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ABSTRACT

Background: The typical reaction strategy to an epidemic involves the implementation of various pharmaceutical (e.g.,
vaccination) and non-pharmaceutical interventions (e.g., social distancing) to reach the so-called "herd immunity threshold,"
ensuring that new surges of the epidemic dampen out.
Aim: We introduce a novel concept: the "Herd Immunity Surface." Unlike traditional approaches, which focus on a single herd
immunity threshold, our framework considers heterogeneous population classes, such as different age cohorts or geographical
regions.
Methods: We demonstrate that multiple herd immunity thresholds can achieve equivalent epidemic-dampening outcomes,
even when resulting from different strategies (e.g., uniform vaccination vs. prioritizing the elderly, generalized vs. selective
lockdowns, etc.).
Results: This discovery opens the door to policy optimization, where the specific herd immunity threshold chosen becomes
a strategic decision with profound economic, logistic, political, and ethical implications. Importantly, it facilitates informed
decision-making regarding the selection of vaccination strategies, allowing for versatility in achieving effective epidemic control.
Conclusions: Our study introduces the concept of the Herd Immunity Surface, offering a novel framework that transcends
traditional epidemic response strategies. By highlighting the redundancy in achieving herd immunity, our research provides a
foundation for optimizing policy decisions, particularly in the context of vaccination strategies, with far-reaching implications for
public health and policymaking.

Introduction
Mathematical and computational approaches are valuable tools for analyzing scenarios, making forecasts during epidemics, and
addressing complex public health issues, including the development of effective control strategies (both pharmaceutical and
not) during emergencies1, 2. Such control strategies have gained new significance during the ongoing COVID-19 pandemic due
to its global scale, particularly the challenge of fair and equitable vaccine distribution3–5. In many countries, heterogeneous
vaccination policies have been implemented, prioritizing specific categories such as the elderly or exposed workers. However,
the concept of heterogeneous vaccination policies has not been thoroughly investigated, except for some preliminary numerical
analysis6.

The concept of the "herd immunity threshold" (HIT) serves as the foundation for designing vaccination policies. The HIT
represents the fraction r⇤ of immune individuals in the population required to dampen the spread of the epidemic. In this paper,
we extend the HIT concept to a heterogeneous population, where the population is divided into distinct classes. We demonstrate
that, rather than being a single point, the threshold becomes a surface H ⇤ referred to as the "herd immunity surface" (HIS).

Each point on the HIS is a potential choice for a vaccination policy. Since each HIT corresponds to a different distribution
of vaccines among the population classes, selecting the target HIT becomes a policy choice with economic, logistic, political,
and ethical implications7.

In this paper, by exploiting the possibility of reaching different HIT points on the HIS through non-pharmaceutical
interventions, we show how such interventions can complement the shortage of vaccines, enabling epidemic control while
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vaccines are being produced and distributed. To illustrate the HIS concept effectively, we consider the SIR8, 9 and SEIR10

models with heterogeneous population classes.

Methods
Epidemiological studies often rely on mathematical models to gain insights into the spread of diseases and assess the impact
of control strategies. Two commonly employed modelling frameworks are the Susceptible-Infectious-Recovered (SIR) and
Susceptible-Exposed-Infectious-Recovered (SEIR) models. These models provide valuable insights into the dynamics of
epidemics by dividing the population into compartments representing different stages of infection. The simplicity of SIR
models makes them a popular choice, while SEIR models are especially useful when accounting for significant incubation
periods. It’s worth noting that for both SIR and SEIR models, the ’Recovered’ compartment can also account for individuals
who have achieved immunity through a positive result from vaccination. In this section, we explore how these modelling
approaches can lead to multiple choices when it comes to selecting a vaccination strategy. Specifically, we demonstrate that in a
heterogeneous population, herd immunity may not be achieved at a single point but rather on a hyper-surface. We then discuss
how to extend these results to other compartmental models.

In SIR models, the population is divided into compartments representing different stages of infection. Specifically, ’S’
stands for susceptible individuals (those who can contract the disease), ’I’ for infectious individuals (those who have contracted
the disease and can transmit it to others), and ’R’ for recovered individuals that are now Resistant to being infected. To account
for additional factors such as loss of immunity, births, deaths, or healthy carriers, more complex variations of the SIR models
may introduce additional compartments11.

Simple SIR models assume a uniform population and homogeneous mixing among infected and susceptible individuals.
However, real-world epidemics often involve diverse or dispersed populations. SIR models can be extended to address this
heterogeneity by dividing the population into different classes, as shown in Equation (1)12, 13. These models require the
estimation of contact matrices that quantify the frequency of interactions among different population classes. Such matrices
have underscored the significance of social, demographic, and economic factors in influencing the actual spread of diseases
among individuals14.

It’s worth noting that the results presented in this paper are also applicable to heterogeneous SEIR models. SEIR models
are derived from the SIR framework and are particularly useful for cases with a substantial incubation period during which
infected individuals are not yet infectious. This additional compartment denoted as E for exposed individuals is introduced to
account for this delay. For the purposes of our discussion, we will collectively refer to “infected individuals" as either the I
class in the SIR model or the combined compartments E + I in the SEIR model.

In our notation, lowercase letters (i.e., s, i, e, r) represent the fractions of individuals within a specific class. For S(E)IR
models, recovered individuals are considered immune to the disease. Consequently, a key objective of vaccination strategies is
to increase the fraction r of resistant individuals beyond the herd immunity threshold r⇤ (see Section Herd Immunity Surface
and Next Generation Matrix).

We will represent vectors with bold symbols (i.e., vvv with components vk) and use uppercase letters for matrices (i.e., B as
the matrix with elements Bkl) or significant quantities (i.e., A denoting the total number of affected, NNN as the vector where Nk
represents the total number of individuals in class k). In terms of the fractions sk, ik, and rk representing susceptible, infectious,
and recovered individuals in each class k, the SIR model is described by a set of deterministic differential equations:

∂t sk =�sk Â
l

Bkl il ,

∂t ik = sk Â
l

Bkl il � gkik,

∂t rk = gkik.

(1)

Here, B is the transmission matrix, with Bkl being the rate at which a susceptible individual of class k encounters an infectious
individual of class l and becomes infected, while gk represents the rate at which infectious individuals in class k are removed
(i.e., recover) from the infection cycle.

In the SEIR model, the dynamics of the exposed fraction eee is introduced:

∂t sk =�sk Â
l

Bkl il ,

∂t ek = sk Â
l

Bkl il �µkek,

∂t ik = µkek � gkik,
∂t rk = gkik.

(2)
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In these equations, µk represents the rate at which exposed individuals of class k become infectious.
If we denote ak as the fractions of all infected individuals in class k (i.e., ak = ik in SIR and ak = ik +ek in SEIR), it follows

from eq. (1) and eq. (2) that in both models:

∂tak = sk Â
l

Bklal � gkak. (3)

Thus, indicating Nk as the number of individuals in the kth class, the total number of infected A = ÂNkak evolves over time as:

∂tA = ÂNk∂tak

= Â
l

Nlil

 

Â
k

Blksk � gl

!
,

(4)

where the matrix Blk = NkBklNl
�1, being by construction similar to B, is isospectral to B.

Herd Immunity Surface
Herd immunity is a condition whereby no epidemic outbreaks are possible, i.e., the number of infected individuals decreases
over time. Since both ggg and iii are non-negative, in S(E)IR models if Âl Bklsl � gk < 0 (see eq. (4)), then the total number of
infected individuals decreases (i.e., ∂tA < 0) regardless of the fraction of infected individuals, i.e.:

Rsss < 111 (5)

where the infection growth matrix (IGM) R has elements Rkl = g�1
k Bkl . Here, 111 is the vector with all components equal to 1

and we indicate with uuu < vvv that uk < vk for all classes.
Notice that, in the one-dimensional case (i.e., for a single class), denoting b = B11 and g = g1, herd immunity is reached

when R0s < 1, where R0 = g�1b is the so-called basic reproduction number, measuring the potential growth rate of an
epidemic. Since s  1, we recover the classical result that an epidemic does not spread unless R0 > 1. Moreover, in the
one-dimensional case, a threshold s⇤ = R�1

0 separates the stable points with s < s⇤ from the unstable points with s > s⇤.
Correspondingly, it is possible to define the so-called herd immunity threshold (HIT) as:

r⇤ = 1� s⇤ = 1�R�1
0 , (6)

i.e., the fraction of immune people (either due to acquired immunity or vaccination) above which no epidemic burst is possible.
In conclusion, the matrix R plays the role of the basic reproduction number and defines the herd immunity surface (HIS)

H ⇤ as the boundary of the stable set H , that is:

H = {sss : Rsss < 111} . (7)

In other words, H represents the set of states where no epidemic outbreaks can exist.
In Figure 1, we show the HIS (i.e., the green surface) for a three-class S(E)IR model: all the points beyond the HIS are

stable (i.e., the epidemic is dampened), while the unstable region (depicted in red) corresponds to the condition from which
an epidemic can develop: clearly, instead of a single threshold, each individual point in the HIS represents a proper HIT and,
consequently, represents a valid target for a vaccination policy.

Notice that such a formulation allows for a class-dependent definition of the HIS. Suppose that we have n classes, but we
want to avoid epidemic outbreaks in a limited set of m < n classes denoted as C. The corresponding herd immunity surface
H ⇤

C is the boundary of the C-stable set HC, i.e.:

HC = {sss : (Rsss)k < 1 8k 2 C} . (8)

It has the property that C⇢ D implies that HD ⇢ HC. In Figure 2, we show the herd immunity surfaces for a S(E)IR model
with two classes: clearly, aiming for herd immunity in a single class enlarges the possible stable states.

Finally, for some systems, the contact matrix can assume a quasi-block-diagonal form13. As an example, if our classes
represent geographical compartments like states or regions, the inter-compartment mobility (and hence the inter-compartment
contacts) has been experimentally estimated to be of order e ⇠ 10�3, i.e., smaller than the mobility within the compartment13.
Thus, assuming that we have m weakly interacting classes and denoting vvvk as the vectors regarding the kth class, and with Rk

as the diagonal blocks describing the interaction among the variables of the kth class, the solution s̃ss = [sss1, · · · ,sssm]T of the m
equations:

Rksssk = uuuk (9)

approximates the real solution Rsss = uuu to order e . In other words, for such systems, ks̃ss� sssk= O(e), and the equations can be
solved separately for each weakly interacting class, at the cost of introducing a small error only in the last significant digits.
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Herd Immunity Surface and Next Generation Matrix
An alternative approach for defining the HIS could involve using the Next Generation Matrix (NGM) K(sss) to describe
the growth of the infected population in heterogeneous systems11. The NGM is a concept associated with the analysis of
epidemic dynamics in the context of general compartmental models; it contains information about the rates of transition
between compartments and is commonly used to predict the potential growth or decline of infectious individuals. The NGM
helps determine whether an epidemic will grow or decline by analyzing the eigenvalues of this matrix and is instrumental in
understanding the state-dependent basic reproduction number R0(sss) defined as the spectral radius15:

r(K(sss)) = lim
m!•

kKm(sss)k1/m . (10)

Thus, an alternative definition of the HIS would be to define H ⇤
NGM (the NGM-HIS) as the boundary of the NGM-stable set

HNGM:

HNGM = {sss : r(K(sss))< 1} . (11)

However, for systems described by eqs. (1), (2), the NGM has elements Kkl(sss) = skRlk. Thus, if a vector sss is IGM stable (i.e.,
stable in the sense of eq. (5)), the column sums Âk Kkl(sss) = Âk Rlksk are also bounded by 1 (see eq. 5). Since the spectral
radius is upper-bounded by any matrix norm (e.g., see lemma 3.1.1 of ref.16), and since the maximum of the column sums (i.e.,
the one-norm) is bounded by one, it follows that sss is also NGM stable (i.e., stable in the sense of eq. (11)). Thus, the NGM
herd immunity surface H ⇤

NGM , defined as the boundary of HNGM , encloses H since H ⇢ HNGM; this implies that our IGM
conditions are more stringent.

HIS as a Pareto Frontier
Due to the inherent trade-offs and optimization challenges involved in achieving herd immunity, the Herd Immunity Surface
(HIS) can be conceptualized as a Pareto Frontier. The Pareto Frontier is a concept from economics that represents a situation
where there are multiple solutions where no individual or group can be made better off without making someone else worse off.

In the context of vaccination and herd immunity, the HIS represents a spectrum of possibilities, each corresponding to a
different combination of vaccination strategies and population coverage. Each point on the HIS reflects a specific trade-off
between various dimensions, such as the percentage of the population vaccinated, logistical ease, cultural adaptation, and
overall mortality. Thus, just like the Pareto Frontier, where improving the well-being of one individual may come at the expense
of another, optimizing vaccination strategies on the HIS involves navigating complex trade-offs. Some strategies may excel in
certain dimensions (e.g., minimizing logistical challenges) but fall short in others (e.g., achieving the desired herd immunity
threshold). The Pareto Frontier nature of the HIS implies that there is no single, universally optimal solution; rather, the optimal
strategy depends on the specific priorities and constraints at play.

Results
Obtaining precise human mixing patterns is essential for accurate disease modelling14. Contact matrices for various countries,
as exemplified in the study by Mossong et al.17, provide insights into the interactions between different age groups. In these
contact matrices, the element Ci j signifies the likelihood that an individual in the ith age class encounters someone from the jth
class. Effectively, the elements of the contact matrix B can be viewed as the product Bkl = LklCkl , where Ci j represents contact
rates related to social habits and interactions, and Li j denotes the disease-dependent transmission probability, which measures
the likelihood of infection transmission when there is a contact between i and j.

As a simplified model for illustrating the concept of the Herd Immunity Surface (HIS) involving several population classes,
we focus on Italy’s physical contact matrix17. For simplicity, we restrict our analysis to three age classes: Younger (Y),
encompassing individuals aged  19 years, Median (M) covering those aged 20-69 years, and Elder (E) including individuals
aged 70 years or older. Table 1 presents the values of the rescaled contact matrix Ci j = N�1

i Ci jNj, while Table 2 provides
information on the Italian population distribution across these three classes.

In this toy model, we make the simplifying assumptions of a constant transmission probability Li j = L and a uniform
recovery rate gi = g across all classes. Consequently, the Infection Growth Matrix (R) for our simplified model can be
expressed as R = (L/g) ·C. To ensure a realistic representation of the model, we carefully select g such as the ratio L/g
achieves a spectral radius kRk of 3, a value typical of COVID-like epidemics.

We consider a scenario where we have a vaccine supply of V doses, each with an efficacy of d , capable of immunizing a
fraction r = d · v of the population (here v =V/N is the fraction that can get the vaccine). We suppose the three age classes to
be subject to the mortality rates µi of table 2. We can determine the optimal distribution of vaccines, denoted as vi for the i-th
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class, in a way that minimizes the mortality of susceptible individuals si, given by si = 1� ri with ri = d · vi. This optimization
problem can be formulated as follows:

min
v Â

i
µisiNi minimise the mortality of the susceptible population

s.t. Â
j

Ri js j  1 ensuring herd immunity

si = 1�d · vi 8i with a fraction of immunised equal to d ·v
0  vi  1 8i
Â

i
viNi =V respecting a given vaccine availability

(12)

In Figure 4, we illustrate how the optimal fraction of vaccinated individuals per class changes as the fraction V/N of the
population eligible for vaccination varies. It’s important to note that, for a given vaccine efficacy, there exists a minimum
threshold dmin below which no solution exists, meaning that achieving herd immunity is not possible.

The solution to this system corresponds to a heterogeneous vaccination policy (VP) that minimizes mortality for a given
efficacy d � dmin by varying the fraction vi = Vi/Ni of vaccinated individuals per class. On the other hand, it is simpler to
implement a homogeneous VP where the percentage of vaccinated individuals is the same for all classes. Notably, homogeneous
VPs require larger quantities of vaccines than heterogeneous VPs (see fig. 5 for an illustration). For example, with an efficacy
d = 0.9, using a heterogeneous VP can lead to saving up to approximately 15% more vaccines compared to a homogeneous VP.
‘

Discussion
Our exploration into vaccination policies for achieving herd immunity has unveiled a complex landscape marked by ethical
intricacies and multifaceted considerations. A lens provided by the ethics of vaccination18 allows us to scrutinize our findings
with broader implications. The collective responsibility for herd immunity and ethical tensions surrounding individual rights
and harm prevention19 resonate in our results, especially amidst varying vaccine availabilities. The evolving discourse on
conscientious objection to vaccination highlights the ethical debate on coercive versus non-coercive measures, particularly in
emergencies20–23.

Conceptualizing herd immunity as a spectrum, akin to a Pareto Frontier24, aligns with the ’principle of least restrictive
alternative’ in public health ethics25, 26. This perspective recognizes trade-offs, introducing an ethical conundrum in achieving
herd immunity while respecting values.

The Herd Immunity Surface (HIS) presents choices for reaching multiple Herd Immunity Threshold (HIT). Different
HITs exhibit varying characteristics, with practical constraints, logistical ease, or cultural adaptation possibly favouring some.
Optimizing across HIS dimensions is challenging due to incomplete data, necessitating consideration of a broad set of elements.
Importantly, the HIS is a Pareto Frontier, and HITs on the HIS are Pareto Optimal24. Since such Pareto optimal vaccination
policies align with diverse stakeholder preferences, they can reflect nuanced interests, necessitating collaboration for collective
benefit. In fact, even amidst efficient policies conflicts may arise, highlighting the need for consensus in shaping vaccination
strategies.

Our exploration deepens understanding and emphasizes ethical considerations in shaping effective and morally defensible
vaccination strategies. Intersections with public health ethics27 provide a robust framework, ensuring a scientifically sound and
ethically grounded pursuit of herd immunity.

The quest for herd immunity extends beyond models; it demands thoughtful consideration of individual liberties, collective
responsibilities, and institutional frameworks18, 25, 28. Engaging with ethical dimensions and acknowledging complexities paves
the way for an inclusive and responsible approach aligning with public health goals.

Advancements in data collection, analytics, and modelling techniques29 are crucial. Real-time monitoring, improved data
on vaccine acceptance, and AI insights empower policymakers for an adaptive, data-driven public health approach. Investing in
data infrastructure and collaborative efforts align with this progress, navigating vaccination challenges effectively.

Predictive models considering epidemiological, logistical, cultural, and socioeconomic dimensions aid in identifying
optimal vaccination thresholds30, 31. Policymakers must leverage enhanced data and models through clear communication,
education, and collaboration for evidence-based vaccination policies. However, while our study underscores the significance of
multiple-choice decision-making within a complex landscape, it is imperative to recognize that other dimensions, like addressing
social media dynamics32, 33, or fighting the systemic inequities driving mistrust within the information ecosystems34, present an
additional layer of consideration essential for comprehensive pandemic response and effective infodemic management.

Looking ahead, our exploration opens avenues for ongoing ethical scrutiny, sophisticated optimization tools, and innovative
approaches to conscientious objection35–37. Integrating advanced modeling techniques and AI holds potential for precise and
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effective vaccination policies, urging continued collaborative efforts in addressing emerging challenges and refining ethical
frameworks for societal well-being.
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Contact Matrix C
Y M E

Y 2.350 1.694 0.455
M 0.122 0.590 0.139
E 0.736 1.980 0.800

Infection Growth Matrix R
Y M E

Y 1.966 1.417 0.381
M 0.102 0.494 0.116
E 0.616 1.656 0.669

Table 1. Tables presenting the Contact Matrix C and the derived Infection Growth Matrix R (IGM). The Contact Matrix is
based on empirical data, specifically from the study by Mossong et al.17, providing insights into the frequency of interactions
between different age groups or population classes. The Infection Growth Matrix (IGM) is computed from the Contact Matrix
as R= (L/g) ·C by adjusting the parameter L/g to achieve a realistic spectral radius of kRk= 3, which is commonly
observed in epidemics with COVID-like characteristics. The three age classes indicated as Y,M,E correspond to Young (0-19
years old), Median (20-69), and Elder (70+) individuals.

Y (00-19) M (20-69) E (70+)
population N 11.316.741 40.776.591 10.297.032
mortality µ 0.001 0.008 0.148

Table 2. Population distribution and mortality rates for different age classes. The table presents the population counts Ni for
each age class (Y: Younger, M: Median, E: Elder) and their corresponding mortality rates µi. Population data are available from
the website of the Italian National Institute of Statistics (ISTAT) at the url https://esploradati.istat.it/ while
mortality data are relative to the 2020’s COVID-19 risk assessment38.
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Figure 1. A 3D visualization of the Herd Immunity Surface (HIS) for a population divided into three classes: Young (0-19
years old), Median (20-69), and Elders (70+). The axes represent the fraction of individuals resistant to the epidemic, including
those who are vaccinated or have recovered from the disease. In this visualization, the HIS (depicted in green) corresponds to a
scenario with the Infection Growth Matrix (IGM) of Table 1. The red region represents unstable states where the epidemic
grows. The HIS, as a complex multi-dimensional surface, highlights the existence of multiple herd immunity thresholds.
Choosing a specific point on the HIS becomes a strategic decision with profound ethical, economic, and societal implications,
demonstrating the intricate balance required in heterogeneous populations when designing vaccination strategies.
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Figure 2. A depiction of a two-dimensional Herd Immunity Surface (HIS) represented as a line. The HIS corresponds to an
SIR/SEIR model with two classes, characterized by specific parameters: 1/R11 = 0.5, 1/R21 = 0.9, 1/R22 = 0.45,
1/R12 = 0.85. The HIS effectively separates regions into stable and unstable categories. In the region labeled "1 UNSTABLE",
infections in class 1 increase, while infections in class 2 decrease. This behavior suggests that class 2 has effectively reached its
herd immunity threshold, rendering it more resistant to infections. Similarly, in the region labeled "2 UNSTABLE", infections
in class 2 increase, while infections in class 1 decrease, signifying that class 1 has reached its herd immunity threshold. Using
the notation of eq. 8, the HIS H ⇤ represents the boundary of the stable set H = H{1,2} for all classes. The HIS H ⇤

{1} for class
1 demarcates the boundary of the stable set H{1} encompassing the stable region H and the "2 UNSTABLE" region. Similarly,
the HIS H ⇤

{2} for class 2 outlines the boundary of the stable set H{2} encompassing the stable region H and extending into the
"1 UNSTABLE" region.
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Figure 3. Optimizing Vaccination Policies for Stakeholder Preferences: the Pareto Frontier showcases efficient vaccination
policies, catering to diverse stakeholder preferences. The Pareto Front’s dynamic shapes reflect the nuanced interests of
stakeholders, influencing policy outcomes. Efficient policies are the ones on the Heard Immunity Surface and represent the
minimum threshold to be reached to achieve herd immunity. Collaborative efforts among stakeholders are necessary to drive
the optimization of vaccination policies for collective benefit. Having many possible efficient policies, it is possible that
conflicts set in among interest groups or stakeholders with different interests.
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Figure 4. Vaccination policies optimized to reach herd immunity while minimizing the overall mortality for a vaccine with a
95% effectiveness rate, considering varying vaccine availability (no feasible solution can be found for a vaccine availability
. 64.58%). The horizontal axis represents the fraction v of the population eligible for vaccination, while the vertical axis
indicates the percentage of individuals per class who need to be vaccinated to achieve the Herd Immunity Surface (HIS). The
example demonstrates how vaccination policies differ based on vaccine availability, even when the goal remains the same.
Given the higher mortality rates among the elderly population, the optimal strategy is to vaccinate all Elders (100%) to
maximize the impact. However, for lower vaccine availability (less than ⇠ 79% of the population), prioritizing Younger
individuals becomes more effective due to their stronger influence on the contact matrix. In contrast, with larger vaccine
supplies, focusing efforts on middle-aged individuals becomes viable, as they are more numerous and exhibit higher mortality
rates.
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Figure 5. Minimum percentage of the population required to be vaccinated to achieve herd immunity, plotted against vaccine
effectiveness. The blue solid line represents a heterogeneous vaccination policy, allowing different population classes to have
varying percentages of vaccinated individuals, while the red dashed line represents a homogeneous vaccination policy, where
the percentage of vaccinated individuals is the same for all classes. In general, due to the convex nature of the Herd Immunity
Surface parameter region, implementing heterogeneous vaccination policies can help reduce the required resources (i.e.,
vaccines) compared to homogeneous policies. While the homogeneous vaccination may also be exceptionally the optimal
policy, the convexity of the parameter region predominantly favors the advantages of heterogeneous approaches.
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