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Abstract

We provide explicit, simple price formulas for the European options under stochastic volatility and stochastic interest

rate. The formulas are as simple as the classical Black-Scholes formula. Moreover, the formulas do not require the

normality of the returns. We do not need to know the distribution of the returns/price. Furthermore, this approach

enables us to avoid the incomplete markets problem. That is, we relax the key assumptions of the classical Black-

Scholes model without changing their price formula.
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1. Introduction

To overcome some of the limitations of the Black-Scholes model, some models used jump diffusions. These models did

not offer an explicit formula for the price of the European option. That is, it requires a numerical/computational method.

Later models such as Hull and White (1987), Chen et al (2016), Gong and Zhang (2016) and Kleinert and Korbel (2016)

did not offer an explicit (simple) formula. The models with stochastic volatility have similar limitations. .

Empirical studies include Leippold and Schärer (2017), Zhang and Wang (2013), and Zhang et al (2012). Others used a

numerical/computational approach. Examples include Zhou et al (2013) and Martino et al (2015). Alghalith (2020) used a

different process and a different method.

Similarly, studies that dealt with option pricing under a stochastic interest rate relied on numerical/computational methods.

They mainly relied on Monte Carlo simulations, finite difference and/or Fourier transforms. Examples include He and Zhu

(2018) who adopted fast Fourier transforms and Sun and Xu (2018) who employed Monte Carlo methods. Alghalith (2021)
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used a different process and a different method.

In this paper, we overcome these limitations. In doing so, we provide explicit, simple price formulas for the European

options under stochastic volatility and stochastic interest rate. The formulas are as simple as the classical Black-Scholes

formula. Moreover, the formulas do not require the normality of the returns. We do not need to know the distribution of the

returns/price. That is, we relax the key assumptions of the classical Black-Scholes model without changing their price

formula.

2. The model

The dynamics of the price of the underlying asset are given by

dSu = Su rdu + vudWu , (1)

where r is the risk-free interest rate, vu is the stochastic volatility (that meets regularity conditions), and Wu is a Brownian

motion. We do not need to specify the form of stochastic volatility. Also, clearly, the conditional distribution of the price

(given the volatility) is log-normal.

If the returns are not normal, under regular conditions, the option price can be expressed as a weighted average of the

Black-Scholes prices conditional on the volatility as follows

C(t, S) = ∫vi
E e− r(T− t )g ST /vT = vi dF vi = ∫vi

CBS vi dF vi , (2)

where g is the payoff, S is the price at time t, T is the expiry time, F is the cumulative density of vT, and CBS is the Black-

Scholes price.

By the continuity, the expected value is a specific value of CBS denoted by ĈBS = CBS
v̂

i , where v̂i is a value (outcome)

of the volatility. Thus,

C(t, S) = ∫vi
CBS vi dF vi = CBS

v̂
i . (3)

Therefore, the price of the call option is

C(t, S) = SN d1 − e− r(T− t )KN d2 , (4)

where d1 =

ln (S /K )+ r+

v̂2
i

2 (T− t )

v̂2
i (T− t )

 , and d2 = d1 − v̂2
i (T − t) and K is the

strike price.
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Verification

A simple way to verify the result is to let C̃(t, S) be the true (market) price of the option, and C̄(r, S, σ, T − t) be the classical

Black-Scholes price of the European option. By the continuity of C̄, there is a specific value of the volatility parameter σ,

 such as σ̂, so that C̃(t, S) = C̄(r, S, σ̂, T − t). Therefore, the true option price can be expressed using the Black-Scholes

formula (with volatility equal to σ̂).

Estimation Methods

Even in the classical Black-Scholes model, the volatility parameter needs to be estimated and the estimation method is

arbitrary; similarly, the volatility parameter v̂i can be estimated. Moreover, the implied value of v̂i can be computed using

the formula. The (historical) implied values can be used in the estimation of v̂i.

However, we can show that v̂2
i  can be replaced by the expected value of the average of v2

u; to see this

Var

T

∫
t

dSu
Su = E

T

∫
t v2

udu = (T − t)E

T
∫
t v2

udu
T − t . (5)

Numerical Example 1:

If S = K = 100, r = .05, and T − t = 90 days, and the true (market) price of a call is 10, the implied value of ̂vi = 47.73%.

Numerical Example 2:

Using historical data for the S&P 500 Index call options1, for a short maturity and at-the-money, the average of the implied

values of v̂i is 19%.

These historical averages can be used to price options.

3. Stochastic interest rate

In this section, we consider the case of stochastic interest rate but constant volatility. The dynamics of the price of the

underlying asset are given by 

dSu = Su rudu + σdWu , (6)

( ) [ ]

( )
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where σ is the constant volatility and ru is the stochastic interest rate.

If the returns are not normal, the option price can be expressed as a weighted average of the Black-Scholes prices

conditional on the interest rate as follows 

C(t, S) = ∫ri
CBS ri dG ri = CBS

r̂
i , (7)

where G is the cumulative density of rT, CBS is the Black-Scholes price and ̂ri is a value (outcome) of the interest rate.

Therefore, the price of the call option is 

C(t, S) = SN d1 − e− r̂
i(T− t )KN d2 , (8)

where d1 =

ln (S /K )+ r̂
i+σ2 /2 (T− t )

√σ2 (T− t )
 and d2 = d1 − √σ2(T − t).

Similarly, we can show that ̂ri can be replaced by the expected value of the average of ru; to see this

E

T

∫
t

dSu
Su = E

T

∫
t rudu = (T − t)E

T
∫
t rudu
T − t . (9)

4. Alternative method

The price of the underlying asset is given by

Su = Seαu+σXu, (10)

where α and σ are constants and Xu is stochastic. Now, we can rewrite the price as

Su = Seαu+σXu = Seαu+σ

Wu

WuXu, (11)

Therefore, the price can be given by

Su = Seαu+VuWu, (12)

where Wu is a Brownian motion and Vu is a random variable.

Under regular conditions, the option price can be expressed as a weighted

average of the Black-Scholes prices conditional on V as follows

( ) ( ) ( )

( ) ( )
( )
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C(t, S) = ∫vE e− r(T− t )g ST /VT = v dF(v) = ∫vCBS(v)dF(v), (13)

where g is the payoff, T is the expiry time, F is the cumulative density of V, and CBS is the Black-Scholes price. By the

continuity, the expected value is a specific value of CBS denoted by ĈBS = CBS
v̂  , where v̂ is a value (outcome) of V.

Thus,

C(t, S) = ∫vCBS(v)dF(v) = CBS
v̂ . (14)

Therefore, the price of the call option is

C(t, S) = SN d1 − e− r(T− t )KN d2 , (15)

where d1 =

ln (S /K )+ r+

v̂2

2 (T− t )

v̂2 (T− t )
, and d2 = d1 − v̂2(T − t).

Conclusion

We showed that the key assumptions of the Black-Scholes model can be relaxed without complicating the analysis. Not

only we relaxed the assumptions of normality, and constant volatility/interest rate, we provided price formulas that are as

simple as the classical Black-Scholes formula. This makes option pricing much easier.

 

Footnotes

1 Obtained from https://citeseerx.ist.psu.edu/document?

repid=rep1&type=pdf&doi=97da7138bfd3fdda62fc9c9ddc6b74454ee2759c 
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