios.com/
https://doi.org/10.32388/TDMWHC


Additionally, these areas can create long road regions where CAVs are longitudinally dominated,

allowing them higher chances to exert artificial forces on the downstream CAVs and accelerate

without being blocked by HDVs. This functions as a sort of corridor for CAVs with comparatively

higher freedom and, thus, is referred to as the APL corridor in the study.

Figure 3. Adaptive potential lines (APL) controller. It adapts the PL areas near HDVs, represented by the

green color and referred to as APL corridor in the study. The yellow color shows the areas excluded from

PLs due to insufficient space to fit a vehicle. The blue color shows the areas marked as occupied by HDVs.

To determine the areas where APL corridors can be formed, the method first divides the road into a set

of regions   in the longitudinal axis, with   and   denoting the longitudinal positions of the start

and end of the region  , respectively. A region starts at a distance    behind the HDV    and

extends to its front in the longitudinal axis.    provides additional safety distance for the CAVs to

orient themselves on the modified PLs without excessive deceleration near the HDVs. This region does

not extend beyond the front of the HDV to avoid influencing CAVs in front, which is problematic since

any HDV approaching from behind would force the CAV to move away from its front, giving

unnecessary priority to HDVs. If multiple regions overlap in the longitudinal direction, they are

merged to form a single region — an extended APL corridor. Figures 3(b) and 3(c) show examples of

such longitudinal overlap and extended APL corridor.
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After determining the longitudinal regions, the method divides the lateral axis of each region. For this

purpose, combinations of lateral positions are computed for the stretch of the road from    to  .

These combinations of lateral positions remain fixed for the entire region. They are calculated by

leaving a lateral gap of   on either side of HDVs. Similar to the PL formulation in Eq. 4, this gap is

necessary since the CAVs use center positions to align themselves to the assigned PLs.    is

determined by the width of the broadest vehicle. Without  , the overtaking maneuver of the CAVs

may be restricted due to lateral overlap with HDVs and the constraint of safe acceleration.

Furthermore, if the lateral gap between two HDVs is less than 2  (meaning a CAV may not fit into

the gap), the corresponding lateral gap is not considered for APL corridor. Thus, within a single

longitudinal stretch ( ,  ), the APL corridor can be laterally continuous (Figure  3(b)) or

discontinuous (Figure 3(c)), depending on the situation. If there is not enough lateral gap in the region

to fit even a single CAV, then the region is not considered for an APL corridor.

2.4.2. Activation Condition for APL Corridors

The previous section focused on the potential areas for APL corridors. The two critical factors for

applying APL corridors are (1) determining    and (2) determining the HDVs whose surroundings

should be included for APL corridors. The paper evaluates four approaches that mainly differ in these

two aspects, as described below:

1. Constant Margin (CM): This is the simplest method. It keeps   constant (denoted as  ) and

continuously uses all HDVs’ vicinities to define APL corridors.

2. Neighbouring Speed based Constant Margin (NSCM): Similar to CM method, this method uses

the same   for all HDVs; however, the vicinity (i.e. longitudinal distance   behind an HDV)

of an HDV is only included into APL corridor if its speed is less than the average speed of the

surrounding vehicles. For an HDV  , the average surrounding speed, denoted by  , is computed

by taking the mean longitudinal speed of all vehicles (both CAVs and HDVs) whose positions do

not laterally overlap with the boundaries of    and are within a longitudinal distance of 20  m

behind  . The idea here is that the APL should only be applied in the surroundings of an HDV if it

is blocking the vehicles behind it, which can be detected if the vehicles with different lateral

positions than   are moving faster than  .

3. Follower-based Adaptive Margin (FAM): The PL controller in this study uses the leader-follower

relation along with safe acceleration as a hard constraint to avoid collisions (Eq. 12). The HDV can
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potentially hinder any CAV that has an HDV leader. FAM uses this characteristic to apply the APL.

It first checks if the HDV   is the leader of any CAV within a longitudinal distance of   behind

the HDV. Then, it checks if the speed of    is lower than the average speed of the surrounding

vehicles (the same as in the NSCM strategy). If both conditions are fulfilled,    is set as the

distance from the back of HDV to the back of the follower CAV. The purpose here is to only apply

APL behind an HDV up to a point that allows the overtaking of the follower CAV. Thus,   in this

strategy is not constant; rather, it depends on the distance of the follower CAV, as reflected in its

name.

4. Safe Velocity based Adaptive Margin (SVAM): This approach extends the FAM method. In

addition to checking if HDV is the leader of a CAV, it also checks if the speed of the follower CAV is

constrained by the safe velocity, i.e.,  , where    is the follower CAV and    is a

small number, set to 0.05 in the study. The main idea here is to activate APL only if the follower

CAV’s speed is limited due to HDV. The rest of the conditions of SVAM are the same as FAM.

3. Experimental Setup

To study the effects of HDVs, a ring road of 1   is simulated in a microscopic simulation. A custom

extension of SUMO[43] for LFT called TrafficFluid-Sim[49] is used for this purpose. The HDVs and PL

controller are implemented via a C++ interface, which allows getting the necessary information on

individual vehicles and setting up accelerations for the next time step. For consistency with other LFT

works, the road width is set to 10.2  m. The road emulates a continuous beltway, with the vehicles

leaving from one end and entering back into the road from the other with the same lateral positions

and speeds.

Regarding the simulation scenarios, five types of vehicles are simulated with (length, width) in meters

given as (3.2, 1.6), (3.4, 1.7), (3.9, 1.7), (4.55, 1.82), and (5.2, 1.88). The experiments simulate vehicle

densities ranging from 50    to 400    with a step size of 50  , with an equal

proportion of vehicles out of the five above-mentioned categories. Different penetration rates of HDVs

are simulated. If the penetration rate leads to a fractional outcome for the number of HDVs, it is

rounded to the closest integer. Using uniform distribution, the vehicles are initialized at random

positions with zero speed without vehicle overlap. The desired speeds are also assigned using uniform

distribution ranging from 25   to 35  , which remain constant throughout the simulation. Each
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scenario is run for one hour of simulation time with a step size   of 0.25 s. Each scenario is also run

with five random seeds to ensure the results are statistically reliable.

The following values are used for the model parameters. For the human model,  ,   and   are set

to 0.1  , 0.1, and 10, respectively. The values of   and   are based on the values used in [16], while 

 is not explicitly mentioned by the authors, and thus, the value is chosen by experiments to allow

sufficient strip changing maneuvers. For calculating  , the maximum deceleration   is set as -4.5 

.   is fixed as 0.5   for all CAVs. However, to bring variety to the individual driving style of each

human driver, for HDVs,   is drawn from a normal distribution with a mean and standard deviation of

1.5 and 0.5, respectively. The acceleration ability    of all vehicles is set to 2.6  . The values of

both   and   are taken from the standard SUMO configuration.   and   are set to 50 

. For the APL controller,   and   are set to 40   by default unless explicitly stated otherwise.

4. Results and Discussion

The results are divided into two main sections. The first section discusses the effects of increasing

HDVs in LFT. The second section then analyses how this performance drop can be improved by using

the APL controller.

4.1. Impact of HDVs on the LFT performance

The study first analyses the impact of different penetration rates of HDVs on the overall LFT

performance, especially in terms of traffic flow and average speed, as shown in Figure  4. The first

thing to observe is the significant difference in the road capacities (the highest traffic flow in Figure 4)

with all-HDVs and all-CAVs scenarios. With 100% HDVs, the road capacity is limited to only 8,233 

 (speed: 23.2  ) at a density of only 100  , which is roughly equivalent to the flow of

lane-based traffic with four lanes (approximately 2000   [m/48/]). Notably, the road width

used in the simulation (10.2 meters) is typically divided into three lanes in lane-based traffic

management. However, since the lanes are usually wider than the vehicles, removing the lanes

allowed four vehicles to fit within the same road width, resulting in a flow roughly equivalent to four

lanes. Nevertheless, this flow value also depends on the tolerance of individual drivers for changing

lateral positions. For instance, in the experiments conducted for this study, the maximum road

capacity with all-HDVs decreased from 8,233   to 6,973   when the threshold for benefits of

changing strip ( ) was reduced from 10 to 0.1.
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In contrast, the scenario with all-CAVs achieves a significantly higher road capacity of 20,800 

  (speed: 23.1  ) at a density of 250    — an increase of almost 153% in road capacity

over all-HDVs scenarios. The key difference between HDVs and the LFT is the existence of artificial

forces, indicating that the coordinated movement of CAVs through artificial forces and virtual PLs

plays a crucial role in achieving higher flow. Additionally, despite using the same desired speeds for

individual vehicles in both scenarios, the average speed observed in the all-CAVs scenario is

significantly higher across all vehicle densities.

Figure 4. Traffic flow rate and mean speed of PL controller with different HDV penetration rates. The 0%

and 100% penetration rates mark all-CAVs and all-HDVs scenarios, respectively.

Figure 4 also shows that as the penetration rate of HDVs increases, the flow of LFT is severely affected.

Even a small percentage of HDVs can significantly lower LFT performance: with just a 5% penetration

rate, road capacity drops to 17,252   (a drop of nearly 16%), and with a 10% penetration rate, it

drops to 14,162    (a drop of nearly 32%). This phenomenon is further analyzed in Figure  5,

illustrating traffic flow and lateral speeds against increasing HDVs penetration rates. It is observed

that the performance drop is significantly high for the initial 0-20% HDVs penetration. For individual

vehicle densities above 200  , the traffic flow is almost halved at 20% penetration, which

continues to drop further at a lower rate until 40% penetration. Beyond this point, the curves are

almost flat without much performance gain over all-HDVs scenarios. The performance decline is more

pronounced at higher vehicle densities.
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Figure 5. Traffic flow rate and mean lateral speeds for increasing penetration of HDV penetration into LFT.

The above phenomena can be further understood by looking at the mean lateral speed in Figure  5.

First, with all-CAVs scenario, the vehicles can better coordinate their motion and stay on their

respective PLs, leading to lower lateral movements. For all-CAVs scenarios, it is also observed that the

vehicles generally show higher lateral movements at lower vehicle densities compared to higher

vehicle densities. This can be explained by the higher available space at lower densities, causing the

overtaking vehicles to fully utilize their artificial forces to nudge the vehicles in the front. As the

vehicle densities increase, the nudging possibility decreases due to the artificial forces from the

surrounding vehicles countering each other. Nonetheless, the vehicles can still coordinate their

movements at higher densities, and flow remains significantly higher than all-HDV scenarios.

As the proportion of HDVs increases, lateral movements rise significantly. CAVs find it increasingly

difficult to nudge other vehicles, as nudging does not affect HDVs, resulting in continuous disruptions

to the LFT flow. These disruptions propagate upstream, where the PL controller attempts to adjust the

CAVs in the available gaps as they encounter hindrances caused by HDVs, leading to increased lateral

movements. At vehicle densities lower than 100 veh/km (as shown in Figure 5), these hindrances only

cause an increase in lateral movements without significantly reducing LFT flow, as there is sufficient

space available for the PL controller to maneuver the CAVs through the HDVs. However, at higher

vehicle densities and HDV penetrations, many CAVs are hindered by the HDVs, with CAVs adjusting

their speeds and acceleration according to the HDVs. This leads to the formation of traffic waves, as

shown in Figure 6, causing a significant drop in performance.
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Figure 6. Spatio-temporal speed plot for PL controller. The formation of traffic waves is visible with the

increasing penetration of HDVs.

Figure 5 also shows that the lateral movements continue to increase with higher penetration rates of

HDVs till a saturation point is reached, after which they begin to decline again. As the vehicle densities

increase, the saturation point occurs at a lower penetration rate of HDVs. This phenomenon can be

explained as follows: at lower penetration rates, the upstream CAVs can better adjust their positions in

front of the hindrances caused by HDVs since the CAVs can influence other CAVs, leading to better

utilization of space and higher lateral movement; however, as the proportion of HDVs increases, CAVs

are unable to do that leading to lower lateral movement and higher gaps between vehicles. This is

visible by comparing Figure 7(c), Figure 7(d), where the portions of road with tightly packed CAVs are

larger than scenarios with 5% HDVs scenario. This happens till the saturation point, after which the

proportion of HDVs is so high that the CAVs find limited opportunity to exert artificial forces, and

consequently, the lateral movement and the efficient road space utilization decreases, as illustrated in

Figure  7(e). This saturation point happens earlier for higher densities because the number of HDVs

needed to cause this lateral movement decline is achieved earlier for higher vehicle densities.
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Figure 7. Examples of traffic situations with vehicle density of 400   and PL controller. The starting

400 m of the ring road is shown. The yellow and red vehicles represent CAVs and HDVs, respectively. The

initial positions for scenarios with HDVs remain the same as with all-CAVs scenario; only the appropriate

proportion of vehicles are set as HDVs.

The above phenomena can also be observed from the development of lateral positions of CAVs over

time, as shown in Figure 8. The behavior of the PL controller with all-CAVs scenario is discussed first.

The PL controller tries to minimize the lateral movement by assigning PL according to desired speeds.

At the beginning of the simulation, there are usually higher lateral movements since all CAVs try to

reach their assigned PLs. Over time, the CAVs settle down at a lateral position and the lateral

movements are minimized subsequently. It is possible that these settling points are not exactly on the

assigned PL and are slightly shifted, according to the location of the PL and the artificial forces from

surrounding vehicles. It is observed that this deviation of the settling point is larger near the road

boundaries, as shown by all-CAVs scenarios in Figure  8. The CAVs with assigned PLs near the

boundaries experience artificial forces from the surrounding vehicles from one side only, and in the

absence of artificial boundary forces to counter them (due to the modifications of PL controller in the

current study), these CAVs are pushed further towards the boundaries. In contrast, the CAVs with

assigned PLs near the center, experience artificial forces from both sides, making it easier for them to

stay on the assigned PL. However, at higher vehicle densities, even the CAVs at the center may have

significant deviation due to the CAVs not finding enough space and opportunity to remain on the

assigned PL, as shown by the all-CAVs scenario in Figure 8(b).

veh/km
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Figure 8. The lateral positions of two CAVs. The inclusion of HDVs causes significant changes in the

lateralmovement of CAVs.

As the penetration of HDVs increases, Figure  8 shows that the lateral movement of CAVs is

significantly impacted. The main reason for this is that the HDVs do not target aligning themselves

with specific PLs. This causes them to travel without coordination with CAVs, resulting in

uncoordinated LFT forces on CAVs and significantly higher lateral movements. This also results in

CAVs experiencing long episodes of going far away from the assigned PL. This phenomenon is

observed to be more severe for higher vehicle densities; however, it is not limited to higher vehicle

densities and can be observed even for small vehicle densities. Nonetheless, unlike at higher vehicle

densities, at lower vehicle densities, this does not significantly affect traffic flow due to having

sufficient space. Overall, this shows that even a small proportion of HDVs has the potential to not only

degrade LFT flow but also significantly affect the characteristic features of certain LFT controllers, for

example, the feature of reduced lateral movements in the case of PL controller.

4.2. Improvements using Adaptive Potential Lines Controller

The results in the previous section highlighted the significant performance drop observed with the

penetration of HDVs into LFT. This section presents how much the APL controller introduced can

improve this behavior. While the current study focused on the overtaking maneuver of the follower

CAVs to develop APL activation procedures, the interaction of multiple CAVs in LFT can have

significant impacts. To better understand these interactions in LFT, Figure  9 compares the initial

qeios.com doi.org/10.32388/TDMWHC 23

https://www.qeios.com/
https://doi.org/10.32388/TDMWHC


temporal development of PL, CM, and FAM strategies as a CAV (marked with a white rectangle)

overtakes an HDV (marked with a blue rectangle). The marked CAV has a high desired speed; thus, the

assigned PL is typically on the left side of the road. The CAV starts ( ) in the middle but ends up

behind the marked HDV by aligning itself to the assigned PL ( ). With a simple PL controller, the

CAV remains behind the HDV. The gap between the two increases ( ) and decreases ( )

with the acceleration and deceleration of the HDV, contributing to the formation of traffic waves. The

marked CAV overtakes the HDV when the following CAV exerts lateral force, allowing the marked CAV

to change its lateral position and overtake the HDV ( ). Nonetheless, such an overtake is purely

dependent on the developing situation, and the PL controller is not taking active measures to avoid the

adverse effects of HDVs.

Figure 9. Comparison of the temporal development of PL and two APL controllers for 250   and

20% HDVs. The red and yellow vehicles represent HDVs and CAVs, respectively. The green vehicles

represent the CAVs under the influence of APL corridors. The blue and white rectangles show the HDV and

the CAV focused on in the discussion, respectively. The   and   are set to 20 m in this example.

In contrast, the APL controllers allow the marked CAV to overtake the HDV significantly earlier.

However, the specific details depend on the APL strategy used. For example, since CM applies APL

within a fixed distance   behind each HDV, the APL corridor extends to multiple CAVs (including

the ones behind the marked CAV), as shown at  . Consequently, many CAVs try to reach the
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newly assigned PLs. The new PLs would be more accessible for CAVs laterally close to modified PLs (

). Thus, these CAVs can accelerate more quickly than the marked CAV since HDVs do not block

them in the APL corridor. In turn, they nudge the marked CAV away as it tries to overtake the HDV, as

shown at    for CM. However, as soon as sufficient space is available, the marked CAV and the

one behind it change their lateral position and overtake the HDV at  . Figure 9 presents FAM’s

temporal development as the other example of APL controller. Compared to the CM, the FAM strategy

limits the APL corridor up to the marked CAV ( ) till it changes its lateral position and the

corridor is extended to the newer follower CAV; thus, fewer CAVs are competing with the marked CAV,

or they compete with some delay when the APL corridor is formed due to the newer follower CAV. This

provides enough time and space for the marked CAV to change its lateral position and overtake the

HDV earlier than the CM strategy. It is also worth noting that even when the modified PL is deactivated

in FAM for some time ( ) due to the condition of the average surrounding speed, the marked

CAV does not go back behind the HDV; instead, it continues to overtake due to the artificial forces

exerted by the new follower CAV of HDV. This shows that the problem of developing LFT strategies

with a mixture of HDVs is not merely a matter of how a blocked CAV overtakes HDVs; instead, it has

multiple facets regarding how multiple CAVs would interact to accommodate HDVs while improving

the overall situation.

For the APL strategies,    and    show another phenomenon. Since the longitudinally

overlapping regions are combined into single APL corridors, it is observed that many HDVs start to

follow each other, forming longitudinal groups of HDVs. This is also visible in Figure  10 for an

extended road portion, where compared to PL case, HDVs are less dispersed in CM and FAM case.

Figure 10 also shows that since CM (and NSCM) use a fixed distance ( ) behind each HDV to form

APL corridors, it can create long stretches of APL corridors. In contrast, FAM (and SVAM) create

shorter APL corridors. Consequently, it can be said that while the adaptive margin-based strategies

favor the overtaking maneuvers of the follower CAVs, the constant margin-based strategies favor the

movement of a larger group of CAVs using longer APL corridors.
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Figure 10. The formation of APL corridors between HDVs for CM and FAM strategies. The CAVs following

APL corridors are represented with green color. The figure represents the situation at   min with 250 

 and 20% HDVs. The   and   are set to 20 m in this example.

Figure  11 compares the overall flow and the average lateral speeds of APL and PL controllers for a

density of 250  . The first thing to note is the general trend of a significant decrease in LFT

traffic flow with HDV penetration, even with the APL controller. Nonetheless, the APL controller

significantly improves over the PL controller, especially in the beginning 0-50% HDVs penetration. To

compare this further, Figure 12 shows the difference in traffic flow values for APL and PL controllers.

For each APL strategy, the improvement generally peaks at a certain HDV penetration and then

declines. The CM and NSCM provide the best improvements over PL for an HDV penetration lower

than 40% with peak improvement of 2205    (23.6%) achieved with NSCM for a density of 200 

 and 30% HDV.

Figure 11. The traffic flow rates and mean lateral speeds for different APL strategies and HDV penetrations.

The vehicle density is set to 250  .

t = 10

veh/km XCM XAM

veh/km

veh/h

veh/km

veh/km
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Figure 12. The difference of traffic flow values of APL and PL controllers under the same settings.

Additionally, the improvements of NSCM are found to be more general regarding HDV penetration

than CM. This means that NSCM continues to provide performance improvement for almost 10% more

HDVs than CM. This is due to the way APL corridors are formed, where both longitudinally overlapping

regions are first combined into a single region. Then, the lateral space available between HDVs in each

region is used for APL corridors. With increasing HDV penetration, there are longitudinally more

overlapping regions and less empty lateral space available for each region to form APL corridor.

Consequently, since CM uses all HDVs in this process, it finds it challenging to form APL corridors and

shows degraded performance earlier. This reason also applies when higher values of    are used

with CM, as demonstrated in Figure 13, or when a higher vehicle density is simulated. Consequently, it

is worth noting in Figure 13 that CM’s performance is improved for 400   when lower   is used.

In contrast, NSCM only considers an HDV for APL corridors when the HDV is moving slower than the

surrounding vehicles. This reduces the overlapping longitudinal regions and allows NSCM to form

more APL corridors than CM. This is also visible through the lateral trajectory plots in Figure 14(b),

where the vehicle experiences APL corridors in NSCM much more than CM.

XCM

veh XCM
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Figure 13. Impact of changing the parameter values for various APL strategies and 20% HDVs. The y-axis

shows the relative increase in the traffic flow compared to the PL controller’s flow under the same setting.

Figure 14. The lateral positions of a CAV under APL controllers with 20% HDVs (except all-CAVs case). The

red lines indicate the trajectory under the influence of APL corridors.

Figure 12 also shows that the improvements of FAM and SVAM are smaller than CM and NSCM, almost

half for 0-30% HDV penetration. However, FAM and SVAM are observed to be even more general than

NSCM strategy in terms of HDV penetration, producing at least some improvement over PL controller

upto 70% HDV penetration. This can be explained by their adaptive nature for forming APL corridors.

Since they only consider the distance up to the follower CAV for the APL corridor, both strategies have

fewer overlapping regions, resulting in a short but higher number of APL corridors than CM and
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NSCM. For smaller HDV penetration (0-30%), such short corridors would be less efficient than long

corridors of CM and NSCM since many CAVs would have to laterally adjust their movements whenever

they enter or exit such short APL corridors. This is visible from the higher lateral speeds of CAVs in

Figure  11 for FAM and SVAM as well as from the significantly larger lateral movements in the

trajectory plots of Figure 14.

On the other hand, these short APL corridors benefit from high HDV penetration and vehicle density.

Under these conditions, the FAM and SVAM can still form APL corridors, unlike CM and NSCM

strategies. This allows CAVs to overtake the blocking HDV and accelerate, making these strategies

applicable to even high HDV penetration. However, as the HDV penetration goes above 70%, forming

APL corridors becomes difficult for almost all APL strategies, and the performance becomes similar to

the PL controller.

Figure  11 also shows that the lateral movement of HDVs in the APL controller is significantly lower

than in the PL controller. As described above, the APL corridors also push HDVs to form longitudinal

groups via CAV movements, unlike PL where HDVs are more dispersed in between CAVs. These HDVs

in APL either do not have enough speed incentives to change lateral position or do not find enough

space for lateral movements among fast-moving CAVs in the APL corridors. Thus, for the 0-30% HDV

penetration where the CM and NSCM form large APL corridors, the lateral movement of HDVs is

minimal. However, as the number of long APL corridors decreases with increasing HDV penetration,

the HDVs find more chances for lateral movements.
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Figure 15. Spatio-temporal speed plot for APL controllers with penetration of 20% HDVs. The APL

controllers reduce the intensity of traffic waves.

The previous section showed that the PL controller forms traffic waves with increasing HDV

penetration. Therefore, it is also important to analyze the impact of the APL controller on this

phenomenon. As shown in Figure 15, the APL strategy does not completely remove the traffic waves

but reduces their intensity. The long APL corridors in CM and NSCM help to reduce the traffic waves

the most; however, the short APL corridors in FAM and SVAM are found to be less effective against

traffic waves. At a very high vehicle density (400  ), all APL strategies struggle to avoid forming

traffic waves.

Overall, the results in this section show that for a relatively low number of HDVs (almost 30% HDVs),

an APL strategy that favors unhindered movements of groups of CAVs like CM or NSCM produces

better results. However, an APL strategy that favors the overtaking maneuvers of follower CAVs is

more general and produces better results with higher HDV penetration. Nevertheless, even with the

APL controller, the results indicate that penetration of at least 60% CAVs into LFT is necessary before

any major benefits of LFT to the overall traffic flow start to appear.

veh/km
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5. Summary

The ever-increasing problem of traffic congestion in cities, coupled with advancements in AV

technologies, has spurred the search for innovative solutions. Rather than investing in expensive and

time-consuming new road infrastructures like beltways, there is a recent push to enhance the capacity

and safety of existing infrastructure. One promising approach involves using CAVs. These vehicles can

communicate with each other and the infrastructure to better coordinate their movements and

improve traffic flow.

One significant way CAV technology can transform traffic management is through LFT. In LFT,

vehicles coordinate their movements without relying on traditional fixed lanes. Recent studies have

shown that LFT has the potential to significantly increase road capacity through the coordinated

movements of CAVs. However, the transition to LFT may not be straightforward and could require the

coexistence of independent traffic vehicles, either HDVs or simple AVs, during the transition phase.

This study examines the impact of HDVs on LFT using a microscopic simulation of a 1   ring road

with a width of 10.2 meters. While HDVs make driving decisions based on individual benefits, CAVs use

the PL controller for coordinated movements. The results indicate that a pure LFT scenario

significantly improves road capacity compared to scenarios with only HDVs without lanes; a

maximum flow of 20,400    is observed for LFT compared to only 8,044    for the latter.

However, the flow improvement of LFT significantly drops as soon as HDVs are introduced into the

system. Even a small penetration of HDVs, such as 5%, reduces the maximum flow by 16% (to 17,252 

). With 10% HDVs, it drops by 32% (to 14,162  ), and almost halves with 20% HDVs. In

literature, the LFT is also marked by its characteristic feature of avoiding the formation of traffic

waves. However, this study found that with the penetration of HDVs, traffic waves start to appear in

LFT and worsen with higher HDV penetrations.

The study also introduced an APL controller approach to reduce the above performance drop. Unlike

the simple PL controller, where the assigned PLs remain fixed, the APL controller adapts the PLs in the

vicinity of HDVs. These areas with modified PLs are referred to as APL corridors. The study developed

four APL variants that mainly differ on (1) the distance behind each HDV included in the APL corridor

and (2) the conditions required for individual HDV whose vicinity is included in the corridor. The study

found that the APL variants that favor the group movement of CAVs by forming long APL corridors

perform better for a lower range of HDV penetration (up to almost 30%). In comparison, the APL

km

veh/h veh/h

veh/h veh/h
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strategies that favor the overtaking maneuvers of individual CAVs perform better for higher HDV

penetration. Overall, the NSCM strategy for APL controller provides the best performance.

Even with the improved performance of the APL controller, the results indicate that the proportion of

CAVs in LFT needs to be significantly high (almost 60%) before the practical benefits of LFT start to

appear in terms of traffic flow.

6. Limitations and Future Work

Even though this study aimed to be as comprehensive as possible in its methodology, some limitations

must be considered when interpreting the outcomes. First, the study used a specific model for the

HDVs, which may not accurately represent real driving behavior without lanes, especially in LFT

scenarios. A major limitation of the HDVs used is their complete inability to communicate with one

another. In reality, HDVs may use signals such as honking or flashing headlights to indicate their

intention to overtake the leading vehicle. Similarly, an HDV can also partially observe the movements

of CAVs and adjust the driving behavior accordingly. However, the HDV model in this study does not

consider such HDV-HDV or CAV-HDV interactions, which may not represent real-world behavior.

Additionally, the driving behavior of individual humans varies significantly, while the study model

used similar parameters for all HDVs. An important parameter for the HDVs is the reaction time and

deceleration capability for calculating safe velocities. This can have a significant impact on outcomes.

The same applies to CAVs, i.e., the study used a specific LFT controller and set of parameter values for

the experiments. The outcomes may differ significantly if these parameters are changed. It is also

possible that the impacts of HDVs are amplified due to the use of a ring road; even with a small

proportion of HDVs, the CAVs repeatedly encounter the HDVs in each rotation, leading to an amplified

effect on upstream vehicles.

The HDV model can be enhanced in the future to better represent human behavior in LFT scenarios.

Driving simulator studies of LFT may be crucial for this purpose[15], especially for estimating the

reaction time and deceleration for HDVs in an LFT environment. The impact of HDVs should also be

studied under different simulation scenarios to provide further insights into their effects. Similarly,

the impact of HDVs on other LFT controllers should be investigated. It is important to note that the

previously concluded penetration rate of 60% CAVs to start seeing the benefits of LFT indicates that

LFT controller design should also consider boundary cases, such as handling situations when not all
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vehicles are CAVs. Even though APL controller reduces the impact of HDVs, there is still potential to

further improve the LFT controller for these cases.
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