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This article presents an innovative method for constructing two-dimensional cyclic codes based on

the use of primitive idempotents defined via cyclotomic orbits. Our approach exploits the

decomposition of the quotient ring   into a direct product of copies of 

 using central primitive idempotents. This decomposition enables the explicit construction of

vector space bases and optimized generator matrices for two-dimensional codes.

The method incorporates spectral analysis via the discrete Fourier transform, establishing a

fundamental link between combinatorial (cyclotomic orbits) and algebraic (primitive idempotents)

representations of generator idempotents. We demonstrate that the set 

 forms a basis of the two-dimensional cyclic code, with

parameters  .

The results are validated by explicit examples and generator matrix constructions, offering precise

control over code parameters and effectively generalizing BCH-type bounds to the two-dimensional

context. This systematic approach fills an important gap in the design of high-performance

multidimensional codes.
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1. Introduction

Error-correcting codes play a fundamental role in information theory, ensuring the reliability of modern

communication systems [1][2]. One-dimensional cyclic codes, defined as ideals in univariate polynomial

rings, benefit from efficient encoding and decoding algorithms. However, contemporary applications

demand more powerful codes capable of handling complex dependencies, hence the emergence of

multidimensional cyclic codes [3][4].

Qeios

R = [x,y]/⟨ − 1, − 1⟩Fq xs yℓ

Fq

B = { e(x,y) ∣ 0 ≤ m < k, 0 ≤ n < }xmyn ℓ′

[sℓ,k , (s − k + 1)(ℓ − + 1)]ℓ′ ℓ′
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These codes are modeled as ideals in the quotient ring

where    satisfies    and  . Their construction presents significant

challenges, particularly the efficient decomposition of ideals into vector space bases and the design of

optimized generator matrices [5].

This article proposes an original method for constructing two-dimensional cyclic codes by exploiting

generator idempotents defined via cyclotomic orbits. Our main contributions are:

Definition 3.1. The introduction of two-dimensional primitive idempotents    providing an

explicit decomposition of the quotient ring   into a direct product of copies of  .

Proposition 3.2. The proof that    is semi-simple and isomorphic to  ,

establishing the algebraic foundation of our construction.

Definition 3.3. The combinatorial definition of two-dimensional generator idempotents via

cyclotomic orbits  , providing a systematic method for code construction.

Proposition 3.4. The establishment of the fundamental equality between combinatorial (cyclotomic

orbits) and algebraic (primitive idempotents) representations of generator idempotents, connected via

the discrete Fourier transform.

Theorem 3.6. The explicit construction of bases for two-dimensional codes of the form 

, enabling efficient vector space representation.

Theorem 3.7. The complete determination of code parameters   and the

construction of optimized generator matrices, offering precise control over code characteristics.

The generalization of BCH-type bounds to the two-dimensional context through the product bound 

 for the minimum distance.

Unlike existing approaches based on univariate idempotents  [6]  or row decompositions  [5], our method

provides a unified framework combining idempotents, cyclotomic orbits, and discrete Fourier

transforms. This approach ensures precise control over code parameters and effective generalization of

BCH-type bounds to the two-dimensional context, filling an important gap in the design of high-

performance multidimensional codes [3][4].

The explicit examples and practical constructions demonstrate the effectiveness of our approach,

offering new perspectives for applications in advanced communication systems and cryptographic

R = [x,y]/⟨ − 1, − 1⟩,Fq xs yℓ

Fq q ≡ 1 (mod s) q ≡ 1 (mod ℓ)

(x,y)ei,j

R Fq

R [x,y]⨁
s−1
i=0 ⨁

ℓ−1
j=0 Fq ei,j

Cj,k

B = { e(x,y) ∣ 0 ≤ m < k, 0 ≤ n < }xmyn ℓ′

[sℓ,k , (s − k + 1)(ℓ − + 1)]ℓ′ ℓ′

(s − k + 1)(ℓ − + 1)ℓ′
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protocols [7][8].

2. Preliminaries

Notations. Let   be a finite field with   elements. The multiplicative group   is cyclic of order  . For

integers   such that   and  , we consider the quotient ring

The ring   consists of bivariate polynomials modulo the relations   and  .

2.1. Definition (One-dimensional cyclic code). A cyclic code   of length   over   is an ideal of the ring 

.

2.2. Proposition. Every cyclic code    is a principal ideal, generated by a unique monic polynomial 

 of minimal degree in  . Moreover,   divides  .

2.3. Definition (Idempotent element). Let   be a ring. An element   is said to be idempotent if  .

2.4. Definition (One-dimensional central primitive idempotents). Let    be a positive integer with 

, and let   be a primitive  -th root of unity. In the ring  , the central

primitive idempotents are defined by

2.5. Proposition. These idempotents satisfy

where   is the Kronecker delta function.

2.6. Definition (Cyclotomic coset modulo   in base  ). Let   be a positive integer and   a prime power.

For each integer  , the cyclotomic coset modulo   in base   containing   is defined by

where   is the smallest positive integer such that  .

2.7. Definition (One-dimensional generator idempotent). Let  , with 

, and   a cyclic code of length   over  . The generator idempotent of   is given by

Fq q F
×
q q − 1

s, ℓ ≥ 1 q ≡ 1 (mod s) q ≡ 1 (mod ℓ)

R = [x,y]/⟨ − 1, − 1⟩.Fq xs yℓ

R = 1xs = 1yℓ

C n Fq

= [x]/⟨ − 1⟩Rn Fq xn

C ⊆ Rn

g(x) C g(x) − 1xn

R e ∈ R = ee2

k

q ≡ 1 (modk) ω ∈ Fq k [x]/⟨ − 1⟩Fq xk

(x) = .ζt ∏
i=0
i≠t

k−1
x − ωi

−ωt ωi

(x) = 1, (x) (x) = (x),∑
t=0

k−1

ζt ζt ζt′ δt,t′ζt

δt,t′

n q n q

j ∈ {0, … ,n − 1} n q j

= {j, jq, j , … , j } (modn),Cj q2 q −1mj

mj j ≡ j (modn)qmj

= [x]/⟨ − 1⟩Rn Fq xn

q ≡ 1 (modn) C n Fq C
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where  .

2.8. Theorem. Let  , and   a cyclic code of dimension   in  , generated by a generator

idempotent  . Then, the elements   form a basis of  .

3. Construction of Two-Dimensional Codes

We now present our main results concerning the construction of two-dimensional cyclic codes. Our first

contribution is the definition of two-dimensional primitive idempotents which form the cornerstone of

our approach.

3.1. Definition (Two-dimensional primitive idempotent). Let  , where 

  and  , and let    and  . Consider the

central primitive idempotents defined by:

where    is a primitive  -th root and    is a primitive  -th root of unity in  . We define the two-

dimensional primitive idempotent   by:

Our second result establishes the fundamental algebraic structure of the quotient ring, demonstrating its

semi-simplicity and decomposition into primitive idempotents.

3.2. Proposition. Let  , where    and  . Let 

  and  . Then the ring    is semi-simple and isomorphic to 

, where each  .

Proof. Let    be a primitive  -th root of unity ( ,    for  ) and    be a

primitive  -th root of unity ( ,    for  ). Since    and  ,

the field   contains these roots, and  ,  .

Dimension. The ring    is a vector space over    with basis 

. Thus,  .

e(x) = ,∑
j∈S(q)

aj∑
i∈Cj

xi

∈aj Fq

= [x]/⟨ − 1⟩Rn Fq xn C k Rn

e(x) {e(x),xe(x), … , e(x)}xk−1 C

R = [x,y]/⟨ − 1, − 1⟩Fq xs yℓ

q ≡ 1 (mod s) q ≡ 1 (mod ℓ) S = [x]/⟨ − 1⟩Fq xs = [y]/⟨ − 1⟩S ′
Fq yℓ

(x) = , (y) = ,ζi
1
s
∑
m=0

s−1

γ(s−i)mxm ηj
1
ℓ
∑
n=0

ℓ−1

γ(ℓ−j)nyn

γ s α ℓ Fq

(x,y)ei,j

(x,y) = (x) (y) = .ei,j ζi ηj
1
sℓ
∑
m=0

s−1

∑
n=0

ℓ−1

γ(s−i)mα(ℓ−j)nxmyn

R = [x,y]/⟨ − 1, − 1⟩Fq xs yℓ q ≡ 1 (mod s) q ≡ 1 (mod ℓ)

S = [x]/⟨ − 1⟩Fq xs = [y]/⟨ − 1⟩S ′
Fq yℓ R

[x,y]⨁
s−1
i=0 ⨁

ℓ−1
j=0 Fq ei,j [x,y] ≅Fq ei,j Fq

γ ∈ Fq s = 1γs ≠ 1γk 0 < k < s δ ∈ Fq

ℓ = 1δℓ ≠ 1δk 0 < k < ℓ q ≡ 1 (mod s) q ≡ 1 (mod ℓ)

Fq gcd (s, q) = 1 gcd (ℓ, q) = 1

R = [x,y]/⟨ − 1, − 1⟩Fq xs yℓ
Fq

{ ∣ 0 ≤ i ≤ s − 1, 0 ≤ j ≤ ℓ − 1}xiyj R = s ⋅ ℓdimFq
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Factorization. In  ,  , because    is a primitive  -th root and 

. Similarly, in  ,  . In  , the ideals    and 

  are maximal, and for each pair  , the ideal    is maximal. By the Chinese

Remainder Theorem, since the ideals   are pairwise coprime, we have:

Each quotient  , because evaluation at    gives a field

isomorphic to  . Thus,  .

Idempotents. Define  . Verify the properties:

Idempotence. Evaluate   at  :

If    and  , then  ,  , and the sum gives 

. If  , the sum  , because  . Similarly, if  , 

. Thus,  . Consequently,  .

Orthogonality. For  , we have  , because 

, the indices where    and    are nonzero

being disjoint.

Sum. Verify  . Evaluating at  :

because exactly one term is nonzero (for  ,  ). Thus,  .

Centrality. For all  , we have  . Evaluating at  , 

, and similarly for  . Thus,    is

central.

Isomorphism. Each ideal  , via the projection  . Indeed, 

, so  . By the decomposition of orthogonal idempotents, 

.

Semi-simplicity. Since  , a product of fields,   is semi-simple by ring theory.

Thus,   is semi-simple and  , where each  . 

We now introduce the combinatorial definition of two-dimensional generator idempotents via

cyclotomic orbits, which provides a systematic method for code construction.

[x]Fq − 1 = (x − )xs ∏
s−1
i=0 γi γ s

q ≡ 1 (mod s) [y]Fq − 1 = (y − )yℓ ∏
ℓ−1
j=0 δj [x,y]Fq ⟨x − ⟩γi

⟨y − ⟩δj (i, j) ⟨x − ,y − ⟩γi δj

⟨x − ,y − ⟩γi δj

R ≅ [x,y]/⟨x − ,y − ⟩.⨁
i=0

s−1
⨁
j=0

ℓ−1
Fq γi δj

[x,y]/⟨x − ,y − ⟩ ≅Fq γi δj Fq (x,y) = ( , )γi δj

Fq R ≅F
s⋅ℓ
q

(x,y) = ∈ Rei,j
1
sℓ

∑
s−1
m=0 ∑

ℓ−1
n=0 γ

(s−i)mδ(ℓ−j)nxmyn

(x,y)ei,j (x,y) = ( , )γi
′
δj

′

( , ) = = .ei,j γi
′
δj

′ 1
sℓ

∑
m=0

s−1
∑
n=0

ℓ−1
γ(s−i)mδ(ℓ−j)nγ mi′ δ nj′ 1

sℓ
∑
m=0

s−1
γm(s−i+ )i′ ∑

n=0

ℓ−1
δn(ℓ−j+ )j′

i = i′ j = j′ = = 1γm(s−i+ )i′ γms = = 1δn(ℓ−j+ )j′
δnℓ

⋅ s ⋅ ℓ = 11
sℓ

i ≠ i′ = 0∑
s−1
m=0 γ

m(s−(i− ))i′ ≠ 1γs−(i− )i′ j ≠ j′

= 0∑
ℓ−1
n=0 δ

n(ℓ−(j− ))j′
( , ) =ei,j γi

′
δj

′
δi,i′ δj,j′ =e2

i,j ei,j

(i, j) ≠ ( , )i′ j′ = 0ei,je ,i′ j′

( , ) ( , ) = = 0ei,j γi
′′
δj

′′
e ,i′ j′ γi

′′
δj

′′
δi,i′′ δj,j′′δ ,i′ i′′ δ ,j′ j′′ ei,j e ,i′ j′

= 1∑
s−1
i=0 ∑

ℓ−1
j=0 ei,j ( , )γi

′
δj

′

( , ) = = 1,∑
i=0

s−1
∑
j=0

ℓ−1
ei,j γi

′
δj

′
∑
i=0

s−1
∑
j=0

ℓ−1
δi,i′ δj,j′

i = i′ j = j′ = 1∑
s−1
i=0 ∑

ℓ−1
j=0 ei,j

f ∈ R f = fei,j ei,j ( , )γi
′
δj

′

( f)( , ) = ( , )f( , ) = f( , )ei,j γi
′
δj

′
ei,j γi

′
δj

′
γi

′
δj

′
δi,i′ δj,j′ γi

′
δj

′
fei,j ei,j

[x,y] ≅Fq ei,j Fq f ↦ f( , )γi δj

f = f( , )ei,j γi δj ei,j [x,y] ≅Fq ei,j Fq

R ≅ [x,y]⨁
s−1
i=0 ⨁

ℓ−1
j=0 Fq ei,j

R ≅F
s⋅ℓ
q R

R R ≅ [x,y]⨁
s−1
i=0 ⨁

ℓ−1
j=0 Fq ei,j [x,y] ≅Fq ei,j Fq □
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3.3. Definition. Let    be a two-dimensional cyclic code of length    over    in 

, with    and  . The generator idempotent 

 is written as:

where  ,   and  .

 is a set of representatives of disjoint cyclotomic orbits  , and the coefficients are typically   if 

,   otherwise.

A fundamental result of our work is the establishment of the equivalence between combinatorial and

algebraic representations of generator idempotents.

3.4. Proposition. Let    be a two-dimensional cyclic code of length    over    in 

, with   and  . Then, we have the equality

where  ,  ,  , 

, and  ,   are primitive roots of order  ,  .

Proof. Let   be a two-dimensional cyclic code of length   over   in  ,

with  ,  . Let   be a primitive root of order  ,   a primitive root of order   in 

. Show that

where  ,  ,  , 

,  ,  ,  .

Step 1: Coefficients of the first form.

Write  , where

The discrete Fourier transform gives

C n = sℓ Fq

R = [x,y]/⟨ − 1, − 1⟩Fq xs yℓ q ≡ 1 (mod s) q ≡ 1 (mod ℓ)

e(x,y)

e(x,y) = ,∑
(j,k)∈T

aj,k ∑
(m,n)∈Cj,k

xmyn

T ⊆ {0, … , s − 1} × {0, … , ℓ − 1} = {(j mod s,k mod ℓ) ∣ r ≥ 0}Cj,k qr qr ∈aj,k Fq

T Cj,k = 1aj,k

(j,k) ∈ T = 0aj,k

C n = sℓ Fq

R = [x,y]/⟨ − 1, − 1⟩Fq xs yℓ q ≡ 1 (mod s) q ≡ 1 (mod ℓ)

e(x,y) = (x,y),∑
i=0

s−1

∑
j=0

ℓ−1

ci,jei,j

= e( , ) ∈ {0, 1}ci,j γi αj (x,y) = (x) (y)ei,j ζi ηj (x) =ζi
1
s

∑
s−1
m=0 γ

−imxm

(y) =ηj
1
ℓ

∑
ℓ−1
n=0 α

−jnyn γ α s ℓ

C n = sℓ Fq R = [x,y]/⟨ − 1, − 1⟩Fq xs yℓ

q ≡ 1 (mod s) q ≡ 1 (mod ℓ) γ s α ℓ

Fq

e(x,y) = = (x,y),∑
(j,k)∈T

aj,k ∑
(m,n)∈Cj,k

xmyn ∑
i=0

s−1

∑
j=0

ℓ−1

ci,jei,j

T ⊆ {0, … , s − 1} × {0, … , ℓ − 1} = {(j mod s,k mod ℓ) ∣ r ≥ 0}Cj,k qr qr ∈aj,k Fq

= e( , ) ∈ {0, 1}ci,j γi αj (x,y) = (x) (y)ei,j ζi ηj (x) =ζi
1
s

∑
s−1
m=0 γ

−imxm (y) =ηj
1
ℓ

∑
ℓ−1
n=0 α

−jnyn

e(x,y) = ∑
s−1
m=0 ∑

ℓ−1
n=0 bm,nx

myn

= {bm,n
aj,k
0

if~(m,n) ∈ , (j,k) ∈ T ,Cj,k

otherwise.

= e( , ) = .ci,j γi αj ∑
m=0

s−1

∑
n=0

ℓ−1

bm,nγ
imαjn
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Substitute  :

For  ,

This sum is nonzero if    for some  , in which case it equals    (by

properties of roots of unity and orbits). Thus,

If    for  , and  , then    if    for some  , otherwise 

.

Step 2: Second form.

Consider

The primitive idempotents are

with

Thus,

Evaluate

So,  , as in the proposition.

Step 3: Equivalence.

e(x,y) = ∑(j,k)∈T aj,k∑(m,n)∈Cj,k
xmyn

e( , ) = .γi αj ∑
(j,k)∈T

aj,k ∑
(m,n)∈Cj,k

γimαjn

(m,n) = (j mod s,k mod ℓ) ∈qr qr Cj,k

= .∑
(m,n)∈Cj,k

γimαjn ∑
r=0

| |−1Cj,k

γi(j mod s)qr αj(k mod ℓ)qr

(i, j) ∈ C ,j′ k′ ( , ) ∈ Tj′ k′ | | ⋅C ,j′ k′ a ,j′ k′

= ⋅ | | ⋅ .ci,j ∑
(j,k)∈T

aj,k Cj,k 1(i,j)∈Cj,k

= 1aj,k (j,k) ∈ T ∈ {0, 1}ci,j = 1ci,j (i, j) ∈ Cj,k (j,k) ∈ T

= 0ci,j

e(x,y) = (x,y), (x,y) = (x) (y).∑
i=0

s−1

∑
j=0

ℓ−1

ci,jei,j ei,j ζi ηj

(x) = , (y) = ,ζi
1
s
∑
m=0

s−1

γ−imxm ηj
1
ℓ
∑
n=0

ℓ−1

α−jnyn

( ) = , ( ) = .ζi γi
′

δi,i′ ηj αj′
δj,j′

( , ) = ( ) ( ) = .ei,j γi
′
αj′

ζi γi
′
ηj αj′

δi,i′ δj,j′

e( , ) = ( , ) = = .γi
′
αj′

∑
i=0

s−1

∑
j=0

ℓ−1

ci,jei,j γi
′
αj′

∑
i=0

s−1

∑
j=0

ℓ−1

ci,jδi,i′ δj,j′ c ,i′ j′

= e( , )ci,j γi αj
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The coefficients   are related to   by the inverse Fourier transform:

Substitute  :

Rearrange:

The sums are

Thus,

The two forms are therefore equivalent, because they produce the same coefficients  .

Step 4: Idempotence.

For  , the   must satisfy  , i.e.,  . Since  , and  , then

This is satisfied if  . Moreover,    is chosen so that    is stable under convolution,

ensuring idempotence.

Conclusion. The two expressions for    are equivalent via the Fourier transform, with 

. 

We now establish the important property concerning dual representations of elements in the quotient

ring.

3.5. Proposition. Let  , with   a primitive  -th root and   a primitive  -th root

in  . Every element   can be written equivalently as:

bm,n ci,j

= .bm,n
1
sℓ
∑
i=0

s−1

∑
j=0

ℓ−1

ci,jγ
−imα−jn

=ci,j ∑
s−1

=0m′ ∑
ℓ−1

=0n′ b ,m′ n′γim
′
αjn′

= ( ) .bm,n
1
sℓ
∑
i=0

s−1

∑
j=0

ℓ−1

∑
=0m′

s−1

∑
=0n′

ℓ−1

b ,m′ n′γim
′
αjn′

γ−imα−jn

= ( )( ).bm,n ∑
=0m′

s−1

∑
=0n′

ℓ−1

b ,m′ n′
1
s
∑
i=0

s−1

γi( −m)m′ 1
ℓ
∑
j=0

ℓ−1

αj( −n)n′

= , = .
1
s
∑
i=0

s−1

γi( −m)m′
δ ,mm′

1
ℓ
∑
j=0

ℓ−1

αj( −n)n′
δ ,nn′

= = .bm,n ∑
=0m′

s−1

∑
=0n′

ℓ−1

b ,m′ n′δ ,mm′ δ ,nn′ bm,n

bm,n

= ee2 ci,j =c2
i,j ci,j ∈ {0, 1}ci,j = e( , )ci,j γi αj = ee2

e = e( , ) ⟹ = .( , )γi αj 2
γi αj c2

i,j ci,j

∈ {0, 1}ci,j T ⋃(j,k)∈T Cj,k

e(x,y)

= e( , ) ∈ {0, 1}ci,j γi αj
□

R = [x,y]/⟨ − 1, − 1⟩Fq xs yℓ γ s α ℓ

Fq f(x,y) ∈ R
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1. , with  . Since  ,  , the basis of    is 

.

2. , where  ,  , and the idempotents are 

.

Proof. Let  , where    is a primitive  -th root ( ,    for 

) and   is a primitive  -th root ( ,   for  ). Since   and 

, these roots exist in  .

Representation 1. Every element    is a polynomial in    and    modulo  .

Since    and    in  , every monomial    can be reduced to  . Thus, 

 is written as:

where  . The family    forms a basis of   as a vector

space over  , because the monomials are linearly independent (dimension  ).

Representation 2. Define the idempotents  . Verify their

properties:

Evaluation. Evaluate   at  :

If  , then  , and the sum over    gives  . Otherwise,  , because 

. Similarly for  . Thus:

Idempotence. Since  , we have  , because the evaluation of   gives 

.

Orthogonality. For  ,  , because 

.

Sum. Verify  :

because exactly one term is nonzero. Thus,  .

Representation. Every   can be written as:

where  . Indeed, evaluate   at  :

f(x,y) = ∑
s−1
m=0 ∑

ℓ−1
n=0 am,nx

myn ∈am,n Fq = 1xs = 1yℓ R

{ ∣ 0 ≤ m ≤ s − 1, 0 ≤ n ≤ ℓ − 1}xmyn

f(x,y) = (x,y)∑
s−1
i=0 ∑

ℓ−1
j=0 ci,jei,j ∈ci,j Fq = f( , )ci,j γi αj

(x,y) =ei,j
1
sℓ

∑
s−1
m=0 ∑

ℓ−1
n=0 γ

−imα−jnxmyn

R = [x,y]/⟨ − 1, − 1⟩Fq xs yℓ γ ∈ Fq s = 1γs ≠ 1γk

0 < k < s α ∈ Fq ℓ = 1αℓ ≠ 1αk 0 < k < ℓ q ≡ 1 (mod s)

q ≡ 1 (mod ℓ) Fq

f(x,y) ∈ R x y ⟨ − 1, − 1⟩xs yℓ

= 1xs = 1yℓ R xmyn xm mod syn mod ℓ

f(x,y)

f(x,y) = ,∑
m=0

s−1
∑
n=0

ℓ−1
am,nx

myn

∈am,n Fq { ∣ 0 ≤ m ≤ s − 1, 0 ≤ n ≤ ℓ − 1}xmyn R

Fq s ⋅ ℓ

(x,y) =ei,j
1
sℓ

∑
s−1
m=0 ∑

ℓ−1
n=0 γ

−imα−jnxmyn

(x,y)ei,j (x,y) = ( , )γi
′
αj′

( , ) = = .ei,j γi
′
αj′ 1

sℓ
∑
m=0

s−1
∑
n=0

ℓ−1
γ−imα−jnγ mi′ α nj′ 1

sℓ
∑
m=0

s−1
γm( −i)i′ ∑

n=0

ℓ−1
αn( −j)j′

i = i′ = 1γm( −i)i′ m s = 0∑
s−1
m=0 γ

m( −i)i′

≠ 1γ −ii′ j = j′

( , ) = .ei,j γi
′
αj′

δi,i′ δj,j′

( , ) =ei,j γi
′
αj′

δi,i′ δj,j′ =e2
i,j ei,j e2

i,j

⋅ =δi,i′ δj,j′ δi,i′ δj,j′ δi,i′ δj,j′

(i, j) ≠ ( , )i′ j′ = 0ei,je ,i′ j′

( , ) ( , ) = = 0ei,j γi
′′
αj′′

e ,i′ j′ γi
′′
αj′′

δi,i′′ δj,j′′δ ,i′ i′′ δ ,j′ j′′

= 1∑
s−1
i=0 ∑

ℓ−1
j=0 ei,j

( , ) = = 1,∑
i=0

s−1
∑
j=0

ℓ−1
ei,j γi

′
αj′

∑
i=0

s−1
∑
j=0

ℓ−1
δi,i′ δj,j′

= 1∑
s−1
i=0 ∑

ℓ−1
j=0 ei,j

f(x,y) ∈ R

f(x,y) = (x,y),∑
i=0

s−1
∑
j=0

ℓ−1
ci,jei,j

= f( , )ci,j γi αj f(x,y) = f( , ) (x,y)∑i,j γi αj ei,j ( , )γi
′
αj′
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Since   is completely determined by its values at  , the representation is correct.

Equivalence. To relate the two representations, express the coefficients    in terms of  . If 

, evaluate at  :

Conversely, the   are obtained by the discrete Fourier transform:

This shows that the two representations are equivalent, because the    form an orthogonal basis and

the   form a canonical basis.

Thus, every   can be written equivalently in the two given forms. 

A central result of our work is the explicit construction of bases for two-dimensional cyclic codes, which

enables efficient vector space representation.

3.6. Theorem. Let  , with    and  , guaranteeing

the existence of primitive roots    of order    and    of order    in  . Let    be a two-dimensional cyclic code

generated by an idempotent    with  , where    is the monic generator

polynomial with degrees  ,  , and    satisfies 

, with    and  . Then, the set 

 forms a basis of   over  .

Proof. Show that

is a basis of

Linear independence.

Suppose there exist scalars   such that

Let

f( , ) ( , ) = f( , ) = f( , ).∑
i=0

s−1
∑
j=0

ℓ−1
γi αj ei,j γi

′
αj′

∑
i=0

s−1
∑
j=0

ℓ−1
γi αj δi,i′ δj,j′ γi

′
αj′

f ( , )γi αj

am,n ci,j

f(x,y) = = (x,y)∑
s−1
m=0 ∑

ℓ−1
n=0 am,nx

myn ∑
s−1
i=0 ∑

ℓ−1
j=0 ci,jei,j ( , )γi αj

f( , ) = = .γi αj ∑
m=0

s−1
∑
n=0

ℓ−1
am,nγ

imαjn ci,j

am,n

= f( , ) .am,n
1
sℓ

∑
i=0

s−1
∑
j=0

ℓ−1
γi αj γ−imα−jn

ei,j

xmyn

f(x,y) ∈ R □

R = [x,y]/⟨ − 1, − 1⟩Fq xs yℓ q ≡ 1 (mod s) q ≡ 1 (mod ℓ)

γ s α ℓ Fq C

e(x,y) e(x,y) = a(x,y)g(x,y) g(x,y)

g = s − kdegx g = ℓ −degy ℓ′ h(x,y)

g(x,y)h(x,y) = ( − 1)( − 1)xs yℓ h = kdegx h =degy ℓ′

B = { e(x,y) ∣ 0 ≤ m < k, 0 ≤ n < }xmyn ℓ′ C Fq

B = { e(x,y) ∣ 0 ≤ m ≤ k − 1, 0 ≤ n ≤ ℓ − 1}xmyn

C = ⟨e(x,y)⟩ ⊂ R = [x,y]/⟨ − 1, − 1⟩.Fq xs yℓ

∈βm,n Fq

e(x,y) = 0 in R.∑
m=0

k−1

∑
n=0

ℓ−1

βm,nx
myn
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Then,

for some  . Write

where   is the generator polynomial and   its check polynomial. We obtain:

Since   and  , the polynomial   must be zero for the equality

to hold in  . Thus,

because  . We conclude that   for all  . Therefore,   is linearly independent.

Generation.

Let  . Then   for some  . Perform Euclidean division of   by  :

In  , since  , we have:

where   are the coefficients of  .

Conclusion.

The set   is linearly independent and generates  , so   is a basis of   over  . 

The following result provides the complete determination of code parameters and the construction of

optimized generator matrices.

3.7. Theorem. Let    be a two-dimensional cyclic code over  , with 

 and  , having basis  . Then, the

l(x,y) = ∈ [x,y], l < k, l < ℓ.∑
m=0

k−1

∑
n=0

ℓ−1

βm,nx
myn Fq degx degy

l(x,y)e(x,y) = 0~in~R⟹ l(x,y)e(x,y) = u(x,y)( − 1)( − 1)xs yℓ

u(x,y) ∈ [x,y]Fq

e(x,y) = a(x,y)g(x,y), g(x,y)h(x,y) = ( − 1)( − 1),xs yℓ

g h

l(x,y)a(x,y)g(x,y) = u(x,y)g(x,y)h(x,y) ⟹ l(x,y)a(x,y) = u(x,y)h(x,y).

l < k = hdegx degx l < = hdegy ℓ′ degy u(x,y)

[x,y]Fq

l(x,y)a(x,y) = 0 ⟹ l(x,y) = 0

a(x,y) ≠ 0 = 0βm,n (m,n) B

c ∈ C c = p(x,y)e(x,y) p(x,y) ∈ R p(x,y) h(x,y)

p(x,y) = q(x,y)h(x,y) + r(x,y), r < k, r < .degx degy ℓ′

R h(x,y)e(x,y) = a(x,y)g(x,y)h(x,y) = a(x,y)( − 1)( − 1) = 0xs yℓ

c = p(x,y)e(x,y) = r(x,y)e(x,y) = e(x,y) ∈ span(B),∑
m=0

k−1

∑
n=0

−1ℓ′

βm,nx
myn

βm,n r(x,y)

B C B C Fq □

C R = [x,y]/⟨ − 1, − 1⟩Fq xs yℓ

q ≡ 1 (mod s) q ≡ 1 (mod ℓ) B = { e(x,y) ∣ 0 ≤ m < k, 0 ≤ n < }xmyn ℓ′
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parameters of    are  , and the generator matrix    of    is a matrix of size 

 given by

where    is the isomorphism that associates to each polynomial    the vector of its

coefficients flattened row by row.

Proof. The length of    is    because  . The dimension is    because the basis 

  contains    elements. The minimum distance is 

, because    is isomorphic to the tensor product of the one-dimensional cyclic

codes   with parameters   and   with parameters  ,

with  , and the distance of a tensor code is the product of the distances of the

component codes [1].

The generator matrix    has as rows the vectors    for  ,  , ordered

lexicographically by   then  . This results from the linearity of   and the fact that   is a basis of  , each

element   corresponding to a row of  . 

To illustrate our method, we present a concrete example of constructing a two-dimensional cyclic code.

3.8. Example. Let  ,  ,  ,  . Choose    (primitive root of order 3 of unity), 

 (primitive root of order 2 of unity).

Cyclotomic orbits.

Set of representatives.

Primitive idempotents. (Binary coefficients)

C [sℓ,k , (s − k + 1)(ℓ − + 1)]ℓ′ ℓ′ G C

k × sℓℓ′

G = ,

⎛

⎝

⎜⎜
⎜
⎜
⎜⎜
⎜
⎜⎜
⎜
⎜⎜
⎜
⎜
⎜⎜
⎜
⎜⎜
⎜
⎜⎜

φ(e)
φ(xe)

⋮
φ( e)xk−1

φ(ye)
φ(xye)

⋮

φ( ye)xk−1

⋮

φ( e)xk−1y −1ℓ′

⎞

⎠

⎟⎟
⎟
⎟
⎟⎟
⎟
⎟⎟
⎟
⎟⎟
⎟
⎟
⎟⎟
⎟
⎟⎟
⎟
⎟⎟

φ : R → F
sℓ
q f(x,y) ∈ R

C sℓ C ⊆ R ≅F
sℓ
q kℓ′

B = { e(x,y) ∣ 0 ≤ m < k, 0 ≤ n < }xmyn ℓ′ kℓ′

(s − k + 1)(ℓ − + 1)ℓ′ C

= ⟨ (x)⟩Cx g1 [s,k, s − k + 1] = ⟨ (y)⟩Cy g2 [ℓ, , ℓ − + 1]ℓ′ ℓ′

g(x,y) = (x) (y)g1 g2

G φ( e(x,y))xmyn 0 ≤ m < k 0 ≤ n < ℓ′

n m φ B C

e(x,y)xmyn G □

F2 s = 3 ℓ = 2 q = 2 γ = 2

α = 1

= {(0, 0)}, = {(1, 1), (2, 0)}.C0,0 C1,1

T = {(0, 0), (1, 1)}.
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Chosen idempotent by sum over orbits.

Idempotence verification.

Choice of degrees for the basis.

Code basis.

Explicit expressions.

Associated vectors (lexicographic order  ,  ,  ).

Generator matrix.

Code parameters.

Conclusion.

(x,y) = 1, (x,y) = xy + .e0,0 e1,1 x2

e(x,y) = = (x,y) + (x,y) = 1 + xy + .∑
(j,k)∈T

∑
(m,n)∈Cj,k

xmyn e0,0 e1,1 x2

e = = 1 + + ≡ 1 + xy + = e(x,y) (mod − 1, − 1).(x,y)2 (1 + xy + )x2 2
x2 x4y2 x2 x3 y2

= 2, = 2.kx ky

B = {e,xe,ye,xye}.

xe = x + y + ≡ x + y + 1,ye = y + x + y ≡ y + x + y,x2 x3 x2 y2 x2 x2

xye = xy + + y ≡ xy + + xy.x2y2 x3 x2

(i, j) i = 0..2 j = 0..1

φ(e) = (1, 0, 1, 0, 1, 0),φ(xe) = (1, 1, 0, 0, 1, 0),φ(ye) = (0, 1, 1, 0, 1, 0),φ(xye) = (0, 1, 0, 1, 0, 1).

G = ∈ .

⎛

⎝

⎜⎜
⎜

1
1
0
0

0
1
1
1

1
0
1
0

0
0
0
1

1
1
1
0

0
0
0
1

⎞

⎠

⎟⎟
⎟

F
4×6
2

n = sℓ = 6, C = = 4, = 2.dimF2 kxky dmin

= [6, 4, 2].[n,k,d]2
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4. Conclusion

This article has presented a systematic method for constructing two-dimensional cyclic codes based on

the use of primitive idempotents and cyclotomic orbits. The main contributions include:

The definition of two-dimensional primitive idempotents    (Definition 3.1) enabling the

decomposition of the quotient ring   into a direct product of copies of 

The establishment of the fundamental equality between combinatorial and algebraic representations

of generator idempotents (Proposition 3.4), connecting cyclotomic orbits to primitive idempotents via

the discrete Fourier transform

The explicit construction of bases for two-dimensional codes of the form 

 (Theorem 3.6)

The complete determination of code parameters   and the construction

of optimized generator matrices (Theorem 3.7)

The generalization of BCH-type bounds to the two-dimensional context through the product bound 

The explicit example (Example 3.8) and practical constructions demonstrate the effectiveness of our

approach. The proposed method offers precise control over code parameters and fills an important gap in

the design of high-performance multidimensional codes [3][4].

Research perspectives include extending this approach to higher dimensions ( ), developing

efficient decoding algorithms adapted to these vector bases, and optimizing cyclotomic orbits to

maximize the minimum distance. This method also opens the way to new applications in advanced

communication systems and cryptographic protocols [7][8].

Notes

MSC (2025): 13F20, 16D25, 94B60.
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