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This article presents an innovative method for constructing two-dimensional cyclic codes based on
the use of primitive idempotents defined via cyclotomic orbits. Our approach exploits the
decomposition of the quotient ring R = F,[z,y]/(z* — 1,y — 1) into a direct product of copies of
F, using central primitive idempotents. This decomposition enables the explicit construction of
vector space bases and optimized generator matrices for two-dimensional codes.

The method incorporates spectral analysis via the discrete Fourier transform, establishing a
fundamental link between combinatorial (cyclotomic orbits) and algebraic (primitive idempotents)
representations of generator idempotents. We demonstrate that the set

B = {z™y"e(z,y) | 0 < m < k,0 < n < {'} forms a basis of the two-dimensional cyclic code, with
parameters [s{, kl', (s —k+1)({ — ¢ +1)].

The results are validated by explicit examples and generator matrix constructions, offering precise
control over code parameters and effectively generalizing BCH-type bounds to the two-dimensional
context. This systematic approach fills an important gap in the design of high-performance

multidimensional codes.

Correspondence: papers@team.qeios.com — Qeios will forward to the authors

1. Introduction

Error-correcting codes play a fundamental role in information theory, ensuring the reliability of modern
communication systems 2] one-dimensional cyclic codes, defined as ideals in univariate polynomial
rings, benefit from efficient encoding and decoding algorithms. However, contemporary applications
demand more powerful codes capable of handling complex dependencies, hence the emergence of

multidimensional cyclic codes 2141
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These codes are modeled as ideals in the quotient ring
R = Fq[a:,y]/<9:s - layl - 1>7

where F, satisfies ¢g=1 (mods) and ¢g=1 (mod¥¢). Their construction presents significant
challenges, particularly the efficient decomposition of ideals into vector space bases and the design of

optimized generator matrices E1)

This article proposes an original method for constructing two-dimensional cyclic codes by exploiting

generator idempotents defined via cyclotomic orbits. Our main contributions are:

+ Definition 3.1. The introduction of two-dimensional primitive idempotents e; ;(z,y) providing an
explicit decomposition of the quotient ring R into a direct product of copies of IF,.

e Proposition 3.2. The proof that R is semi-simple and isomorphic to @f;é @f;(l) Folz,ylei ;,
establishing the algebraic foundation of our construction.

o Definition 3.3. The combinatorial definition of two-dimensional generator idempotents via
cyclotomic orbits C; x, providing a systematic method for code construction.

» Proposition 3.4. The establishment of the fundamental equality between combinatorial (cyclotomic
orbits) and algebraic (primitive idempotents) representations of generator idempotents, connected via
the discrete Fourier transform.

e Theorem 3.6. The explicit construction of bases for two-dimensional codes of the form
B = {z"y"e(z,y) | 0 <m < k,0 < n < {'}, enabling efficient vector space representation.

» Theorem 3.7. The complete determination of code parameters [s¢, k¢', (s — k + 1)(¢ — £’ + 1)] and the
construction of optimized generator matrices, offering precise control over code characteristics.

» The generalization of BCH-type bounds to the two-dimensional context through the product bound

(s —k+1)(¢ — ¢ + 1) for the minimum distance.

Unlike existing approaches based on univariate idempotents [6] or row decompositions El, our method
provides a unified framework combining idempotents, cyclotomic orbits, and discrete Fourier
transforms. This approach ensures precise control over code parameters and effective generalization of
BCH-type bounds to the two-dimensional context, filling an important gap in the design of high-

performance multidimensional codes [104]

The explicit examples and practical constructions demonstrate the effectiveness of our approach,

offering new perspectives for applications in advanced communication systems and cryptographic
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protocols 78],

2. Preliminaries

Notations. Let I, be a finite field with ¢ elements. The multiplicative group F is cyclic of order ¢ — 1. For

integers s,/ > 1suchthatg=1 (mods)andg=1 (mod¥{),we consider the quotient ring
R= Fq[:z:,y}/<:cs - 17yl - 1>'

The ring R consists of bivariate polynomials modulo the relations z* = 1 and y* = 1.

2.1. Definition (One-dimensional cyclic code). A cyclic code C of length n over F,, is an ideal of the ring
R, = F,[a]/(z" — 1).

2.2. Proposition. Every cyclic code C C R, is a principal ideal, generated by a unique monic polynomial
g(z) of minimal degree in C. Moreover, g(x) divides " — 1.

2.3. Definition (Idempotent element). Let R be a ring. An element e € R is said to be idempotent if € = e.

2.4. Definition (One-dimensional central primitive idempotents). Let k& be a positive integer with
g=1 (modk),and let w € F, be a primitive k-th root of unity. In the ring F,[z]/(z* — 1), the central

primitive idempotents are defined by

k-1

T — W
Gi(z) = -
g wt — w?
i#t

2.5. Proposition. These idempotents satisfy

i
L

Gt (Jt) =1, Ct(m)ct’(m) = t,t’Ct($)7

~+
Il
o

where 6, , is the Kronecker delta function.

2.6. Definition (Cyclotomic coset modulo n in base g). Let n be a positive integer and g a prime power.

For each integer j € {0, ...,n — 1}, the cyclotomic coset modulo n in base g containing j is defined by

Cj = {4,ja,iq*--,3g" '} (modn),
where m; is the smallest positive integer such that j¢™i = j (modn).

27 Definition (One-dimensional generator idempotent). Let R, =F,z]/(z" —1), with

g=1 (modn),and C acyclic code of length n over IF,. The generator idempotent of C is given by
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z) = Z ajz ',

j€S(q)  i€Cy
wherea; € F,.

2.8. Theorem. Let R,, = F[z]/(z" — 1), and C a cyclic code of dimension k in R, generated by a generator

idempotent e(x). Then, the elements {e(z), ze(z), ..., z"* Le(z)} form abasis of C.

3. Construction of Two-Dimensional Codes

We now present our main results concerning the construction of two-dimensional cyclic codes. Our first
contribution is the definition of two-dimensional primitive idempotents which form the cornerstone of

our approach.

3.1. Definition (Two-dimensional primitive idempotent). Let R = F,[z,y]/(z* — 1,y — 1), where
g=1 (mods)andg=1 (mod¢),and letS=F,[z]/(z* —1)and S’ = F,[y]/(y* — 1). Consider the

central primitive idempotents defined by:

1 s—1 1 -1 "
= =) At ni(y) = ZZ’Y( “nyn,
sm:O n=0

where « is a primitive s-th root and « is a primitive £-th root of unity in F,. We define the two-

dimensional primitive idempotent e; ; (z, y) by:

,_.
4\
;-\

1 N s—i)m —jn_m_ n
0n

i
o

3
I

Our second result establishes the fundamental algebraic structure of the quotient ring, demonstrating its
semi-simplicity and decomposition into primitive idempotents.

3.2. Proposition. Let R = F[z,y]/(z* — 1,y — 1), where ¢g=1 (mods) and ¢=1 (mod¥). Let
S =TF,[z]/(z* —1) and S' =T,y]/(y* —1). Then the ring R is semi-simple and isomorphic to
@i Do Folz, y)ei , where each F [z, yle; = T,

Proof. Let v € F, be a primitive s-th root of unity (y* =1, 4% #1 for 0 <k < s) and 6 € F, be a
primitive £-th root of unity (6 =1, 6* #1 for 0 < k < £). Since =1 (mods)andg=1 (mod¥),

the field F, contains these roots, and ged (s, q) = 1, gcd (¢, q) = 1.

 Dimension. The ring R = F[z,y]/(z® —1,y° —1) is a vector space over F, with basis

{z'y7 |0 <i<s—1,0<j<{—1}.Thus,dimp, R =s- L.
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o Factorization. In Fylz], z® —1= H;:& (x —4%), because v is a primitive s-th root and

g=1 (mods). Similarly, in F,[y], y* — 1= H t(y—69). In Fyz,y], the ideals (z —~') and
(y — §7) are maximal, and for each pair (i, j), the ideal (x — 4!,y — %) is maximal. By the Chinese

Remainder Theorem, since the ideals (z — %,y — §7) are pairwise coprime, we have:
s—14—-1

R~ @ @F,[z,yl/(z -~y —&).

=0 5=0

Each quotient F[z,y]/(z — ',y — /) = F,, because evaluation at (z,y) = (7¢,47) gives a field
isomorphic to IF,. Thus, R = ]F;‘Z .
« Idempotents. Define e; ; (z,y) = singn;lo Ll Alsmiimg(t=imgmyn ¢ R Verify the properties:

= Idempotence. Evaluate e; ; (z,y) at (z,y) = (v*,87):

.y . -1 4-1 s—1 . -1 -
eii (7, 87) = 5 Z@ X ylemmalingimain = 3y 37 ymemith) 32 g,
m=0n= — =

If i=4 and j=j, then m(—iti) = ms — 1 gnlt=5+t/) = 7 — 1 and the sum gives
s-£=1.1fi # i, the sum Y5 4™~ (=) — 0, because 4*~(~#) + 1. Similarly, if j # 7,

Zf:o §-G=)) = 0. Thus, e; (" ,87) = §, 4; ;. Consequently, e? e = e
= Orthogonality. For (2,9) # (@', 7)), we have eijery =0, because
e (v .87 ey j (¥ ,87") = 8, 96; 40y 8y = 0, the indices where e;; and e ; are nonzero

being disjoint.

= Sum. Verify Y ;_ Z] oew = 1. Evaluating at (" ,67):

Zzel](’y 6]) 22622’

=0 j=0 1=07=0

because exactly one term is nonzero (for i = i, j = j/). Thus, > ;_ Z i oew =

= Centrality. For all feR, we have e,f=fe,. Evaluating at (y°,87),
(ei; £)(v,87) = eij(v",67) f(¥",87) = 8,48; 1 f(77 ,87), and similarly for fe;;. Thus, e;; is
central.

= Isomorphism. Each ideal F,lz,yle;; = F, via the projection f+ f(y%,67). Indeed,
eijf = f(v',0%)eij, so Fylz,yle;; = F, By the decomposition of orthogonal idempotents,
R = @y @0 Folz,ylei.

= Semi-simplicity. Since R =2 IF;;'Z, a product of fields, R is semi-simple by ring theory.

Thus, R is semi-simple and R =2 @f;& @f;é Fo[z,yle; ;, where each F o[z, yle; ; = Fy. O

We now introduce the combinatorial definition of two-dimensional generator idempotents via

cyclotomic orbits, which provides a systematic method for code construction.
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33. Definition. Let C be a two-dimensional cyclic code of length n=sf{ over F, in
R =TF,[z,y]/(z* —1,y°* — 1), with g=1 (mods) and ¢g=1 (mod¥¢). The generator idempotent
e(z,y) is written as:

aj k § mmyna

(GRET  (mn)eCip

whereT C {0,...,s — 1} x{0,...,£ —1},Cjr = {(j¢" mod s, kq" mod¥) | »r > 0} and a;, € F,.

T is a set of representatives of disjoint cyclotomic orbits C} x, and the coefficients are typically a;, = 1 if
(4, k) € T, a1 = 0 otherwise.

A fundamental result of our work is the establishment of the equivalence between combinatorial and

algebraic representations of generator idempotents.

3.4. Proposition. Let C be a two-dimensional cyclic code of length n=sf{ over F, in

R =TF,[z,y]/(z* — 1,y —1),withq=1 (mods)andqg=1 (mod¢£). Then, we have the equality

s—1 /-1
e(ma y) = Ci,j€i,j (mv y)a
=0 j=0
where cij=e(y',a’) € {0,1}, eij(z,y) = G (2)n;(y), Gi(z) = 130 gy mam,
ni(y) = E Oa ~iny™ and ~, o are primitive roots of order s, .

Proof. Let C be a two-dimensional cyclic code of length n = s over F, in R = F[z,y]/(z* — 1,y — 1),
withg=1 (mods),g=1 (mod/).Let~ybe a primitive root of order s, o a primitive root of order £ in
F,. Show that

Z @ik Z z™y" = ¢ jeii (2, y),

(§,k)eT (mn)eCjp i=0 j=0
where T C{0,...,s—1}x{0,...,£—1}, C;r={(j¢" mods,k¢g"mod¥) |r >0}, a;r€cF,
e = e(v,af) € {0,1}, ei5(x,9) = G(@)m;(v), G (2) = 20 v ™™, m(y) = + e y"
Step 1: Coefficients of the first form.

Write e(z,y) = 35 3202, bnna™y", where

m=0

b — J Gk ifN(mfn) € Cj,ka (.77 k) eT,
mn 0 otherwise.

The discrete Fourier transform gives

s—1 £—1

Z bm,n’yimaj”.

Cij = e(’y ,a] =
m=0 n=0
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Substitute e(z,y) = E(M)eT ajka(m,n)eCj,k "y

e(y )= > a Y, AT

(4,k)eT (m,n)eCjx

For (m,n) = (jq" mod s, kg" mod {) € C;y,
ICjel—1

. . o g
Z ,yzma]n _ Z ,yz(]q mods)aj(kq modf)‘
r=0

(m,n)eCj

This sum is nonzero if (4,j) € Cyy for some (j',k') € T, in which case it equals |Cy y|-ayy (by

properties of roots of unity and orbits). Thus,

cij= Y, k- |Cixl - igec,,-
(Gh)ET

If aj, =1 for (j,k) € T, and ¢;; € {0,1}, then ¢;; = 1 if (¢,4) € C; for some (j,k) € T, otherwise

Cij = 0.

Step 2: Second form.

Consider
s—1 £-1
e(z,y) = cijeij(z,y),€5(x,y) = G(z)n;(y).
i=0 j=0
The primitive idempotents are
1 s—1 ) 1 (-1
Gi(z) = ppa v "™ mi(y) Zzaﬂ"y",
m=0 n=0

with
Z—! _ j! _
G(Y') =dp,mi(al) =85
Thus,
- o . -/
€i,j (v ,a) =G0 )m-(aj ) = 5i,z" 5j,j’-
Evaluate
., , s—1 £-1 ., , s—1 (-1
e(y",a) = cigeii (v, al) = Cij0iy 057 = Cij-
i=0 j=0 i=0 j=0

So, ¢;,; = e(v',a7), as in the proposition.

Step 3: Equivalence.
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The coefficients by, ,, are related to c; ; by the inverse Fourier transform:

o im o —jn
cijy ot

. 1 b1 m _jn
Substitute c;; = >~ > by Y™ 0™

Rearrange:

The sums are

1 s—1 ( | 1 {—1 ( |
; E v mn = 6m’,m7 ; Za] " = 6n’,n
i=0 j=0

Thus,

s—1 (-1
bm,n = Z me/’nrém/,mén/m = bm,n-

m'=0n"=0
The two forms are therefore equivalent, because they produce the same coefficients by, ;.
Step 4: Idempotence.
For €® = e, the ¢; j must satisfy ¢} ; = cij, ie, ¢;; € {0,1}. Since ¢;j; = e(7*,a7),and €* = ¢, then

. . 2 . .
e(y',dd)" =e(v', o)) = czz,j = Cij-

This is satisfied if ¢;; € {0,1}. Moreover, T' is chosen so that |J; ;)7 Cjy is stable under convolution,
ensuring idempotence.

Conclusion. The two expressions for e(z,y) are equivalent via the Fourier transform, with

Cij = e(f}/iaaj) € {Oa 1}' U

We now establish the important property concerning dual representations of elements in the quotient

ring.

3.5. Proposition. Let R = Fy[z,y]/(z* — 1,y* — 1), with ~y a primitive s-th root and o a primitive £-th root

inF,. Every element f(x,y) € R can be written equivalently as:
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Lf(z,y) = X5 W g™y, with ay,, € F, Since z° =1, y’ =1, the basis of R is
{zmy" | 0<m<s—1,0<n<{-—1}

2. f(z,y) = Y0 Z] oCijeij(z,y), where ¢;; € Fy, c;j= f(7',a7), and the idempotents are
eij(z,y) = L300 4 Sy macingmyn,

Proof. Let R = F[z,y]/(z* — 1,y° — 1), where v € F, is a primitive s-th root (y* =1, v* # 1 for
0 < k < s)and a € F, is aprimitive £-throot (o’ = 1,a* # 1 for0 < k < £).Sinceq =1 (mod s) and

g=1 (mod/),theseroots existinF,.

* Representation 1. Every element f(z,y) € R is a polynomial in z and y modulo (z° — 1,y* — 1).
Since z° =1 and 3’ =1 in R, every monomial z™y" can be reduced to z™™°dsynmed! Thys,

f(z,y) is written as:
-1 ¢

f(z,y) = Zzamnx y",

m=0n=|

where a,, € F,. The family {"y" | 0 <m <s—1,0 <n < {— 1} forms a basis of R as a vector
space over [, because the monomials are linearly independent (dimension s - £).

+ Representation 2. Define the idempotents e; ;(z,y) = éan;lO f:o N TIr My Verify their
properties:

= Evaluation. Evaluate e; ; (2,y) at (z,y) = (7' ,ad ):

A 4 s—1 , A1 .

€i,j (’7 o’ ) =7 Z Z o a‘J"'y’maJ” = i[ > ,ym(z —i) v o™i’ =9),
5 m= On= § m=0 n=0

If i = i/, then 4™~ = 1, and the sum over m gives s. Otherwise, 3! v™(~) = 0, because

7=t = 1. Similarly for j = j'. Thus:

eij (v ,ad) =840,

i, 95,5 *

= Idempotence. Since e; ; (v ,af) = d;9; 7, we have e = ¢; j, because the evaluation of e? ; gives
8iw i+ 0iw0jj = 89055

= Orthogonality. For (,7) # (&, ), eijery =0, because

g 4
€ij (’}/l ,aj )e/ /("}/ aj ) = 5i,i/' 6]-’]'//61'/’1-// Jj’,j" = 0.

= Sum. Verify Y ;_ ZJ oew =1

s—14-1 s—14-1
Z%]Zez](')’ a]) 22511’6 j'_l
i=035=0 1=0j=0

because exactly one term is nonzero. Thus, > Z =0 €ij =

= Representation. Every f(z,y) € R can be written as:
—1/-1

Fay) = X S eien (@),

=0 =0

where ¢; ; = f(7*,7). Indeed, evaluate f(z,y) = 3, ; f(7*,0)e; ; (z,y) at (v ,ad):
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s—14—1 s—1/4-1

> Z f(e)eii (v od ) = 3 Zf('y )85 = F(" 0.

=0 j=0 1=0 j=0

Since f is completely determined by its values at (7%, o), the representation is correct.

= Equivalence. To relate the two representations, express the coefficients a,, in terms of c; ;. If

Flzy) = Y0 20 Sy amaz™y" = 3200 5 g cijei(x,y), evaluateat (v, 0d):
-1 /-1

f('yivaj) Z Z A, n'ylma]n = GCjj-

m=0n=0

Conversely, the a,, , are obtained by the discrete Fourier transform:
—1/-1

m,n_sgzz:f('y aj) J’

1=0 j=0

This shows that the two representations are equivalent, because the e; ; form an orthogonal basis and

the ™y form a canonical basis.
Thus, every f(z,y) € R can be written equivalently in the two given forms. OJ

A central result of our work is the explicit construction of bases for two-dimensional cyclic codes, which

enables efficient vector space representation.

3.6. Theorem. Let R = F [z,y]/(z* — 1,y* — 1), withgq=1 (mods) andg=1 (mod¥), guaranteeing
the existence of primitive roots « of order s and « of order £ in F,. Let C' be a two-dimensional cyclic code
generated by an idempotent e(x,y) with e(z,y) = a(z,y)g(z,y), where g(z,y) is the monic generator
polynomial with degrees deg, g =s—k, deg,g =1L~/ and h(z,y) satisfies
g(z,y)h(z,y) = (=* —1)(y* —1), with deg,h=k and deg,h=4{. Then, the set

B = {z"y"e(z,y) | 0 <m < k, 0 < n < {'} forms a basis of C over F,,.

Proof. Show that
B={z"y"e(z,y) | 0<m<k—-1,0<n<{-1}
is a basis of
C = (e(z,y)) C R=TFlz,y]/(e* ~1,y" - 1).
Linear independence.

Suppose there exist scalars 3,,,, € F4such that
k-1 (-1
Bmnz"y"e(z,y) =0 inR.

m=0 n=0

Let
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k

—1 -1
Brnz™y" € Fylz,y],deg, I < k,deg, I < L.
0n=0

3
I

Then,
I(z,y)e(z,y) = 0-in-R = U(z,y)e(2,y) = u(z,y)(z* — 1)(y* — 1)
for some u(z,y) € F,[z,y|. Write
e(z,y) = a(z,y)g(z,y), 9(z,y)h(z,y) = (z° — 1)(y" - 1),
where g is the generator polynomial and 4 its check polynomial. We obtain:
Uz, y)a(z,y)g(x,y) = u(z,y)g(z, y)h(z,y) — Uz, y)a(z,y) = u(z,y)h(z,y).

Since deg, | < k = deg, hand deg, [ < ¢’ = deg, h, the polynomial u(z,y) must be zero for the equality

to hold in Fy[z, y]. Thus,
Uz, y)a(z,y) = 0 = I(z,y) = 0

because a(z,y) # 0. We conclude that §,,, , = 0 for all (m, n). Therefore, B is linearly independent.

Generation.

Letc € C.Then ¢ = p(z, y)e(z,y) for some p(z,y) € R. Perform Euclidean division of p(z,y) by h(z,y):

p(z,y) = q(z,y)h(z,y) + r(z,y),deg, r < k,deg, 7 < £,

In R, since h(z,y)e(z,y) = a(z,y)g(z,y)h(z,y) = a(z,y)(z* — 1)(y* — 1) = 0, we have:

—1/4-1

c=p(z,y)e(z,y) = r(z,y)e Brmnz™y"e(z,y) € span(B),
0 n=0

?r‘

3
I

where $,, ,, are the coefficients of r(z, y).
Conclusion.
The set B is linearly independent and generates C, so B is a basis of C over F,. []

The following result provides the complete determination of code parameters and the construction of

optimized generator matrices.
3.7. Theorem. Let C be a two-dimensional cyclic code over R =TF,[z,y]/(z* —1,y*—1), with

)

g=1 (mods)andg=1 (mod¥), havingbasis B = {z™y"e(z,y) |0 < m < k, 0 <n < {'}. Then, the
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parameters of C are [st, k', (s — k+ 1)(£ — £’ + 1)}, and the generator matrix G of C' is a matrix of size

kt' x st given by

©(e)
p(ze)

so(m’;*le)
¢(ye)
p(zye) '

(2t 1ye)

p(zF 1yt le)
where ¢ : R — IFZ[ is the isomorphism that associates to each polynomial f(z,y) € R the vector of its

coefficients flattened row by row.

Proof. The length of C is sf because C C R = ]FZ"]. The dimension is k¢ because the basis
B = {z"y"e(z,y) | 0 <m < k,0<n < ¢} contains k¢ elements. The minimum distance is
(s—k+1)({—¢ +1), because C is isomorphic to the tensor product of the one-dimensional cyclic
codes C, = (g1(z)) with parameters [s, k, s — k + 1] and C, = (g2(y)) with parameters [¢,¢',¢ — ¢' + 1],
with g(z,y) = g1(2)g2(y), and the distance of a tensor code is the product of the distances of the

component codes o

The generator matrix G has as rows the vectors p(z™y"e(z,y)) for 0 < m < k, 0 < n < ¢, ordered
lexicographically by n then m. This results from the linearity of ¢ and the fact that B is a basis of C, each

element z™y™e(z, y) corresponding to a row of G. J
To illustrate our method, we present a concrete example of constructing a two-dimensional cyclic code.

3.8. Example. Let Fy, s =3, £{=2, ¢g=2. Choose =2 (primitive root of order 3 of unity),
a = 1 (primitive root of order 2 of unity).

Cyclotomic orbits.

CU,O = {(OvO)}7CLl = {(171)7(2’0)}'

Set of representatives.

T ={(0,0),(1,1)}.

Primitive idempotents. (Binary coefficients)
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eoo(z,y) = 1,e11(z,y) = zy + °.
Chosen idempotent by sum over orbits.

e(z,y) = Z Z ™y = ego(z,y) +er1(z,y) =1+ zy + 2>
(J:k)ET (m;n)€Cjpk

Idempotence verification.
2
e(ac,y)2 =(1+ay+2?) =1+2>+2*y’ =1+zy+2° =e(z,y) (modz® —1,9% —1).

Choice of degrees for the basis.

Code basis.
B = {e, ze,ye, zye}.
Explicit expressions.
re = w+m2y+a:3 = ac—|—a:2y+1,ye :y—|—my2 +x2y5y+w+m2y,
TYye = 2y + m2y2 + :c3y =y + z? + zy.
Associated vectors (lexicographic order (i, 5),7 = 0..2, 7 = 0..1).
v(e) =(1,0,1,0,1,0), p(ze) = (1,1,0,0,1,0), o(ye) = (0,1,1,0,1,0), o(xye) = (0,1,0,1,0,1).

Generator matrix.

4x6
e Fy™.

o O = =
= = o
O = O -
= o O O
[ N
= O o O

Code parameters.
n=sl= 6,dil’l’1[ﬁ2 C= kzk'y = 4,dmin = 2.
Conclusion.

[TL, ka d]2 = [6’ 4a 2]
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4. Conclusion

This article has presented a systematic method for constructing two-dimensional cyclic codes based on

the use of primitive idempotents and cyclotomic orbits. The main contributions include:

» The definition of two-dimensional primitive idempotents e; ;(z,y) (Definition 3.1) enabling the
decomposition of the quotient ring R = F [z, y]/(z* — 1,y* — 1) into a direct product of copies of F,

» The establishment of the fundamental equality between combinatorial and algebraic representations
of generator idempotents (Proposition 3.4), connecting cyclotomic orbits to primitive idempotents via
the discrete Fourier transform

o The explicit construction of bases for two-dimensional codes of the form
B = {z"y"e(z,y) | 0 <m < k,0 <n < ¢} (Theorem 3.6)

» The complete determination of code parameters [s¢, k€', (s — k+ 1)(¢ — ¢’ + 1)] and the construction
of optimized generator matrices (Theorem 3.7)

» The generalization of BCH-type bounds to the two-dimensional context through the product bound

(s—k+1)(0—0 +1)

The explicit example (Example 3.8) and practical constructions demonstrate the effectiveness of our

approach. The proposed method offers precise control over code parameters and fills an important gap in

the design of high-performance multidimensional codes 3141,

Research perspectives include extending this approach to higher dimensions (s > 2), developing
efficient decoding algorithms adapted to these vector bases, and optimizing cyclotomic orbits to

maximize the minimum distance. This method also opens the way to new applications in advanced

communication systems and cryptographic protocols 78],

Notes

MSC (2025): 13F20, 16D25, 94B60.
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