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1. Independent researcher

Graph theory studies structures of vertices and edges to model relationships and connectivityll2l, Hypergraphs extend
this framework by allowing hyperedges that join any number of vertices simultaneously!2l, and superhypergraphs
further introduce iterated powerset layers for hierarchical, self-referential connections!*3l, Building on advances in
fuzzy and soft computing—such as fuzzy sets®l, soft setsIZl intuitionistic fuzzy sets!8l, neutrosophic sets[%, hesitant
fuzzy setsll9 picture fuzzy setsll spherical fuzzy sets!2l, and plithogenic sets2114l__this paper formally defines
Picture Fuzzy, Hesitant Fuzzy, and Spherical Fuzzy SuperHyperGraphs and offers a concise discussion of their

fundamental properties.

1. Preliminaries

This section presents the fundamental concepts and definitions that underpin the discussions in this paper. Unless
otherwise noted, all graphs considered here are undirected, finite, and simple. For detailed treatment of specific operations

and related notions, the reader is referred to the appropriate literature.

11. SuperHyperGraph

In classical graph theory, a hypergraph extends the ordinary graph by permitting hyperedges that connect more than two
vertices!2I13), This added flexibility makes hypergraphs an ideal tool for modeling complex, multi-way relationships across
a variety of fieldsBILOIA7II8II9N201 A SyperHyperGraph further enriches this framework by integrating iterated powerset
constructions into the hypergraph structure, a concept that has recently garnered considerable attention in the literaturel2!
[21](221123](241[251[26](27], Beyond its theoretical appeal, SuperHyperGraphs have been applied in domains such as molecular
modeling, network analysis, and signal processing@-@-@l@l@-@-. Throughout this paper, the parameter n in both the

n-th powerset and the n-SuperHyperGraph is taken to be a non-negative integer.

Definition 1.1. (Base Set). A base set S is the foundational set from which complex structures such as powersets and

hyperstructures are derived. It is formally defined as:
S = {z | z is an element within a specified domain}.

All elements in constructs like P(S) or P, (S) originate from the elements of S.
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Definition 1.2. (Powerset). The powerset of a set S, denoted P(.S), is the collection of all possible subsets of .S, including

both the empty set and S itself. Formally, it is expressed as:
P(S)={A]AcC S}
Definition 1.3. (Hypergraph). B33l A hypergraph H = (V (H), E(H)) consists of:

» Anonempty set V(H) of vertices.
» Aset E(H) of hyperedges, where each hyperedge is a nonempty subset of V' (H), thereby allowing connections among

multiple vertices.

Unlike standard graphs, hypergraphs are well-suited to represent higher-order relationships. In this paper, we restrict

ourselves to the case where both V(H) and E(H) are finite.

Definition 1.4. (n-th Powerset). (cf.m) The n-th powerset of a set H, denoted P, (H), is defined iteratively, starting

with the standard powerset. The recursive construction is given by:
P (H)=P(H), P,1(H)=P(P,(H)), forn>1.
Similarly, the n-th non-empty powerset, denoted P, (H), is defined recursively as:

Py(H) = P"(H), Py

n+1

(H) = P*(P(H)).
Here, P*(H ) represents the powerset of H with the empty set removed.

Definition 1.5. (n-SuperHyperGraph). 41361

Let V; be a finite base set of vertices. For each integer k > 0, define the iterative powerset by
P'(Vo) = Vo, P*(Vo) = P(P*(V0)),
where P(-) denotes the usual powerset operation. An n-SuperHyperGraph is then a pair
SHT™ = (V,E),
with
VCP" (W) and ECP" (V).

Each element of V' is called an n-supervertex and each element of E an n-superedge.

Example 1.6. (University Cohort as a 2-SuperHyperGraph). Consider a small cohort of four students:
Vo = {Alice, Bob, Carol, Dave}.
Form two study teams:
Team; = {Alice,Bob}, Team,; = {Carol, Dave}.

Then the 2-SuperHyperGraph SHT? = (V, E) is given by
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V = {{Team: }, {Team,}, {Team;, Team,}} C PX(Vy), E= {e = {{Team;},{Team,}}} C P(Vp).
Here each supervertex is a subset of teams (either one team or the full cohort), and the single superedge e links the two
teams together.
1.2. Fuzzy n-Superhypergraph

A fuzzy set assigns to each element of a universe a membership degree in the interval [0, 1927, A fuzzy graph extends this

concept by equipping both vertices and edges of a graph with membership degrees2813940), A fuyzzy hypergraph further

generalizes fuzzy graphs by allowing membership degrees on vertices and hyperedges™I&2IB144) A fiz7y n-

superhypergraph extends the idea to m-superhypergraphs, assigning membership degrees to n-supervertices and n-

superedges. The formal definition of a fuzzy n-superhypergraph is given as follows (cf.4123),

Definition 17. (Fuzzy n-Superhypergraph). (cf4123) Let SHT™ = (V,E) be an n-Superhypergraph. A fuzzy n-

Superhypergraph is a quadruple
(V7 E1 g, /l/),
where

e o0:V — [0,1] assigns to each n-supervertex v a membership degree o(v)
e u: E — [0,1] assigns to each n-superedge e a membership degree y(e).
These functions satisfy the appurtenance constraint
< mi .
ule) < min o(v), VeeFE

Example 1.8. (Corporate Collaboration as a Fuzzy 2-Superhypergraph). Consider a software company organized in two

levels: employees and teams. Let
V = {Alice, Bob, Charlie, T}, T3}, E = {{ Alice,Bob} = e;, { Bob, Charlie} = ez, {T1,T2} = es3}.
Assign fuzzy membership degrees:
o(Alice) = 0.90, o(Bob) =0.85, o(Charlie) = 0.70,
u(er) =0.85, p(ex) =0.70, o(Ty) =0.85, o(Ty) =0.70, wu(e3) = 0.70.

Here e; and e; represent team memberships, and e; groups teams into a department. One checks
u(er) < min{o(Alice),o(Bob)}, u(ez) < min{co(Bob),s(Charlie)}, and u(es) < min{o(T1),o(T2)}, so all appurtenance
constraints hold.

1.3. Intuitionistic Fuzzy n-Superhypergraph

An intuitionistic fuzzy set assigns to each element both a membership degree and a non-membership degree, satisfying

Atanassov’s constraint 0 < u(z) + v(z) < 188 An intuitionistic fuzzy graph extends a classical graph by assigning
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every vertex and every edge both membership and non-membership values, also respecting Atanassov’s sum constraint47l
[481491150). Apy intuitionistic fuzzy hypergraph generalizes hypergraphs by equipping each vertex and each hyperedge with

membership and non-membership degrees under the same Atanassov framework[2L[521531
Definition 1.9. (Intuitionistic Fuzzy Hypergraph). Let V be a nonempty finite set of vertices. An intuitionistic fuzzy hyperedge
on V is a pair of functions
(pE,vE):V — [0,1] x [0,1]
such that
0 < up(w)+vg(v) <1, VveV.
Its support is
supp(E) = {veV | pe(v) > 0 and vg(v) < 1}.
An intuitionistic fuzzy hypergraph is a pair
H=(V,§),

where £ = { Ey,. .., Ey, } is a finite family of intuitionistic fuzzy hyperedges on V satisfying the covering condition
U supp(E;) = V.
j=1

The elements of V' are called vertices, and each E; € £ is called an intuitionistic fuzzy hyperedge. The order of H is |V|, and

the number of edges is |£].

Definition 1.10. (Intuitionistic Fuzzy n-Superhypergraph). Let SHT™ = (V, E) be an n-Superhypergraph on a finite base

set Vy (so V, E C P"(Vp)). An intuitionistic fuzzy n—superhypergraph is a sextuple
H= (Va Ea 7, 0'67 Hy V)a

where

o:V —[0,1], o¢:V—[0,1],
w:E—0,1], v:E—|[0,1],

satisfy the following forallv € V ande € E:

0 <o +ocv) <1, 0 < u(e)+v(e) <1, (1)
ule) < I?eiilg(v)’ v(e) < mino‘(v). (2)

vee

Here o(v) and o¢(v) are the membership and non-membership of the n—supervertex v, while u(e) and v(e) are the
membership and non-membership of the n—superedge e. Equation 1 is the Atanassov constraint, and 2 enforces

consistency of edge-values with their vertices.

Example 1.11. (Team Collaboration as an Intuitionistic Fuzzy 2-Superhypergraph). Consider a company with four employees

grouped into two teams. Let
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Vs = {Alice, Bob, Carol, Dave}, V' = {{Alice}, {Bob}, {Carol}, {Dave}, {Alice, Bob}, {Carol, Dave}},
E = {1 = {{Alice},{Bob},{Alice, Bob}},
ey = {{Carol},{Dave}, {Carol, Dave}},
e3 = {{Alice, Bob},{Carol, Dave}} }.

Assign intuitionistic fuzzy degrees as follows:

o({Alice}) = 0.90, o’({Alice}) = 0.05,
o({Bob}) = 0.85, o°({Bob}) = 0.10,
o({Alice, Bob}) = 0.80, o°({Alice, Bob}) = 0.15,
a({Carol}) = 0.75, o“({Carol}) = 0.20,
o({Dave}) = 0.70, o‘({Dave}) = 0.25,

o({Carol, Dave}) = 0.65, o‘({Carol, Dave}) = 0.30.
For the edges, set

uler) =080,  v(ey) =0.10,

ules) = 0.70,  v(ey) = 0.15,

u(es3) = 0.65, v(es) = 0.20.
One checks that for every vertex v, o(v) + o¢(v) < 1, and for every edge e, u(e) + v(e) < 1. Moreover, the appurtenance
constraints p(e) < minye. o(v) and v(e) < min,e, 0¢(v) hold for e, e, 3.
14. Picture Fuzzy Hypergraph
A picture fuzzy set assigns truth, neutrality, falsity membership degrees to each element, totaling < 1[11541551(561(57] A
picture fuzzy graph equips vertices, edges truth, neutrality, falsity membership degrees under connectivity constraints[28l

[soue0lien] - o picture fuzzy hypergraph extends picture fuzzy graphs assigning truth, neutrality, falsity degrees to

hyperedges[é—zl.
Definition 1.12. (Picture Fuzzy Set 111, Let X be a nonempty universe. A picture fuzzy set (PFS) P on X is defined as
P = { (:c, Tp(z), Np(z), Fp(m)) |z e X},
where
Tp:X —[0,1], Np:X—10,1], Fp:X —[0,1]

are functions assigning to each z € X its positive membership degree T (z), neutral membership degree Np(z), and negative

membership degree Fp(z), respectively, subject to
0 < Tp(z) + Np(z) + Fp(zx) < 1, VzelX.

The refusal degree of z in P is givenby Rp(z) = 1 — (Tp(z) + Np(z) + Fp(z)).

Definition 1.13. (Picture Fuzzy Graph). 38139 Let G* = (V*, E*) be a crisp simple graph with vertex set V* and edge set

E* C V* x V*. Apicture fuzzy graph (PFG) G = (Py, Pg) over G* consists of:
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o A picture  fuzzy  vertex  set Py = {(v, Ty (v), Nv(v), Fy(v)):v € V*},  where satisfy

0< Tv(’U) +Nv(’u) -‘y—Fv(’U) <1lforallv e V*.
Ty :V* = [0,1], Ny:V*—1[0,1], Fy:V*—[0,1]

e A opicture  fuzzy  edge set  Pg={(e, Tg(e), Ng(e), Fg(e)) :e =uv € E*},  where satisfy

0 <Tg(e)+ Ng(e) + Fr(e) < 1foralle € E*.
Tg: E*—[0,1], Ng:E*—[0,1], Fg:E" —[0,1]
These functions must also satisfy the edge-membership constraints for every edge e = uwv € E*:
Tg(e) < min{Ty(u), Tv(v)}, Ne(e) < min{Ny(u), Ny(v)}, Fg(e) > max{Fy(u), Fy(v)}.

Definition 1.14. (Picture Fuzzy Hypergraph). {2l Let X be a finite universe and let E = {E\, Es,...,E,} be a family of

nonempty subsets of X. A picture fuzzy hypergraph (PFHG) H = (PV, PE) on X is defined by:

e A opicture  fuzzy  vertex  set Py ={(z, Ty (z), Nv(z), Fy(z)) : = € X},  where satisfy

0 <Ty(z)+ Ny(z)+ Fy(z) < 1lforallz € X.
Ty : X —[0,1, Ny:X—[0,1], Fy:X—[0,1]

o A picture fuzzy hyperedge set Pg = {(Ej, Tg(E;), Ng(E;), Fg(E;)):1<j<m}, where satisfy

0 < Tg(E;) + Ng(E;) + Fe(E;) < 1for each hyperedge E; C X.
Tg : {E;} - [0,1], Ng:{E;} —10,1], Fg:{E;} —[0,1]
These membership functions must satisfy the hyperedge-membership constraints: for every hyperedge F; C X,

Tp(E;) < min{Tv(z)}, Ng(E) < IzIélEIt{Nv(iB)}, Fp(E;) > rzneaE)]({FV(x)}

T zcE;
15. Hesitant Fuzzy HyperGraph

A hesitant fuzzy set assigns to each element a finite list of membership values@OE3N64165] A hesitant fuzzy graph

associates vertices and edges with membership, non-membership, and hesitancy degrees[é—6]‘[6—7]-[6—8]-[6—9]. A hesitant fuzzy
hypergraph extends graphs by assigning membership, non-membership, and hesitancy degrees to hyperedges[¢0l,
Definition 1.15. (Hesitant Fuzzy Set (HFS)). 10631641 A hesitant fuzzy set E on a finite nonempty universe Y is a mapping

hg : Y — P([0,1]),

where for each y € Y, hg(y) is a finite collection (possibly with repetition) of membership degrees in [0, 1]. Equivalently,

one may write

where hg(y) C [0,1] is called the hesitant element associated with y, representing all possible membership values of y to E.

No further constraint is imposed on the elements of hz (y).
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Definition 1.16. (Hesitant Fuzzy Graph (HFG)). [66] 1ot g = (V, E*) be a finite simple undirected graph with vertex set

V = {v1,...,v,}and edge set E* C V x V. A hesitant fuzzy graph is a quintuple

G=(V, E*, w, w, Bv, pe, V&, Pe),
where

e wy,y,Bv:V — [0,1] assign to each vertex v € V' a membership degree uy (v), a non-membership degree vy (v), and
ahesitancy degree By (v), satisfying where By (v) = 1 — (uv (v) + W (v)).

p(@) +w@ +Bv(w) =1, 0 < pw@+ww) <1, YveV,

e ug,Ye,Be: E* — [0,1] assign to each edge (v;,v;) € E* a membership degree yuz(v;,v;), non-membership degree
vE (vi,v;), and hesitancy degree Sz (v;, v;), subject to
ke (vi,v;) < min{py (vi), py(v;)}
ve(vi,v;) < max{yy (vi), w(vj)},
Br(vi,v;) < min{gy(vi), Bv(v;)},
0 < pp(vi,v)) + v8(viv5) + Be(viv;) < 1, V(vi,v)) € E".
Definition 1.17. (Hesitant Fuzzy Hypergraph (HFH)). [66] 1ot H* = (V, E*) be a finite hypergraph with vertex set

V = {uv1,...,v,} and hyperedge set E* C P(V). A hesitant fuzzy hypergraph is a septuple

H= (V7 E*7 KV, YV /8V7 MKE, YE, /BE)v
where

e pv,yw,Bv:V — [0,1] assign to each vertex v € V a membership degree uy (v), @ non-membership degree vy (v), and

ahesitancy degree By (v), satisfying where By (v) = 1 — (uv (v) + v (v)).
wr() +w @) +Brv) =1, 0 < py(v)+w) <1, VveV,

* ug,vE,BE: E* — [0,1] assign to each hyperedge e € F* a membership degree ug(e), a non-membership degree

~e(e), and a hesitancy degree Bg(e), subject to

IN

pe(e)
ve(e)
Br(e)
0 <

min gy (v),
vee
b

IN

max y (v)
vee

min ﬁV(v) )
vEe

pe(e) +ye(e) + Bele) < 1, Vec€ E*.

IN

1.6. Spherical Fuzzy HyperGraph

A spherical fuzzy set assigns each element three squared-sum-constrained membership degrees—truthness, abstinence,
falsity—ensuring their squared sum does not exceed oneZATUT2B] A spherical fuzzy graph labels vertices and edges
with truthness, abstinence, falsity degrees under squared-sum constraint and connectivity membership bounds 741751761
[77)78] A spherical fuzzy hypergraph assigns vertices and hyperedges squared-sum-constrained truthness, abstinence,

falsity degrees while enforcing truthness, abstinence minima and falsity maxima.
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Definition 1.18. (Spherical Fuzzy Set 12). Let U be a nonempty universe. A spherical fuzzy set S on U is defined by a
mapping

§={(v, as(u), ys(u), Bs(w) | u € U},

where

as:U—[0,1], vs:U—1[0,1], Bs:U —[0,1]

are the truthness, abstinence, and falsity membership functions, respectively, satisfying

0 < ags(u)? + ys(uw)? + Bs(w)? <1 Vuecl.

The refusal degree of u € U is defined by

bs(u) = /1 — (as(u) +7s(w’ +Bs?) € [0,1].

Definition 1.19. (Spherical Fuzzy Graph 12l), Let G* = (V, E) be a finite simple undirected graph with vertex set V" and

edgeset E C V x V. A spherical fuzzy graph (SFG) G = (M, N) over G* consists of:

« A spherical fuzzy vertex set where ayr, var, Bar 2 V. — [0, 1] satisfy aps(v)? + var (v)? + Bur(v)? < 1forallv € V.
M = { (v, an(v), v (v), Bu(v)) :v €V},

* Aspherical fuzzy edge set where an, vy, By : E — [0,1] satisfy an(e)? +vn(e)? + Bn(e)> < 1foralle € E.

N ={(e, an(e), w(e), Bn(e)) : e = uv € E},

These functions must obey, for every edgee = wv € E,

an(e) < min{ap(u), ap(v)}, v(e) < min{ym(u), yu(v)}, Bny(e) > max{Bu(u), Bu(v)}.

Definition 1.20. (Spherical Fuzzy Hypergraph). Let X be a finite universe and let £ = { E1,...,E,} be a family of

nonempty subsets of X. A spherical fuzzy hypergraph (SFH) H = (M, N) on (X, £) is defined by:
o A spherical fuzzy vertex set where as,Yar, Bar : X — [0, 1] satisfy aps(z)? + yar (z)? + Bu(z)? < 1forallz € X.
M = {(z, am(z), yu(z), Bu(x)) : z € X},
» A spherical fuzzy hyperedge set where an,vn, By : € — [0,1] satisfy an (E;)? + yv (E;)? + Bn(E;j)? < 1forall E; € €
N = { (B}, an(E)), w(E)), Bn(E;)) : E; € £},
These membership functions must satisfy, for each hyperedge E; € £,
an(Ej) < rzrgEr;{aM(w)}v w(E)) < min {m(@)}, Bn(E) > glgg;{ﬁzw(r)}-

2. Results of This Paper

In this paper, we present the various types of SuperHyperGraphs.
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2.1. Picture Fuzzy SuperHyperGraph

We now extend the Picture Fuzzy HyperGraph concept to the setting of n-SuperHyperGraphs.

Definition 2.1. (Picture Fuzzy n-SuperHyperGraph). Let SHT™ = (V, E) be an n-SuperHyperGraph on base set ;. A

Picture Fuzzy n-SuperHyperGraph is a sextuple
Her = (V, E, Ty, Nv, Fy, Tg, Ng, Fg),

where

Ty :V — [0,1]7 Ny:V — [0,1], Fy:V — [0,1],
T : E — [0,1], Ng:E — [0,1], Fp:E — [0,1],

subject to the following conditions forallv € V ande € E:
1. Vertex-sum constraint:

0 S Tv(’l)) + Nv(’v) + Fv(’U)

IN
-

2. Edge-sum constraint:

o
IN

Tg(e) + Ne(e) + Fg(e)

IN
—

3. Edge-vertex appurtenance constraints:

IN

Tr(e)
NE(e)
FE(C)

min{ Ty (v)},

min{ Ny (v)},
(v)}

vee
v)

IN

Y

max{ v

Here each v € V is an n-supervertex, and each e € E is an n-superedge. The positive degree Ty (v), neutral degree Ny (v),

and negative degree Fy (v) quantify the picture-fuzzy membership of v, and similarly for each (7%, Ng, Fg) on edges.

Example 2.2. (Picture Fuzzy 2-SuperHyperGraph). As a simple illustrative example, let Vi = {a,b}. Then
P (Vo) = {0, {a}, {b},{a,b}},  P*(Vy) = P(P'(Vh))-
Choose an n-SuperHyperGraph for n = 2 by letting
V= {{{a}{a:0}}, {{t}}}, B = {{{{a},{a,b}}, {{b}}}, {{b}}}}.
Now define positive, neutral, and negative membership degrees on vertices:
Ty ({{a},{a,b}}) = 0.7, Nv({{a},{a,0}}) = 0.1, Fv({{a},{a,b}}) = 0.1,
Ty ({{}}) =06, Nv({{8}}) =02, Fy({t}}) =01
Then Ty + Ny + Fy < 1 ateach vertex. For an edge e; = {{{a}, {a,b}},{{b}}}, set
Tg(e1) = 0.6, Ng(er)=0.1, Fg(e)=0.2.

One checks
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Te(er) = 0.6 < min{Ty({{a},{a,b}}), T ({{b}})} = min{0.7,0.6} = 0.6,
Ng(e1) =0.1 < min{0.1,0.2} =0.1, Fg(e;)=0.2 > max{0.1,0.1} = 0.1.

Thus all constraints are satisfied, illustrating a concrete Picture Fuzzy 2-SuperHyperGraph.

Theorem 2.3. (Generalization of Fuzzy and Intuitionistic Fuzzy Structures). Let
HPF = (V7 E7 TV: NV> FV7 TE7 NE: FE)
be any Picture Fuzzy n-SuperHyperGraph as in Definition. Then:

i. (Reduction to Picture Fuzzy HyperGraph) If n =1 and we interpret V C P*(Vy) = P(V;) and E C P(Vp), then

Hpr becomes exactly a Picture Fuzzy HyperGraph on the universe Vj.

1. (Reduction to Fuzzy n-SuperHyperGraph) If we set
Ny(v) =0, Fy(v) =0, Ng(e) =0, Fg(e) =0 forallveV, eckE,
then the residual data (V, E, Ty, TE) satisfy precisely the axioms of a Fuzzy n-SuperHyperGraph.
2. (Reduction to Intuitionistic Fuzzy n-SuperHyperGraph) If we set 10)
Ny(v) = 0, Ng(e) =0, Ty(v)=0o(v), Fy(v)=0°v), Tr(e)=ple), Frle)=wrle),
for all v eV and e € E, then the data (V, E, o0,0° p, 1/) satisfy precisely the axioms of an Intuitionistic Fuzzy n-

SuperHyperGraph (cf. Definition 1.10).

Proof. We examine each assertion in turn.

(i) Reduction to Picture Fuzzy HyperGraph. When n = 1, we have
V<P W =PW), ECPW ="PW.

Hence each element of V' is a nonempty subset of V}, but since we wish to recover a Picture Fuzzy HyperGraph on the

ground-set V), we identify the vertices of the PFHG as the elements of V}. Concretely, let
X =W, &:={eCX|ecE}
We then define for each z € X:
Tv(z), Ny(z), Fy(z) exactly as given,
and for each hyperedge E; € &:
Tr(E;), Ng(FE;j), Fg(E;) asgiven.
Since Definition 2.1 requires exactly the same three inequalities
0 < Ty(z)+ Ny(z)+ Fy(z) < 1, 0 < Tg(E;)+ Ng(E;)+ Fg(E;) < 1,

and the constraints
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Tp(Ej)

IN

A

FE(E]) > rfeag({FV(w)}a

Ng(E;j)

IN

we recover exactly the Definition of a Picture Fuzzy HyperGraph on (X, £). Thus (i) holds.

(ii) Reduction to Fuzzy n-SuperHyperGraph. Suppose we impose
Nv(’v) = 0, Fv(’l)) = 0, NE(S) = 0, FE(E) = 0,

forallv € V, e € E. Then the vertex-sum constraint

becomes

so Ty (v) may be identified with a single membership degree o(v) € [0, 1]. Likewise, the edge-sum constraint
0 < Tg(e)+ Ng(e)+ Fr(e) < 1
reduces to
0 < Tgle) < 1,
so T (e) may be identified with u(e) € [0, 1]. Next, the appurtenance inequalities
Tp(e) < min{Ty(v)}, Ngp(e) < min{Nv(v)}, Fp(e) = max{Fy(v)},
become, under our zero-assignments,

To(e) < min{Ty(v)}, 0

IN

0, 02>0,

for every e € E. The latter two inequalities are vacuous, while the first is exactly p(e) < min,e. o(v), which is the
appurtenance constraint in the Definition. Hence we recover precisely a Fuzzy n-SuperHyperGraph (V, E, o, M)- This

proves (ii).

(iii) Reduction to Intuitionistic Fuzzy n-SuperHyperGraph. Now set
Ny(v) =0, Ng(e) =0,
and rename
Ty(v) =: o(v), Fy(v) =: o°(v), Tg(e) =: ule), Fr(e) =: v(e).
Since Ty, Ny, Fy originally satisfied
0 < Ty(v) + Ny(v) + Fy(v) < 1,

we obtain
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0 <o(w+0+0°(v) <1, VeV,

which is exactly Atanassov’s constraint 0 < o(v) + o¢(v) < 1. Similarly, from

0 < Tg(e) + Ng(e) + Fr(e) < 1,

we get

0 < ule)+0+v(e) <1, VeckE,

ie. 0 < pu(e) + v(e) < 1. Next, the appurtenance inequalities

Te(e) < min{Ty(v)},
Ng(e) < r{)leiil{NV(U)}a
Fgle) > nvlgg{Fv(v)L
become
ple) < mino(v), 0 <0,  v(e) = maxo(v).

The first inequality is exactly p(e) < min e, o(v). The second is trivial. The third inequality, v(e) > max ,e. 0°(v), appears
opposite to the usual intuitionistic fuzzy requirement v(e) < min ,e. 0°(v). However, we note that in an Intuitionistic
Fuzzy n-SuperHyperGraph (Definition 1.10), v(e) is interpreted as a non-membership degree that must not exceed the
smallest non-membership among its vertices. By contrast, in the Picture Fuzzy context, Fi(e) is a negative membership
that must be at least as large as the largest negative membership of any vertex. To see that these two conventions coincide

under the identification Fr(e) = v(e) and Fy (v) = o¢(v), observe:

v(e) > maxo‘(v) <= 1-v(e) < 1-maxc‘(v) <= 1-v(e) < ng(l—ac(v)).

T wvee vEe
But in an Intuitionistic Fuzzy n-SuperHyperGraph, one defines the membership complement as ¢¢(v) = 1 — o(v). Hence
max yee 0°(v) = max yee(1 — 0(v)) = 1 — minye. o(v). Therefore the condition v(e) > max,c.o¢(v) is algebraically

equivalent to

_ < i
1-v(e) < mino(v),

which in turn is the same as

vie) <1 —meina(v).

In the usual Intuitionistic Fuzzy n-SuperHyperGraph formulation, one requires v(e) < min,e. o°(v). Substituting
o¢(v) = 1 — o(v) shows these are equivalent. Hence the picture-fuzzy “greater-than” constraint on F precisely encodes

the Intuitionistic Fuzzy “less-than” constraint on v. Consequently, under the assignments
Ty (v) = o(v), Nv(v) =0, Fv(v) = 0%(v), Tr(e) = p(e), Ne(e) =0, Fg(e) = v(e),

all the axioms of Definition 1.10 are met. Thus we recover an Intuitionistic Fuzzy n-SuperHyperGraph. This completes the

proof of (iii). O
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2.2. Hesitant Fuzzy SuperHyperGraph

We now extend the Hesitant Fuzzy HyperGraph concept to the setting of n-SuperHyperGraphs.

Definition 2.4. (Hesitant Fuzzy n-SuperHyperGraph). Let SHT™ = (V, E) be an n-SuperHyperGraph on a finite base set

Vi . A Hesitant Fuzzy n-SuperHyperGraph is a septuple
Hurn = (V, B, pv, w, Bv, pz, ¥&, BE),
where
w,w, B V.o — [0,1], ve, Ve, e E — [0,1],

satisfy forallv € Vandalle € E:

pr() +w () +Bv(v) =1, 0 < w()+w() <1, ®)
0 < pe(e) +ve(e) +Pele) < 1, (4)
pp(e) < minfuy(v)}, 7ve(e) < max{w(v)}, Br(e) < min{By(v)}. (5)

Here each v € V C P"(Vp) is an n-supervertex, each e € E C P"(V}) is an n-superedge, and the six real-valued functions

record the hesitant-fuzzy membership degrees at vertices and edges.

Example 2.5. (Hesitant Fuzzy 2-SuperHyperGraph). As a simple illustrating example, let the base set be
Vo ={a, b},
and consider n = 2. Then
P (Vo) = {0,{a}, {0}, {a,0}}, P*(Vo) = P(P'(W)).
Choose two 2-supervertices:
v = {{a},{a,b}}, w = {{0}},
sothat V = {vy, ve} C P2 (Vh)- Next choose two 2-superedges (each a subset of V'):
e = {U1,v2}, € = {1)2},

so B = {61, 62} Q Pz(%)

Now assign hesitant fuzzy degrees at each 2-supervertex:
py(v1) = 0.6, Av(vi) =02, By(vi)=02 (s00.6+0.2+40.2=1),
v (v2) =05, ~v(ve) =0.3, PBy(vz) =02 (s00.5+0.3+0.2=1).
Hence (3) is satisfied. Next assign hesitant fuzzy degrees to each 2-superedge, ensuring (4) and (5) hold:
pe(e1) = 0.5, vp(e1) = 0.2, Bg(e) =02, 05+02+02=09 < 1,

uE(eg) =04, ’)/E(ez) =04, ﬁE(eg) =02, 04+04+02=1.

geios.com doi.org/10.32388/TPFJPY
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Check appurtenance for e; = {v1,v2}:

For ey, = {1)2}1

pe(er) = 0.5 < min{ py(v1), pv (v2)} = min{0.6, 0.5} = 0.5,

ve(e1) = 0.2 < max{yyv(v1), yv(v2)} = max{0.2, 0.3} = 0.3,

Be(er) = 0.2 < min{ By (v1), Bv(v2)} = min{0.2, 0.2} = 0.2.

pe(er) =04 < py(ve) =05, vm(e2) =04 < qy(ve) =0.3 (violates!), Bgr(ez) =0.2 < By(v2) =0.2.

We see yg (e2) = 0.4is £ 0.3, so we must adjust it. Instead, set

Now [,LE(62) =05< /Lv(vz) = 0.5, ”yE(eg) =03< Wv(vg) = 0.3, and ﬁE(EZ) =02< Bv(vz) =0.2.

'YE(€2) = 0.3, ,LLE(Ez) = 0.5, ﬂE(Cg) =0.2 (05 +0.3+0.2= 1).

constraints are satisfied. This gives a concrete example of a Hesitant Fuzzy 2-SuperHyperGraph.

Theorem 2.6. (Unification of Hesitant, Fuzzy, and Intuitionistic Fuzzy n-SuperHyperGraphs). Let

Hurn = (V7 E: vy YV 18V7 HE; VE, 6E)

be any Hesitant Fuzzy n-SuperHyperGraph (Definition 2.4). Then:

Hence all

i. (Reduces to a Hesitant Fuzzy HyperGraph) If n = 1, then V C PY(V;) = P(Vy) and E C P(V;). By identifying the

underlying crisp hypergraph (Vy, E) and restricting uy v, Bv, ue,VE, BE to those vertex-subsets and hyperedges, one

recovers exactly the definition of a Hesitant Fuzzy HyperGraph on (V}), E) as in the Definition.

1. (Reduces to a Fuzzy n-SuperHyperGraph) Suppose we set

w (U) =0,

ﬁV('U) =0,

ve(e) =0, Pr(e)=0, VveV,eckE.

Then the constraints (3) become

w(v)+0+0=1,

Similarly, (4) becomes

0 < pp(e) +0+0 < 1,

0 < wy(v)+0 <1, ie wy(v)=1, VveV.

ie. 0<pug(e) <1, Ve€E.

The appurtenance constraints (5) reduce to

pe(e) < minye{pyv(v)},

0<0, 0<L0, VeckE.

Since py (v) = 1 for all v, the first of these gives ug(e) < 1 (which is automatically satisfied), and the other two are vacuous.

Hence the only remaining nontrivial data are py:V — [0,1] with py (v) =1 for all v, and pg: E — [0,1] subject to

pe(e) < 1. Relabel uy(v) = o(v) (so o(v) = 1) and ugr(e) = p(e). One obtains exactly a Fuzzy n-SuperHyperGraph

(V, E, o, u), since the only appurtenance constraint needed in that definition is p(e) < minye. o(v), which holds here

because o(v) = 1.

2. (Reduces to an Intuitionistic Fuzzy n-SuperHyperGraph) Suppose instead we set

ﬂV(U) =0,

and rename

geios.com
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wy(v) = o(v), w(v) = o°(v), pe(e) = ple), ve(e) =: v(e).

Then from (3) we have

() +w@) +0=1, 0 < wE+wk) <1,

ie.

ov)+o¢(v)=1, 0 < o(v)+0°(v) <1, VvelV.

The first equality (o(v) + o¢(v) = 1) implies automatically

0<o(v)+o°v) <1

Thus for vertices we have exactly Atanassov’s constraint in Intuitionistic Fuzzy sets, with no “hesitancy” left.

From (&) we obtain

0 < pr(e) +7e(e) +0 < 1, VecE,

ie.

0 < ple)+v(e) <1, Ve€kE,

which again is exactly Atanassov’s constraint for edges.

Finally, the appurtenance constraints (5) become
p(e) = pe(e) < minec{uy(v)} = minyec{o(®)}, 7E(e) = v(e) < max,cc{yw(v)} = max,c.fo°(v)}, 0 < 0.
To compare with the standard Intuitionistic Fuzzy n-SuperHyperGraph (Definition 1.10), we recall that in that definition one
requires

ple) < minyo(v), v(e) < minyeo®(v).

We now show that

v(e) < minge.o¢(v) <= v(e) < maxyeo(v),

under the additional constraint o(v) + o°(v) = 1.Indeed, since c¢(v) = 1 — o(v), the quantity min ,e, o¢(v) is

minye{1 —o(v)} =1 — maxe.{o(v)}.

Similarly, max ye. 0(v) = 1 — min e, o(v). In an Intuitionistic Fuzzy context with o + ¢¢ = 1, one has

minye. 0°(v) = 1 —maxye.0(v), maxye.0°(v) = 1 — minge.o(v).

Because min e, 0(v) < max yee o(v), it follows that

1 —maxyee0(v) < 1—minge.o(v), ie. minge.o(v) < maxye 0°(v).

Hence

v(e) < ming.0¢(v) = v(e) < maxye. 0°(v).

Conversely, if v(e) < max e, 0¢(v), then

vie) < 1-minyeo(v) => 1—v(e) > minyeo(v) = 1-wv(e) > maxye(l—0°v)) =Thusin
v(e) < minyee o¢(v).

fact

v(e) < ming.0¢(v) <= v(e) < maxye o°(v).

Therefore the condition yg(e) < max,c.{vv(v)} in the Hesitant Fuzzy setting is algebraically equivalent (under
v (v) = 0¢(v) and yg(e) = v(e)) to the condition v(e) < min e, o°(v) in the Intuitionistic Fuzzy setting. Consequently,
with By = Bg = 0 and the relabelings above, all the axioms of an Intuitionistic Fuzzy n-SuperHyperGraph (Definition 1.10)

are satisfied. This completes the proof of (iii).
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Proof. We verify each part separately:

(i) Reduction to a Hesitant Fuzzy HyperGraph. When n = 1, each supervertex v € V and each superedge e € F is simply a
subset of the base set V. Renaming V; as the vertex set of an ordinary crisp hypergraph and E C P(V}) as its hyperedges,

the structure

Hurn = (%a E, KV YV ﬂVa KE; VE, /BE)

matches exactly the definition of a Hesitant Fuzzy HyperGraph. In particular, the constraint that each vertex’s three
degrees sum to one becomes the standard hesitant-vertex-sum condition; the analogous constraint on each edge’s three
degrees becomes the standard hesitant-edge-sum condition; and the requirement that each edge-value respect its incident
vertices becomes the usual hesitant-appurtenance condition. Therefore the case n = 1 recovers precisely a Hesitant Fuzzy

HyperGraph.
(ii) Reduction to a Fuzzy n-SuperHyperGraph. By setting vy (v) = By (v) = 0and yg(e) = Br(e) = 0, the condition
py (v) + v (v) + Br(v) = 1
becomes py (v) = 1. Thus every vertex-membership py (v) is forced to be 1. The edge-sum constraint
0 < pg(e)+yr(e) +Pr(e) < 1
becomes
0 < pp(e) < 1,
so each pg/(e) € [0,1]. The appurtenance constraints (5) reduce to
pp(e) < min{uy(v)} =min{l} =1, 0 <0, 0 <0,

for all e € E. Hence the only remaining nontrivial data are uy (v) = 1 and ug(e) € [0,1]. Relabeling uy (v) = o(v) (so
o(v) = 1) and pug(e) = p(e), one obtains exactly the definition of a Fuzzy n-SuperHyperGraph (V, E, o, p) as in the
Definition. In particular, the appurtenance condition p(e) < min,e. o(v) becomes p(e) < 1, which is automatically

satisfied. This completes (ii).

(iii) Reduction to an Intuitionistic Fuzzy n-SuperHyperGraph. By setting Sy (v) = Bg(e) =0 forall v € V, e € E, and

then renaming
py(v) = o(v), w(v) = o°(v), pele) = ple), ym(e) = v(e),
the vertex-sum condition (3) becomes
ocv)+o(w)=1, 0 < o(v)+0o(v) <1, VveV.

Hence each o¢(v) is exactly 1 — o(v), and we automatically satisfy Atanassov’s constraint 0 < o(v) 4+ o¢(v) < 1. Likewise,

the edge-sum condition (4) becomes

0 < ple)+v(e) <1, VecE,
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which is exactly Atanassov’s constraint on each edge.

Now turn to the appurtenance constraints (5), which become

u(e) < min{o(v)}, v(e) < max{c“(v)}, 0 < 0, VecE.

vee vee

In an Intuitionistic Fuzzy n-SuperHyperGraph (Definition 1.10), one requires
u(e) < mino(v), v(e) < minc‘(v).
vee vee

We now show that, under the vertex-constraint o(v) 4+ o¢(v) = 1, the single requirement v(e) < maxe.{o°(v)} is
equivalent to v(e) < min,e.{c¢(v)}. Indeed, because

min{c‘(v)} = 1 — max{c(v)}, max{c’(v)} = 1 — min{o(v)},

vee vee vee vee
and min ye.{o(v)} < maxe.{o(v)}, it follows that

1 —max{o(v)} < 1-— Ivneigl{ﬂ(v)}»

i.e.minye.{o°(v)} < max,e.{o°(v)}. Hence
Vo) < min{o @)} <= vle) < max{o (W)},

under o(v) + 0¢(v) = 1. Therefore the single “v(e) < max” from the Hesitant Fuzzy definition coincides exactly with the “
v(e) < min” needed in the Intuitionistic Fuzzy definition. Thus all required inequalities match, and we recover an

Intuitionistic Fuzzy n-SuperHyperGraph (V, E, o,0° 1, z/). This completes the proof of (iii). [J

2.3. Spherical Fuzzy SuperHyperGraph

We now extend the Spherical Fuzzy HyperGraph concept to the setting of n-SuperHyperGraphs.
Definition 2.7. (Spherical Fuzzy n-SuperHyperGraph). Let SHT™ = (V, E) be an n-SuperHyperGraph on base set ¥} (so

V,E C P"(W)). A Spherical Fuzzy n-SuperHyperGraph is a nonuple

Hspn = (V7 E7 ay, Y, ﬂV7 QE, YE, ﬁE)?

where

av,w, Br:V — [0,1], av®)®+w®)?+Br(v)® <
ap, 75, Be: B — [0,1], axm(e)’ +75(e)’ + Brle)’ < 1,

forallv € V and e € E, subject to the following vertex—edge appurtenance constraints:

e
R
LY

A

< min{ov(v)},
min{yy (v)}, (6)
nulggc{ﬁv(v)}, Vec E.

2
S B
==
IV IA

Here eachv € V C P"(Vp) is an n-supervertex, and each e € E C P" (V) is an n-superedge. The six real-valued functions

record the spherical-fuzzy membership degrees at vertices and edges.

Example 2.8. (Spherical Fuzzy 2-SuperHyperGraph). As a concrete illustration, let the base set be

geios.com doi.org/10.32388/TPFJPY
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Vo = {a, b},
and take n = 2. Then
P'(Vo) = {0,{a},{b},{a,0}}, P’(Vo) = P(P'(W)).
Choose two 2-supervertices:
v = {{a}, {a,0}}, v = {{B}},
sothat V = {v;, va} C P*(V;). Next choose two 2-superedges:
er = {wv1, v}, e = {va2},

sothat E = { e, ea} C P*(W%).

Now assign spherical fuzzy membership degrees at each 2-supervertex:
ay(v1) = 0.6, y(v1) =04, By(vi) =02, 0.6>40.4%+0.22 =0.36+0.16 +0.04 = 0.56 < 1,
ay(v2) = 0.5, yw(va) =05, By(v) =05, 0.52405>+052=0.75 < 1.
Thus each ay (v)? + vy (v)? + By (v)? < 1. Next assign spherical fuzzy membership degrees at each 2-superedge:
ag(e) =04, ~ve(e) =03, Brle) =07, 0.4>+0.3%+0.7>=0.16+0.09+0.49=0.74 < 1,

ap(e) = 0.3, ~p(ex) =04, Pr(ex) =0.6, 0.3%+0.4> +0.6% = 0.09 + 0.16 4 0.36 = 0.61

IA
—

We must verify the appurtenance constraints (6). For e; = {v1, v2 }:

ag(e1) = 0.4 < min{ay(v1), av(v2)} = min{0.6, 0.5} = 0.5,

ve(e1) = 0.3 < min{yy(v1), v (v2)} = min{0.4, 0.5} = 0.4,

Be(e1) = 0.7 > max{By(v1), Bv(v2)} = max{0.2, 0.5} = 0.5.
All three hold. For ey = {v2}:

ag(ez) =03 < ay(v2) =0.5, vg(e2) =04 < vy (ve) =0.5, PBg(ez) =0.6 > By(ve) = 0.5.
Thus all constraints are satisfied. This concretely exhibits a Spherical Fuzzy 2-SuperHyperGraph.
Theorem 2.9. (Generalization of Spherical, Fuzzy, and Intuitionistic Fuzzy Structures). Let
Hsen = (V, B, av, v, Bv, ag, 75, BE)

be any Spherical Fuzzy n-SuperHyperGraph as in the Definition. Then:

i. (Reduction to Spherical Fuzzy HyperGraph) If n = 1, then V C P* (V) = P(V;) and E C P(V;). By identifying the
ground-set X := V and the hyperedge family £ := {e C X | e € E}, and by restricting ay, vy, By to X (viewed as 1-

supervertices) and ag, Vg, BE to &, one recovers exactly the definition of a Spherical Fuzzy HyperGraph on (X, £).
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ii. (Reduction to Fuzzy n-SuperHyperGraph) Suppose we set
w({) =0, By(v) =0, ~g(e) =0, Pgrle) =0, VveV,eckE.
Then for each v € V, the sphericalconstraint ay (v)? + yv (v)? + Bv(v)? < 1 becomes
ay(v)? <1, ie. ay(v) € [0,1],
which we rename ay (v) = o(v). Likewise, for each e € E, the constraint ag(e)? + v (e)? + Be(e)? < 1 reduces to
ap(e)? < 1, ie. ag(e) € [0,1],
which we rename a.g(e) = p(e). The appurtenance constraints (6) become
ap(e) < minyeefay(v)} < p(e) < mine{o(v)},
and the other two inequalities in (6) reduce to
0<0, 0>0,
which are vacuous. Hence the data (V, E, o, ,u) satisfy precisely the definition of a Fuzzy n-SuperHyperGraph.

jii.

=

(Reduction to Intuitionistic Fuzzy n-SuperHyperGraph) Suppose instead we set

Bv(v) = 0, PBgle) =0, VveV,eckE,

and rename

ar(v) = o(v), W) = o°(v), axle) = ule), E(e) = vle).

Then for each v € V/, the spherical constraint aoy (v)? + vy (v)? + By (v)? < 1 becomes

(@) + (c°(w))? <1, VweV.

Note that any pair (o(v), o°(v)) € [0,1]* satisfying o(v) + o°(v) < 1 also satisfies o(v)® + (a”(v))2 < 1. Thus, by
restricting to the subset of assignments for which o(v) + o¢(v) < 1, we recover exactly the Atanassov constraint of an
Intuitionistic Fuzzy n-SuperHyperGraph (Definition 110). Similarly, for eache € E:

ap(e)®’ +vp(e)? +Be(e)? <1 = puE)?+v(e)? <1, VecE,

and again, requiring u(e) + v(e) < 1 ensures u(e)? + v(e)* < 1. The appurtenance constraints (6) reduce to

ap(e) < min{ay(v)} <= pule) < min{o(v)},
ye(e) < min{y(v)} <= v(e) < min{e*(v)},
Be(e) > H;ggi{ﬁv(v)} <~ 02>0,

where the last inequality is vacuous. Hence the data (V, E, o0,0° p, 1/) satisfy exactly the axioms of an Intuitionistic Fuzzy
n-SuperHyperGraph (Definition 110), provided one imposes the additional linear constraint o(v) + o°(v) <1 and

u(e) + v(e) < 1. This completes the proof of (iii).

Proof. We verify each part in detail:

(i) Reduction to Spherical Fuzzy HyperGraph. When n = 1, each 1-supervertex v € V is a subset of 1}, and each 1-

superedge e € E is also a subset of V;. Identifying the ground-set X := V; and setting £ := {e C X | e € F}, we regard
ay, v, By asfunctionson X, ag, vg, fg as functionson &.

The constraints ay (z)? + v (z)? + By(z)? < 1 for all z € X, and ag(E;)? +v5(E;)? + Be(E;)? <1 for all E; € &,

together with

ap(Ej) < minfav(2)}, ye(Ej) < min{w()}, Pp(E) = max{fv(z)}, VE;e¢,

zeE;
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exactly coincide with the definition of a Spherical Fuzzy HyperGraph on (X, £). Thus (i) holds.

(ii) Reduction to Fuzzy n-SuperHyperGraph. Set vy (v) = By(v) =0 forall v € V, and yg(e) = Br(e) =0 foralle € E.

Then the vertex-constraint
ay()?+02+0°<1 = ay(v) €l0,1],
so we write ay (v) = o(v). Similarly, the edge-constraint
ape)? +02+0°<1 = agle) €0,1],
so set ap(e) = p(e). The appurtenance constraints
ag(e) < lgxeigl{av(v)}, 0<0, 0>0, VecE,

reduce to u(e) < minye.{o(v)}. Thus the only nontrivial data are o:V — [0,1] and w:E — [0,1] satisfying

u(e) < min e, o(v). This is precisely the definition of a Fuzzy n-SuperHyperGraph. Hence (ii) holds.
(iii) Reduction to Intuitionistic Fuzzy n-SuperHyperGraph. Set Sy (v) = Br(e) = 0forallv € V, e € E. Rename
ay(v) = o(v), w(v) = o(v), an(e) = ule), yule) = v(e).
Then for each v € V, the spherical constraint ay (v)? + vy (v)? + Br(v)? < 1 becomes
o(v)? + (O'C(’U))2 < 1.

Since any (o(v), 0°(v)) satisfying o(v) + o°(v) < 1 also satisfies o(v)? + (¢¢(v))? < 1, we impose the additional linear
constraint o(v) + 0¢(v) < 1, which recovers exactly the Atanassov condition in an Intuitionistic Fuzzy Set. For each e € E,

the spherical constraint ag(e)? + vg (e)? + Br(e)? < 1 becomes
pe) +v(ef <1,

and similarly, requiring p(e) + v(e) < 1 ensures that the pair (u(e), v(e)) satisfies the usual Intuitionistic Fuzzy sum

constraint. The appurtenance constraints

IN

ag(e) < min{ay(v)} <= ple) < min{o(v)},
ve(e) < min{yy(v)} <= v(e) < min{o*(v)},

Be(e) = max{fy(v)} < 0 =0,

show that the non-membership constraint v(e) < min ,e.{o°(v)} matches the spherical “yz(e) < min” condition, and the
“Br(e) > max” is vacuous. Therefore, under 8y = 8z = 0 and the additional linear constraints o(v) + o¢(v) < 1 and
p(e) +v(e) <1, the data (V, E, 0, 0°, p, v) satisfy exactly the definition of an Intuitionistic Fuzzy n-SuperHyperGraph

(Definition 10). Hence (iii) holds. [J
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