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Consciousness is a phenomenon which can be extensively discussed as subjective or objective,

structural or holistic, hierarchical or modular, but cannot be imagined without intelligence. There

might be an intellect without consciousness, and this is the opinion of many domain specialists

about arti�cial intelligence. But there is hardly a question of the impossibility of any consciousness

without at least basic intellectual functions. It makes intelligence an important, crucial subject for

evaluation in assessing any consciousness. There are inseparable steps and related problems in

intelligence investigations, like those in the assessment of consciousness. There are inescapable

questions about modularity and hierarchy of intelligence levels, possible types of intelligence and its

emerging nature. The last question is closely related to the more fundamental question: what is

intelligence? This categorical question is inevitably followed by a more detailed inquiry. If we discuss

di�erent types of intelligence, what makes them di�erent except for ontological classes? Is there a

hierarchy, scale of levels, or types of intelligence that can be seen as sibling sub-classes? If

intelligence possesses a universal quality, can we create a universal measurement scale for any type

of intelligence, regardless of its source? The universal scale or framework could have a profound

utilitarian function. On the other hand, this solution is only partially possible, especially in the case

of less universal, highly modular intelligence. If this is so, the situation will require a number of

speci�c scales designed for di�erent types of intelligence. The appropriate design of such a

framework will allow us to be precise in the intelligence evaluation and comparison, regardless of

the type of intelligent agent and be potentially applicable to new types of agents. In this case, a

universal scale can be constructed from sub-scales.
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1. Introduction

Cognition is considered to be an essential part of consciousness. Intellectual functions are supposedly

more approachable and measurable. However, there is an ongoing debate about the possibility of the

general intelligence coe�cient, the various types of intelligence, multiple intelligence, and ways to

measure it. Models range from four to twelve main types, and Howard Gardner, in his seminal work,

provided descriptions for eight types[1]. Guilford, an author of the “coe�cient g” concept, or general

intelligence, devised a triaxial model of structured intellect with scales for every axis[2]. Torrance

developed a creativity test, basing it on Guilford's works. Today, LLM overperform humans in the

Torrance Test[3].

The multiple intelligence model was a partial answer to objections about the subjectivity of IQ tests

and certain di�culties when applied cross-culturally, with the expectation of trans-cultural

universality. This argument is even stronger when creating common tests and scales for measuring

non-human intellectual abilities. The promising movement is re�ected in the usage of Piaget's theory

for tests of animal cognition[4]. A similar Piagetian approach is thought for the DevRobotics[5].

Generally, human-oriented tests are not easily applicable to the evaluation of animal cognition

capabilities. This holds even more relevance for Arti�cial Intelligence[6].

Non-biological intelligence creation was initially inspired by biological, mostly human intelligence.

Still, many expectations about rule-based or formal intelligence models from the earlier decades were

not met. Today, a vast volume of research and practical applications is focused on neural network-

based Arti�cial Intelligence, which has evolved from perceptrons. Hebb proposed another early

development in the area of biological and non-biological neural networks, and today is the basis for

the concept of Hebbian learning[7].

There is an inevitable necessity to compare Natural and Arti�cial Intelligence, and a number of

frameworks were proposed besides measuring it by the chess or Go human-computer competitions[8]

[9]. The direct implication of these frameworks' proposals for the measured comparison of natural and

arti�cial intelligence is their extension into the presumed realm of non-terrestrial intelligence. The

last option, naturally, remains quite speculative[10][11]. Yet the discussion about modes of relationship

between di�erent types of intelligence and, possibly, consciousness is important for the sca�old of all

kinds of inter-intelligence interactions, including extended human intelligence[12].
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It is considered to be commonplace to mention potential threats of Arti�cial Intelligence for

humankind[13]. The possible widening of the argument to include any non-human intelligence,

existing or potential, can provide the universal levelling �eld for intelligence assessment and focus

attention on universal measuring tools and techniques. This certainly practical outcome is important

for the ongoing discussion about consciousness, our ability to create Arti�cial Consciousness and the

estimation of the necessity to moderate these e�orts. Figure 1 provides the roadmap of the following

sections.

Figure 1. Structure of the article

2. Human intelligence

Intelligence is a many-sided phenomenon and has many descriptions and interpretations. It

encompasses a broad range of mental capabilities, including reasoning, problem solving and

planning. Intelligence includes abstract thinking, understanding complex ideas and learning from

experience, among other attributes[14]. Intelligence is considered to be both multifaceted and

generalized. General intelligence, often referred to as "g," is the ability to solve various tasks and

adapt actively to changing environments. The "g" coe�cient is thought to re�ect the summation of

an individual's abilities to perform di�erent intellectual tasks[15].

Facets of intelligence represent several abilities: verbal, numerical, perceptual, memory, visuo-spatial

and some others[16]. There is an opinion that intelligence is the result of loose interaction between

multiple speci�c networks with their own tasks[17]. Each network is independent, and intelligence

appears to be an emergent property of anatomically distinct cognitive systems. Intelligence can be
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viewed in biological terms as an advanced development of minimal cognitive functions[17]  or in

psychological terms, such as social and linguistic property development or type of computational

symbolic ability growth[18]. It is impossible to ignore non-biological cognition, so intelligence cannot

be seen as only an anthropocentric or strictly biological phenomenon. Still, there is probably a

possibility of dividing tasks between machine-performed and human-performed[19]. An interaction

between human and arti�cial cognitive systems in task performance, learning, and decision-making

re�ects di�erent faces of intelligence.

2.1. Intelligence as an element of consciousness

Intelligence is intimately connected to consciousness – or is it? Prescienti�c and proto-scienti�c

metaphysical theories included the possibility of panpsychism and intelligence in the world itself and

all its parts, animate or supposedly inanimate[20]. Human intelligence is observable and, to some

extent, measurable, at least indirectly[21]. It is possible to create frameworks for intelligence detection

and measurement, regardless of their nature, for example, on the basis of the ability to solve problems

or to make predictions. However, human intelligence is the primary comparative example for any

observations or measurements. It is possible to expand our understanding of intelligence to lesser life

forms and even attribute to them proto-consciousness in the form of basic sentience[22].

However, there is no vision of consciousness without underlying intelligence[23], yet there is Arti�cial

Intelligence without clearly recognized consciousness[24]. One of the arguments about the di�erence

between human intelligence and AI is based on the singular abilities of machine intellectual power if

compared to the generalized human cognitive abilities[25]. Human intelligence is generalized and

inseparable from the conscious states. In early studies on patients with neurological lesions and

healthy individuals, intelligence was described as an inherent ability to discriminate between

fundamentals. Crystallized, or Intelligence A, is more represented by reasoning, while �uid, or

Intelligence B, is closer to appropriate skills[26].

Gardner famously divided cognitive and mental abilities into eight types (discussed in section 2.3)[27].

After a long period of being “a Piagetian” believer in the generalized forms of intelligence

development, he discovered that standards, especially culturally dependent tests, do not cover a long

list of other abilities. Knowledge base, di�erent from that of test one, such as local geography

knowledge, musical skills, other types of reasoning, and memorization of non-western types of

knowledge. If intelligence is a problem-solving or tool-devising capability, scienti�c theory starts
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from problem-�nding, and it is not obvious it can serve as a reliable tool. Gardner sees intelligence as

pre-eminently culturally related and not an out-of-context basic ability.

At the same time, there is evidence from tests on the positive correlative relationship of abilities for

verbal comprehension, perceptual organization, working memory and processing speed[28]. There are

several disputed points about human intelligence. Is it unitary or multidimensional, is it primarily

inherited or acquired, mathematically and computationally based or has higher levels of

realization[29]? Cognitive abilities might be supplemented with feelings and willingness, as well as

emotional and volitional abilities. Factor “g” is seen as a basis for up to 50% of di�erent cognitive

abilities, and the genetic component for the factor is estimated at between 30% in childhood and over

50% in adulthood[30].

Debate exists about the relationship between spontaneous pre-conscious processing and controlled

cognitive processes[31]. There is evidence about the role of unconscious processes in the domains of

creative thinking and social interactions. Intuitive implicit cognition is probably based in signi�cant

part on precocious processes. Intelligent action control and �uidly automatic performance in the case

of high expertise may demonstrate additional support for Unconscious Thinking Theory (UTT)[32].

It is possible to speak about “conscious-centric mind” bias when unconscious is often equated with

subliminal, not intelligent enough[33]. There is an old asymmetry between models of rational choice

and observable data[34]. The decision-making process, which includes the transition from uncertainty

to contextual certainty, is often executed pre-consciously, and quick-thinking is prone to formal

mistakes. However, it may give a natural advantage in uncertain situations[35].

2.2. Neurophysiological basis of intelligence

Genetics implies a clear biological substrate for intelligence. Brain structures predominantly

responsible for it or at least correlating with it are parietal-frontal pathways[36]. Structural and

functional di�erences in these pathways, seen in Magnetic Resonance Imaging (MRI), functional MRI

(fMRI) and Positron Emission Tomography (PET), are likely to contribute to the diversity in the

results of intelligence tests[37]. Neurons, the main functional basis of neural tissues, are recognized as

relatively simple logical gates with the ability to �re after reaching a certain threshold with all

incoming impulses. Brain regions are specialized, and cognitive functions are divided between

particular sensorimotor, regulatory or analytical �elds. However, neuronal plasticity makes it possible
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to compensate for lower functionality[38]. There is a hypothesis that neuronal plasticity is partially

responsible for the “g” intelligence.

A neural logic-gate mechanism is proposed, with the additional ability to �re after achieving a certain

threshold from a number of inputs. There is also a strong hypothesis that three large-scale neural

circuits control these gates: the cortex, basal ganglia, and thalamus[39]. Timing di�erences in

correlated excitation–inhibition tonic stimulation activity and phasic transient activity can represent

temporal gating[40]. Human brain size is positively correlated with intelligence. Some speci�c regions

of interest, such as the frontal, parietal, temporal, hippocampus and cerebellum, show higher

correlation. There is also a basic generalized structural and functional element re�ecting higher

intelligence. Recent comparative studies on the grey and white matter correlation demonstrated

higher correlative indexes for the last one. Di�usion Tensor Imaging (DTI) is more suitable for white

matter, and its higher volume's correlation with intelligence demonstrates connectivity's role[41].

Intelligence can depend on absolute and relative brain size, uncorrected or amended for body size,

compared with other mammals[42]. Inconsistencies correlating to intelligence show that neither

absolutely nor relatively large brains demonstrate it. The highest correlation is achieved with a

combination of factors: the number of speci�cally cortical neurons, their packing density, average

intraneuronal distance, and axonal conductive velocity. They determine general Information

Processing Capacity (IPC). Regions of the human brain responsible for intelligence have general

purpose and content-speci�c adaptive specializations. Social and linguistic group connections allow

the distribution of tasks and higher e�ciency of data processing[43].

2.3. Types of human intelligence

Intelligence is a combination of several intelligent functions. Intellectual Quotient, or IQ, is an

integrative number supposedly re�ecting a number of cognitive abilities inherited or acquired[44].

Normal IQ is presumed to be around 100 points, plus or minus 10, ranging from 90 to 110. Intelligence

tests have di�erent scales, and IQ results are corrected with age. In childhood, IQ is adjusted with age

until 18, and the quotient is supposed to be stagnant afterwards. There are indications of generational

change in the IQ level, the so-called Flynn e�ect, and the steady improvement of general population

IQ in the last 100 years[45].
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IQ comparison between generations has to take into account the adjustment made to comply with the

standard measurement and equate it to 100 for a certain generation. The Flynn e�ect can be

counterbalanced by the “Lynn e�ect” and the “negative Flynn e�ect”[46]. The normal intelligence of

the adult person is the ability to analyze and memorize complex information and adapt to the

behaviour. There is a question of how accurate various IQ tests are in assessing cognition[47]. Guilford

famously proposed a 3D description of the intellectual functions, with axes representing the type of

content, level of content organization and type of operation with it[48].

Howard Gardiner developed the theory of multiple intelligence when di�erent �elds of human life are

attributed to di�erent types of “intellectual” functioning: linguistic, logical-mathematical, musical,

bodily-kinesthetic, spatial-visual, interpersonal, intrapersonal and naturalistic[49]. It is certainly a

question of how strong the relationship between di�erent types of intelligence with the “g”

coe�cient, IQ and between every type[50]. Based on information from Guilford, J.P. (1980), the

intellect structure can be visualized in three dimensions (see Figure 2).

Figure 2. Guilford's structure of intellect

There are possible signs that multiple intelligence results do not converge to one generalized “g”, and

there are no indications that there are several “g” factors re�ecting every Gardiner type and not
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less[51].

However, there are indications for certain neural correlates for every Gardiner type of intelligence[52].

At the same time, some structures, such as cortical spindle-form von Economo connectivity neurons,

can be responsible for general intelligence factors[53]. Some Gardiner types of intelligence, such as

linguistic, logical-mathematical, spatial, naturalistic and interpersonal, can have higher loading from

the “g”-factor[54]. The theory of multiple intelligence requires di�erent intelligence modules to work

relatively independently. However, there are many tasks which require complex intelligence[55]. There

is also the circularity problem when a certain type of intelligence is described as intellectual ability.

The other problem can reside with conceptual categories. For example, the popular Emotional

Intelligence (EI) concept is not easily conceptualized and measured[56].

2.4. Intelligence assessment tools

Most of the theoretical models recognize the importance of basic intelligence, concentration, short-

term and long-term memory, and the ability to plan and operate with the acquired information.

Indirect psychometric tests are designed to assess intelligence. While biological intelligence can be

assessed by anatomic brain integrity and genetic, biochemical and neurophysiological methods,

psychometric phenotypical intelligence, especially social, is also in�uenced by education, family and

cultural environment, and socio-economic factors[57].

There are several ways to assess cognitive functions. They range from simple tests, made by family

medical practitioners to the novel methods of optogenetics and transcranial brain function

registration and modulation. Several questionnaires are developed for medical practitioners,

psychiatrists, clinical psychologists, educationalists to assess short-term and long-term memory,

education level, logical and operational abilities[58]. Wide range of tests is routinely used in medical

practice and serves as the �rst line in diagnostic of cognitive dysfunction. The Mini-Cog is 3 minutes

test which registers delayed free verbal recall. The classical MMSE, Mini-Mental State Examination

consists of 15 questions and basic tasks but misses verbal �uency and reasoning functions. Mild

Cognitive Impairment is not usually registered by MMSE and gives results not less than 24 from 25.

The CASI, Cognitive Abilities Screening Instrument, helps to check a wider number of cognitive

abilities and is more sensitive.
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More specialized cognitive psychometric tests include the Wechsler Adult Intelligence Scale (WAIS)

and the shorter Wechsler Abbreviated. Developmental tests used for children are the Scale of

Intelligence Raven's Progressive Matrices, Stanford–Binet Intelligence Scales, and Kaufman

Assessment Battery for Children (KABC)[59]. There are wider population tests and methods to

simultaneously assess the intelligence of big groups. At the same time, intelligence tests do not

register all conceptual intelligence frameworks or abilities and are prone to certain levels of cultural

and other biases, even tests designed to minimize cultural and linguistic in�uence, such as Raven

Progressive Matrices. There is some degree of disagreement among specialists on which basic

cognitive types better demonstrate real measures of general intelligence: analytic, creative, practical

or certain combinative forms[60].

There are many variants of IQ or intelligence quotient scales. Some of them are mentioned above, and

many more are used in di�erent areas, from diagnostics to education and employment. IQ scales di�er

in the level of reliability, internal consistency, spectrum and scope of the measured cognitive values,

and depth of every measurement. IQ correlates with age, general health condition, social status,

educational level, profession, and a few other categories[61].

IQ psychometry is often criticised for partial inconsistency between di�erent tests, for the arbitrary

nature of the “intelligence” model, a di�erent approach to so-called “crystallized” intelligence and

“�uid”, inventive intelligence. There are deviations in cultural and educational speci�city, di�erent

points for memory, and di�erent types of tasks. Some tests ignore background di�erences. However,

some approaches help to equalize di�erences and standardize results[62].

There are more instrumental methods to access cognitive functions and intellectual levels. It is

possible to estimate anatomical integrity on macro and micro levels, functional activity, genetic and

general health background. The anatomic structure is assessed with the help of X-ray, CT, and MRI

methods. It is possible to make a general analysis when the obtained pictures are compared to

supposedly normal brain structure or anatomical pathology data. Today, it can be done with the help

of machine learning and other diagnostic software. Damage or devolution of brain structures or tissue

may a�ect functional activity. Clinical data on anatomical and functional disabilities is rich enough to

make conclusions on the basis of indirect information[63].

MRI use less damaging physical processes than X-ray or CT and is developing quickly. Today,

resolution, which depends on the magnetic impulse intensity, grows rapidly. The highest possible
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level is achieved in CERN with a magnetic �ux density of 11.8 Tesla. However, the resolution is still not

on the cellular level, with thousands of neurons in one voxel. The microstructural analysis is e�ective

for �elds of neurons and white matter connectogramms. Di�usion MRI, especially DTI, is the most

e�ective. The functional diagnostic is possible with fMRI, which analyses blood �ow in the brain parts.

The drawback is not only relatively low spatial precision but also a di�erence in neuronal e�ectivity of

di�erent people. A trained person will use less energy per neuron for a known task. The level will be

comparable only in the case of the novel task.

Other methods of functional activity registration are the electroencephalogram (EEG) and

magnetoencephalogram (MEG), which register the electrical or magnetic activity of brain cells. They

are non-invasive, technically relatively simple and inexpensive. The problem is the resolution

level[64]. Positron-Emission Tomography, PET. PET was widely used in research and early diagnosis

of dementia. The usage of positron-emitting glucose is limited by the radioactivity of the arterial

one[65]. Other methods include near-infrared spectroscopy NIRS with detection of the oxygenation

level of haemoglobin and some tissues. Di�use Optical Imaging (DOI) gives an option to create a

functional picture of the brain tissue. Event-related optical signals (EROS) register the activity of

neurons directly[66].

In diagnostics, there are invasive methods such as direct observation during invasive procedures for

macrostructures, brain tissue biopsy, less invasive electrode stimulation and non-invasive

Transcranial Magnetic Stimulation (TMS). Diagnostically, only PET and biopsy give the most

de�nitive answer at the micro level. Electric Stimulation (ES) and TMS are used more in the research.

Today, an additional technique of optogenetics is supposed to be a research option for animal models

on the single neuron level[67]. In clinical practice, general health conditions, hormonal levels,

electrolyte balance, and other indirect measurements are helpful in cognitive activity diagnostics.

Novel genetic analysis helps to identify the activity of the competent loci responsible for brain activity,

synapse modulation, neuromediator production, and memory abilities.

2.5. Pathology

The level of intelligence demonstrated in the premonitory phase and functional plasticity are

protective factors against the development of cognitive impairment. For a highly intelligent

individual, a decline in IQ to 90 or below requires a swift and aggressive pathological process. A
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number of conditions can cause quick and profound cognitive impairment. However, the illness

progress usually takes years, if not decades, to develop[68].

Functional impairments typically arise from damage of underlying structures. It can stem from

various acute or chronic causes: direct impacts on brain tissue such as trauma, haemorrhages,

infections, local or metastatic tumours, immunologic, endocrine or metabolic diseases, impaired

cerebrospinal �uid circulation, medication side e�ects, various toxicities or endogenous

neurodegenerative processes. Indirect in�uences often involve disruptions to the blood supply, as

seen in ischemic lesions. Additionally, systemic conditions a�ect all body tissues, including the so-

called blood-brain barrier. Any compromise to this barrier can result in damage to brain tissue[69][70].

DSM-5, The Diagnostic and Statistical Manual of Mental Disorder by American Psychiatric Association

(APA) regards an MCI as MND, Mild Neurocognitive Disorder. It can be subdivided into two groups of

conditions, amnestic and non-amnestic MND. APA proposed four subdomains, amnestic mono-

domain, amnestic multi-domain, non-amnestic multi-domain, and non-amnestic mono-domain.

Acquired adult conditions have to be separated from inborn, perinatal or childhood developmental

pathologies and social-environmental development retardation, such as inadequate education and

cultural experience. The condition should be stable and of a non-transient nature. It has to be clearly

di�erentiated from cognitive or memory impairment caused by other psychiatric disorders. Diagnosis

of MND needs to be supported not only by neuropsychological assessment but also by thorough

clinical investigation[70].

Impaired conditions usually develop due to Alzheimer’s Disease (AD), Pseudobulbar A�ect,

Parkinson’s Disease, Frontotemporal Lobar Degeneration, Lewy Body Disease, vascular diseases,

traumatic brain injuries, substance or medication use, HIV infection, Prion disease, Huntington’s

disease or another medical condition[71]. Alzheimer’s disease is one of the main causes of dementia

associated with ageing. While the main causes of the disease are not completely clear, they are

apoptosis of neurons and progressive atrophy of the cortical and some subcortical regions. Whether

the main cause is internal, genetic, connected to protein misfolding, or pathological production

external (prions, toxins, immune mechanisms), the number of neurons and synapses is decreasing.

This leads to the consequent loss of memory and cognitive functions[72].

There are speci�c signs of AD. The main macrostructures undergoing the negative volumetric change

are the entorhinal cortex, amygdala, hippocampus, and cingulate gyrus. At some stages, it becomes
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visible on MRI and PET. On the histological level, the appearance of the amyloid-beta protein and the

tau-protein are usually supposed to be signs of the pathological process. However, there is no direct

correlation with them in every case of AD. Some researchers claim proteostasis is the main reason for

AD. Damaged lymph circulation damages protein clearance through the meningeal and cisterns

system and lymphatic system. AD is often associated with amyloid plaques (AP) and Aβ oligomers.

There is a wide discussion about the diagnostic value of AP, as well as its intensity, distribution, and

correlation with AD progress.

The pseudobulbar e�ect is an a�ective disorder characterized by uncontrollable outbursts of

emotions. PA may be caused by di�erent factors and believed to develop due to damage to the

prefrontal cortex[73]. Parkinson's Disease is a neurological condition which sometimes may be

associated with dementia (in 20% of cases). Damage to Substantia Nigra in basal ganglia leads to the

dopamine de�cit and, consequently, neurological symptoms. Neurons demonstrate deposits of alpha-

synuclein protein, so-called Lewy bodies[74].

Lewy Body Disease is a group of neurodegenerative conditions which can lead to cognitive impairment

and various pathological neuropsychiatric symptoms and syndromes. It is caused by the Lewy bodies

or deposits of synuclein in neurons. Another disease from the syno-nucleopathy group is Shy-Drager

Syndrome, or Multiple System Atrophy (MSA)[75]. MSA also can lead to frontotemporal degeneration

and dementia. Frontotemporal Lobar Degeneration (FTLD) is a group of proteinopatic conditions

which lead to frontal and temporal cortical atrophy. There are tau-positive variants, such as Pick

disease, FUS-positive and ubiquitin-positive variants[76].

Prion diseases, such as Creutzfeldt-Jakob disease (CJD), kuru, Gerstmann-Sträussler-Scheinker

syndrome and Fatal Familial Insomnia (FFI) are caused by misfolding of PrP protein and may lead to

dementia and multiple CNS dysfunction[77]. Huntington’s Disease is a hereditary neurodegenerative

disorder. Neuropsychiatric symptoms include dementia and memory loss[78].

Alcohol abuse or Alcohol Use Disorder (AUD) may cause encephalopathy and frontal lobe de�ciency. It

is caused by direct neurotoxicity and liver dysfunction toxicity, and the e�ects are due to vitamins of

the group B de�ciency. While cyanocobalamin or B12 is well known to neurologists and psychiatrists

as an e�ective treatment for the relevant condition, other group B vitamin de�ciencies may also be

associated with dementia. The Wernicke-Korsako� syndrome is often developed due to alcohol abuse

and secondary thiamine (B1) de�ciency. B3 (niacin) and B6 (pyridoxine) de�ciencies are also
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associated with cases of dementia. Another alimentary factor is vitamin D (D2 and D3, ergocalciferol

and cholecalciferol), which de�ciency may cause or exacerbate dementia[79][80]. Other causes of

dementia, as listed above, are traumatic, vascular, hypoxic, infectious (HIV) or substance or

medication abuse aetiology. Medications also may cause dementia as a side e�ect. Reportedly,

neuroleptics during prolonged treatment may lead to decreased cortical volume.

3. Non-human intelligence

Intelligence is the capability “to operate successfully in a wide variety of environments”[81]. This

ability is not limited to humans. Non-human intelligence is a wide category which includes

intelligence of non-human types and is not directly related to observable human intelligence. This will

relate to animal cognition, arti�cial intelligence and extraterrestrial intelligence. In every category,

we have to recognize blurry borders for the type. Animal cognition requires a clear taxonomic

separation of Homo sapiens sapiens from other species. It could be relatively easy in the case of

existing primates and “lower orders” creatures but less clear-cut for other previously existing Homo

species. Arti�cial intelligence is judged by humans to perform cognitive tasks, and itself is a product of

human cognitive e�orts. Extraterrestrial intelligence, while not discovered yet, might be just one

more variant of planetary biological type, which di�ers from terrestrial only by location. Even human

intelligence has to be assessed for healthy adult individuals[82] with a full understanding of historical

periods, places, health and social factors. While considering human intelligence, it is necessary to be

aware of “unconscious” mental capabilities[83].

Non-human cognition can be radically di�erent in form but similar in task-solving or forms of

behaviour. There is evidence for possible signs of the “g” factor in animal studies[84]. Reasoning and

“insight” have been demonstrated in a number of species: primates, racoons, rats, mice, corvids, and

pigeons, to list just a few. There are signs of developed complex cognitive abilities in some animal

species. Human intellectual capabilities, when formally related to the activity of the prefrontal cortex,

may induce meta-cognitive functions and not basic cognition and memory. There are still debates

about the acceptability of protocols for animal cognition and reasoning ability[85]. While it was

demonstrated in chimpanzees and corvids, it has to be recognized as the ability to perceive at least the

same species specimen`s behaviour and evaluate its reasoning ability. Is it possible for us to judge

reasoning in non-human intelligence correctly, and what basis should it be placed on?
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3.1. Minimal biological intelligence

Non-human intelligence is certainly divided in accordance with levels of species' minimal cognitive

and operative abilities. We cannot avoid the correlation between the complexity of the organization,

especially of neuronal basis, and sophistication in behavioural and adaptive capabilities. While we are

quite well informed about human intelligence and some non-human animal forms of intelligence,

there is a conceptual place for the encompassing intelligence scale with a starting minimal level of

intelligence. There are formal reasons to consider sensory perception, sensory-motor coordination,

primitive forms of memory and learning, basic decision-making and problem-solving as signs of

minimal intelligence[86].

Some studies on procaryotes underline marks of communicative and cooperative behaviour, which

leads to evolutionary gain[87]. Rudimentary levels of data collection and processing are natural for

most elementary life forms, at least cellular. Predictive non-random adaptive mechanisms are

generally bene�cial, and the speci�c sensitivity to intercellular interactions led to the emergence of

multicellular organisms[88]. Those autopoietic features can be interwoven with the primary abilities of

the most basic biological intelligence. If the widely cited statement can describe intelligence as “all

processes by which the sensory input is transformed, reduced, elaborated, stored, recovered, and

used”[89], the de�nition will include many non-human and non-biological forms. Automata and

plants are not routinely included but can be formally considered as su�ciently representative[90].

Embodied cognition can be strictly recognized as sensorimotor coordination. Biochemical metabolic

basis supports active exploitation of spatiotemporal metabolically relevant environmental features.

The embodied sensorimotor system can operate as a single unit under direct stimulus control, with

necessary “o�ine” controlling structures. We can comprehend it in the case of insects or animals, but

plants are rarely considered to be su�ciently intelligent. There is a place for an internal information

plant system, or informative network, falling short of the root-brain envisioned by Charles Darwin,

with elements of minimally rational root distribution. At the same time, there should be a mechanism

of “thinking” or cognitive modelling. Perception-action is suitable for online problem solving and

action, and thinking might be the o�-line part of the cognitive process. It might be a necessity to

avoid radical embodiment as only the source for the minimal cognitive processes[91].

A su�ciently abstract de�nition of the minimal basis of cognition could be better explained by

Dynamic System Theory or Dynamic Hypothesis[92]. If successful, it could be applied to arti�cial
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intelligent systems. There is still an ontological gap between dynamic systems and cognitive systems.

The cognitive element is intrinsic and cannot be directly equal to the dynamic one[93].

A su�cient number of non-biological physical dynamic casual systems or structures go through

bifurcations super�cially similar to the decision-making tree process but without possessing any

cognitive basis for it. The cognitive system will demonstrate purposeful behaviour, but it can also be

applicable to non-biological systems. The problem might be to de�ne purpose in purely external

behaviouristic terms without intrinsic internal teleology of it. Biological organisms are metabolic,

self-sustainable, Far-From-Equilibrium (FFE) systems. It could be the real basis or driving force for

embedded and more developed forms of cognition, the “conatus” in Spinozist terms. Biological

systems require a higher restrictive order than dynamic casual systems. With complexity growth,

internal regulatory factors play a higher role in embedded cognition. Embedded emotions are

biochemically and neurally explainable, and, possibly, they play important part in minimal cognition

of autopoietic systems as well. Still, there is a place for formal modelling of hypothetical minimally

cognitive protocells[94].

There are also conceptual proposals for the Internet of Bio Nano Things (IoBNT), where cyborg

nanosystems will combine autopoietic biological features with allopoetic synthetic abilities[95]. Still,

biological systems can be de�ned as FFE self-maintaining chemical systems capable of reproducing

their own functional components and creating physical boundaries with the environment[96].

Metabolic self-maintenance and self-reproduction are critically important. Basic self-maintaining

metabolic networks are pre-biological prerequisites for any biological system. Internally meaningful

system is the basis for purposeful adaptive response and, as such, minimal cognitive-like properties.

Experiments with Physarum polycephalum showed a certain degree of rational behaviour, an ability

for basic externally enhanced memory, and possibly decision-making based on absolute valuation[97].

It might be tempting to consider minimal cognition as pre-neural, and neural-based cognition as a

higher level of cognitive abilities. The really fundamental level of any cognitive system is recognized

as a quantum informative theory, where quantum reference frames and scale-free Markov Blanket

can give explanatory power for di�erent levels of cognition[98]. The cell membrane in any cellular

organism and organelle membranes in eukaryotic cells are implementational elements of the most

fundamental biological Markov Blankets.
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3.2 Animal intelligence

Daniel Dennett divided biological intelligence into four hierarchical types: Darwinian, evolutionary

competent but unable to add intelligence through learning; Skinnerian, capable of learning in strict

behaviouristic terms; Popperian, able to use imagination as a virtual tool; and Gregorian, possessing

various thinking tools and systems, such as science[99]. While minimal cognition is clearly Darwinian,

there are attempts to see a level of intelligence in some creatures, such as arthropods, as Popperian

and not Skinnerian type[100].

Biological intelligence is derivative of an autopoietic biological basis and supposed to be evolutionary

emergent across the species. Non-human intelligence has to be assessed in an appropriate way to be

recognized as such. It cannot be just an attribute or distinct property by itself, and it should be

demonstrable as “intelligent behaviour”. IQ measurement is only a subdomain estimation of the

much more extensive domain. Behaviour is applicable to animals as to humans to support

understanding of it. Another condition is context because behaviour is usually context-

dependable[101].

Non-human biological intelligence is widely tested, especially in vertebrate larger-brained species.

However, many tests could not be successfully used across the taxa or even species without signi�cant

adaptation because of variations in sensory-physiological and morphological features. It is quite

problematic to compare the results of tests directly between vertebrates and invertebrate taxa such as

cephalopods or insects. Besides that, there are clear requirements for every tested specimen to easily

perceive the test apparatus and distinguish the test stimuli, possess the necessary motor skills to

handle it and have su�cient participative motivation[102].

There is a tendency to test mostly vertebrate taxa and species with developed brains, and there are

other di�culties in proper evaluation. Animal intelligence has to be explained by widely distributed

intelligence because animals represent just 0.01% of Earth's life forms and cannot possess intelligence

as a rare phenomenon without a pre-cognitive basis and interaction with the biological

environment[103].

All life forms possess some form of information exchange within their species and outside. Data

processing allows the organism to gain information, process it, and translate it into a phenotype form,

being subject to a natural selection �lter. In this case, it is possible to speak about distributed
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biological intelligence, not limited by certain species or animal forms only. Still, such a wide vision of

intelligence could be subdivided into adaptive intelligence and a more general form of it[104].

General intelligence, if separated from adaptive intelligence, can be assessed regardless of

evolutionary adaptation or disadaptation of the species, so the natural selection �lter can be ignored.

Moreover, general intelligence is supposed to have an element of individuality and be open to

comparison[105]. An individualized approach is less applicable for social creatures, unlike primates,

cetaceans, or many other mammals and birds. Octopi are not very social, live alone, have a relatively

short lifespan of �ve years, and have little parental care[106].

Rapid learning is facilitated by 500 mln neurons, 20 times more than in such social insects as ants.

Cephalization and brain morphology can provide the guidance for cognitive capabilities evaluation,

general and specialized. Besides a number of general and cortical neurons, Information Processing

Capacity (IPC) is a good measurement of cognition. It is the highest number of humans and great apes,

followed by Old World and New World monkeys. Elephants and cetaceans have large brains with a

signi�cant number of neurons, but the thin cortex limits IPC[107].

Corvid and psittacid birds have higher neuron packing density, which is explanatory for their

cognition. Another metric is axonal speed. There are multiple in-species neural system morpho-

physiology. At least 200 evolutionary brain changes create a chasm between theropod dinosaurs and

humans, which is not easy to get over[108]. It does not mean that with contemporary genetic

engineering techniques and chimeric tissues, it is impossible to create super-intelligent animals.

Moreover, they may appear before any upgrade of human intelligence, as animal models will be tested

�rst[109].

3.3 Arti�cial intelligence

Symbolic reasoning is fundamental for mathematical and logical operations. It was developing for

many centuries[110] before being distilled into binary computational basis for machine operations[111].

Boolean algebra can be treated as a certain equivalent to propositional calculus[112] and, in this way, is

applicable to the theory of Finite State Automata (FSA) and for the creation of �nite state machines,

deterministic and non-deterministic. The distance between FSA and Turing Machine (TM) includes

Pushdown Automata (PDA) and Linear-Bound Automata (LBA) or restricted TM. FSA, PDA, LBA, and
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TM are related to regular, context-free, context-sensitive, and computably enumerable recursive

languages[113] (see Table 1).

Language Automata or machine

Regular Finite State Automata (FSA)

Context-free Pushdown Automata (PDA)

Context-sensitive Linear-Bound Automata (LBA)

Computably Enumerable Languages Turing Machine (TM)

Table 1. Automated machine languages

Natural languages span several levels of the model with elements of context-free and context-

sensitive levels. Natural language Processing (NLP) often requires the addition of �nite state

approximation with �nite state models and regular expressions. While TM allows recursive reasoning

and decision-making, natural languages are less open to it. Table 2 re�ects the di�erences between

NLP and symbolic reasoning in terms of scalability, adaptability, interpretability, and other

characteristics.
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Aspect NLP Symbolic Reasoning

Approach Data-based: statistical Rule-based

Scalability High Medium, rule-dependent

Adaptability High Low/Medium, Knowledge Base -related

Interpretability Black box High, transparent, explicit

Context

handling
Successful with transformers models Low/Medium, rule-dependent

Applicability
Text processing, automated

translation, chatbots, LLM

Knowledge representation ontologies, formal

veri�cation, expert systems

Table 2. The main aspects of NLP and Symbolic Reasoning

In the machine environment, Neuro-Symbolic AI is seen as an instrument that closes the gap[114].

However, there is no strong direct relation between Neuro-Symbolic AI and human intelligence,

which is comparable to the Chomsky hierarchy with related automata or machines. Image recognition

is a statistically based approach that can be enhanced by Knowledge Graphs for reasoning and human-

readable ontological categorization[115][116].

Statistical reasoning and symbolic reasoning are complementary. Statistical analysis is built on

quantitative data and probabilistic models, while symbolic reasoning works with symbolic

representation and logical inference. Mathematical reasoning allows quantitative formalization and

mathematical categorical operations. All these types of reasoning are applicable in machine

calculations, robotics and AI. Still, there is a necessity to de�ne machine intelligence appropriately:

does it mean a minimally su�cient level of algorithmic reasoning in calculators, logical processors,

motoric tasks in robotics, pattern recognition in ML or AI, ability to solve human intellectual

problems: NLP, game analysis, intuitive reasoning etc. We experience the same categorization

problem as natural intelligence, from minimal to the highest level. One of the methods was to base

intelligence assessment on the information and complexity theory[117]. In this approach, intelligence

can be seen as a compression[118].
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Conversely, there is minimal explanatory load, formalized as Minimum Description Length (MDL),

counterbalancing compression. There is a proposal to see intelligence as an ability of explanatory

compression[119]. It has to be recognized that this approach makes understanding intelligence

applicable to any intelligent system but denies us the possibility of a full explanation. There is an

opinion that “The computer is a physical embodiment of the symbolic calculations envisaged by

Hobbes and Leibniz. As such, it is not a thinking machine, but a language machine.”[120]

At the same time author declares “There is no reason but hubris to believe that we are any closer to

understanding intelligence than the alchemists were to the secrets of nuclear physics”. Certainly, if we

try to explain intelligence in terms of language, we have to �nd a connection between pattern

recognition and successful task solutions (performance) not only in formal and human-

understandable reasoning but also in image processing and mechanical operations. It is impossible to

discard the operative or “behavioural” element of intelligence in AI and simply replace it with

symbolic or any other reasoning. The interactive nature of intelligence requires the inclusion of higher

levels of operability than algorithmic reasoning or simple automatic response. Long-term memory

possessed by any system allows learning, not only anapoiesis or recreation but practopoiesis, the

ability to adapt in learning and operative terms. The ability for meta-learning, or tuning of the

learning process, is a signi�cant part of practopoiesis and intelligent functioning, from sensorimotor

to symbolic or other reasoning[121].

Autopoiesis is a process of self-reproduction in the widest terms, including the ability to adapt itself

to environmental changes through self-change for the basic internal homeostatic support, where

learning is part of the multilevel reaction, from molecular to organismic and supra-organismic

level[122], practopoiesis does not require ultimate reproduction or highly developed homeostatic

ability. In this way, developed arti�cial intelligent systems can be seen as cognitive anapoietic and

practopoietic adaptable entities. Environmental, systemic changes can be seen as disturbances in

terms of the Ashby Requisite Variety Theorem, where the system is sustainable in the case of su�cient

or requisite internal complexity: the ability to counteract disturbances with an adequate number of

internal state changes[123].

Biological systems are di�erent from non-biological ones in some systemic elements. While

Shannon's theory approach requires ergodicity as a necessary systemic feature, biological systems

tend to be non-ergodic. Variety is also better applicable to biological systems than the probability to

non-biological cases, such as in communication theory. There are some parallels in intelligent
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processes between AI and natural intelligence. Arti�cial Intelligence in most developed forms is

usually extensively trained on Big Data sets. In contrast, natural intelligence often allows quick

learning through the intensive transfer learning mechanism when previous tasks' meta-learning

elements are successfully applied[124].

The success of AI systems is apparent, manifesting in their evident ability to achieve goals with

remarkable precision and e�ciency. We certainly cannot compare the ability of natural intelligence to

over-perform in time and complexity standard calculation tasks, let alone combinatory search or

gameplay, while some other aspects, such as sensorimotor functioning and context-related general

reasoning, are still well performed by humans if compared to AI. We can distinguish autopoietic

biological cognition-processing systems from arti�cial ones through the character of intellect

interaction with the supporting systems. In autopoietic systems, every level is autopoietic, while in

arti�cial cognitive systems, intellectual tasks are detached. If arti�cial systems acquire autopoietic

abilities, they will be comparable to natural systems. Otherwise, AI is cognition and reasoning abilities

detached from the supportive tasks, and the di�erence is in the underlying nature and autonomous

capabilities but not in the task-solution abilities. If we want to compare di�erent types of intelligence,

we need a generalized framework with common reasoning and task-related abilities.

4. Embodied and distributed intelligence

Embodiment might be the most important step on the way to arti�cial consciousness and toward full

autopoietic functionality. A combination of cognitive architecture, perception and actuators in one

device or group of devices can provide a desirable level of autonomy[125]. Morphological computation

is a necessary step in robotics, added by embodied cognition and developmental robots. Robotic

ecology[126]  can be a minimal requirement before the next level: smart devices or vehicles in the

natural environment, with a distributed cognitive network of sensors and actuators embedded into

nature. A more restricted view of embedded AI development can be provided by the Multi-Level

Evolution (MLE) framework. A bottom-up automated development includes robots` design on

multiple levels and in robotic ecological niches according to tasks and environmental conditions[127].

It could be notable that arti�cial intellectual functions are achieved quicker and require less

computation than sensorimotor calculations, the phenomenon known as Moravec`s paradox[128]. This

can shed light on the natural intelligence, whose emergence might depend on embodiment. There is a
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whole school of thought about emerging intelligence: it requires embodiment as a prerequisite and

constant interaction with an environment to form and support necessary cognitive abilities[129].

The data stream from the environment and from within the perceiving, self-regulating system is akin

to the stream of consciousness described by W. James. Conscious mind, in the words of A. Damasio and

H. Damasio require at least three processes to be in place: a continuous generation of interoceptive

and proprioceptive feelings and the resulting organism's internal operations; continuous production

of images connected to the organism's sensory perspective in surroundings; and a combination of

feeling, experience, and perspective resulting in subjectivity relative to the image contents[130].

The peripheral and central physiology of interoception and exteroception is responsible for the �rst

two components, whereas the Central Nervous System completes the third task. There are signs that

cognition is not functioning based on the symbol alone and requires relevance to body action.

Embodiment can be seen as grounded cognition[131]. There are several implications of such an

approach to intelligence. First, it allows the emergence of intelligence in constant dynamic interaction

with an environment. Second, it can be cognitively “embedded” in the physics and phenomena of the

surrounding environment[132].

Third, shared or similar structures perform the same or similar cognitive tasks in di�erent

taxonomies. We can scale intelligence emergence in accordance with morphological and architectural

principles, in addition to behavioural ones. Embodied intelligence exhibits signi�cant similarities

precisely due to its functional similarity within the same or similar environment. Sensory illusions

and subjective variance in reactions pose limitations for embodied intelligence and reopen the

discussion about the importance of symbolic and abstract thinking. These cognitive abilities, in turn,

can emerge from the foundation of embodied intelligence itself. An embodiment may lead to the

ability to understand other people's behaviour, those solving “other minds” problems[133]. This is also

re�ected in language, where abstract concepts are often described in terms borrowed from concrete

experiences[134]. An embodiment of natural intelligence allows the functioning of the biological Goal

Creation System[135]. Early pre-designed automata-like robots were hardly intelligent in human view,

and Evolutionary Robotics proposed self-organized evolving robots. Still, in many respects, they are

far behind insects, especially social ones, in solving tasks and, certainly, level of autonomy[136].

There are certain trends in robotics when intelligent unit systems are based on non-von Neumann

principles and imitate biological systems, such as neuromorphic systems with parallel processing and
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separation of storage pathways. Situatedness is connected to intelligence, as well as embodiment.

Emergence signi�es the unclear nature of intelligence in these systems: it comes from embodiment

and interaction within the system with the outside environment[137]. There are several conceptual

levels of embodiment. The principles described above are suitable for the �rst-order embodiment[138].

Second-order embodiment includes understanding intelligence and behaviour as representational

systems, self-representation as an embodied system and an understanding of intelligent systems in

neuropsychological terms applied to robots. Third-order embodiment requires direct self-mapping or

phenomenal self-modelling during interaction with the outside environment. There is an option for

the fourth-order embodiment. Distributed computing and multi-unit collective action can be

upgraded in swarm robotics with distributed intelligence. When projected onto biologically intelligent

species, especially humans, we can discuss the concept of supra-intelligence or collective cognition.

Social dimensions add a signi�cant layer of verbal and non-verbal interaction, which cannot be

excluded from intelligence analysis[139].

Children who accidentally grew up with animals from an early age demonstrated signi�cant

impediments not only in interaction but also in intellectual functions. Social learning includes not

only synchronicity but also diachronic elements[140]. We can see human intelligence as synchronic in

terms of contemporary humankind and diachronic from a historical perspective. We possess biological

evolutionary “knowledge” and intellectual abilities as well as civilizational ones as a collective in the

widest sense. It is impossible to separate them except for Mowgli-like cases.

Arti�cial intelligence is a creation of human civilization and could also be seen not as a separate entity

but as an extension. It is formalized as having 4E qualities: extended, embedded, enacted, and

embodied, and it allows for the possibility of non-biological or arti�cial experiences[141].

5. Discussion and conclusion

Intelligence is a phenomenon with many facets and contextual backgrounds. There are multiple

challenges in the attempts to measure intelligence across humans, animals, and biological and non-

biological intelligent actors. Despite some signs of universal intelligent abilities, certain symbolic and

operative universality on the basic level and relatively common range of contexts, signi�cant

morphological and functional di�erences preclude the creation of universally accessible intelligence

regardless of its embodiment type. One of the primary issues here is the lack of a universally accepted
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categorical de�nition for intelligence that fully covers it in these three domains. Human intelligence is

usually assessed through tests with IQ metrics, which focus on various linguistic, mathematical, and

logical reasoning abilities. These tests are not su�ciently universal for di�erent age and cultural

groups, let alone other intelligent species or non-biological intelligent agents. Moreover, the modular

nature of intelligence requires speci�c types of tests able to register creativity, social adaptability and

some other forms, less re�ected by symbolic and mathematical reasoning in some traditional tests.

In contrast, animal intelligence is typically evaluated on strong applied problem-solving abilities,

speci�c learning capacity, and adaptability to environmental changes. Animal and biological

intelligence is highly context-speci�c and species-related. Anatomy-physiological di�erences

between species and taxa on the somatic and neural system levels create insurmountable problems for

universal intelligence tests and assessments. Cognitive processes in modern humans and animals may

di�er for socio-linguistic reasons and the nature of required tasks. Any human-centric intelligence

criteria, despite being primarily accessible and serving as a starting point for any potential scale, are

restrictive and lead to inevitable bias if applied to wider assessment

The problem may look even more complex in the case of AI assessment. AI systems are inherently

designed for speci�c goals and usually operate within prede�ned parameters. Data processing, pattern

recognition and the ability to play combinatory games are often highly e�cient. Still, we cannot

directly compare them to human or animal abilities without taking into account consciousness,

emotional understanding and general adaptability beyond programming. It is also important to

remember that AI is a product of certain types of human intelligence and system e�orts of civilization

and not a self-developed phenomenon. For AI, the problem lies in the insu�cient holistic approach to

evaluating general intelligence, as current metrics often focus on speci�c capabilities rather than

overall adaptability and problem-solving skills.

At the same time, these limitations can show the direction in which work can be done. There are

several ways to assess universal intelligence. The �rst is purely minimalist and requires building a

minimal cognitive scale beforehand. The capability of basic data processing does not necessarily

require an interactive nature of intelligence when behavioural assessment is necessary. The minimal

intelligence scale is easily formalized and can have related scales of physical or biological structures

responsible for logic gate functioning. The next level is applicable to automata-like properties before

it can be scaled to higher degrees. Behavioural scales, in turn, can be task-related and context-
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adjusted. It still lacks universality but can be successfully applied across di�erent domains, avoiding

the pitfalls of the Turing test.

The general intelligence scale will require a cumulative type of system for the calculation of di�erent

symbolic analytical abilities and task-related capabilities. Certain cognitive functions will be

recognized in accordance with the complexity of tasks and outcomes to be rated and summarized.

There is a highly attractive approach to building these particular complementary scales with relation

to morphological complexity and energy spending, which places it on a stronger physical and

computable basis. There is more than one way to construct the universal intelligence assessment

framework; it can be approached from several directions simultaneously. While it is still a task for the

future, it looks achievable in the observable future.
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