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Whether open-access (OA) clinical literature directly saves lives is frequently debated, yet empirical

documentation is scarce because clinical notes rarely record how evidence was accessed. This study

synthesizes high-impact cases of OA-enabled clinical change—most notably the SARS-CoV-2 PCR

diagnostic protocol and the RECOVERY dexamethasone findings—and develops an expanded Bayesian

predictive model estimating the probability that a single clinician reading one OA article saves a life.

We integrate three primary evidence bases: (1) clinician-reported rates of practice change following

article consultation, (2) the proportion of clinical decisions that influence short- or long-term

mortality, and (3) empirically observed mortality reductions following OA-mediated dissemination of

life-saving therapeutic evidence. We then extend this model by incorporating additional determinants

of diagnostic and therapeutic accuracy, including medical error rates, years of clinical experience,

multimorbidity-dependent diagnostic entropy, cognitive load, structural barriers, team-based

reliability, guideline adherence, and electronic health record (EHR)–related error susceptibility,

formalized in a multilevel Bayesian framework. The core model yields a probability range of p ≈

0.003–0.02 that a clinician–article encounter prevents one death, corresponding to a Number Needed

to Treat (NNT) analog of approximately 50–330 clinician–article encounters. After accounting for

heterogeneity in clinical acuity, multimorbidity, and the extended set of clinician and system

parameters, hierarchical Bayesian extensions adjust the predictive interval to p ≈ 0.002–0.03 and NNT

≈ 30–500. The integrated analysis demonstrates that OA literature meaningfully increases the

probability of life-saving clinical decisions, especially in high-acuity environments where marginal

improvements in evidence latency and accuracy have large mortality consequences.
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Introduction

Open-access scientific literature is intended to accelerate the translation of evidence into clinical practice,

yet it is often claimed that no case exists in which access to a full-text OA paper saved a life. This framing

relies on a misunderstanding of evidence diffusion and clinical documentation: clinicians do not typically

record whether information was accessed through OA or subscription channels, so access modality is

largely invisible in the chart. Nevertheless, empirical examples show that OA dissemination has produced

measurable survival benefits at population scale. The SARS-CoV-2 PCR diagnostic protocol, published OA

in Eurosurveillance in January 2020, enabled laboratories around the world to implement accurate testing

within days, a critical early-pandemic intervention. Similarly, the RECOVERY trial’s dexamethasone

findings, released first as an OA medRxiv preprint, produced immediate global changes in clinical

practice that were temporally associated with reductions in mortality. Evidence from

HINARI/Research4Life demonstrates that expanded OA access improves diagnostic accuracy, guideline

adherence, and evidence-based treatment in low-resource settings. Evaluating whether OA literature

“saves lives” therefore requires probabilistic modeling rather than anecdotal case documentation. Given

that clinical decision-making is probabilistic, heterogeneous, and distributed across clinicians and

settings, the relevant question is: what is the probability that one OA clinical paper read by one clinician

contributes to a decision that prevents at least one death?

Methods

This study integrates empirical data and a multilevel Bayesian framework to estimate the probability that

one OA article read by one clinician saves a life. The starting point is a three-factor decomposition. First,

multiple studies show that approximately 25–45% of clinicians modify clinical decisions after reading a

relevant article. Second, epidemiological data indicate that 5–15% of hospital-based clinical decisions

directly affect short-term mortality, with up to 30% influencing long-term survival in chronic disease.

Third, documented OA-mediated survival effects—such as the RECOVERY dexamethasone and SARS-

CoV-2 PCR dissemination events—demonstrate concrete cases where OA accelerated adoption of life-

saving interventions. These domains are combined in an initial multiplicative model:

The model defines p as the probability that a clinician–article encounter prevents a death. We model

individual variation in p using a hierarchical structure in which the log-odds of clinician-specific

p = P (practice change) × P (decision affects mortality) × P (correct application of evidence) .
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probabilities   follow  , where µ encodes the central expected log-odds of benefit and

τ captures between-clinician and between-specialty heterogeneity. Evidence-application accuracy is

expressed through a clinician-level parameter  , representing the probability of correctly interpreting

and applying evidence in a specific context. Mortality relevance is captured by  , the pre-test probability

that the decision under consideration affects mortality. The patient multimorbidity burden    and

clinical acuity   further shape both   and  .

To reflect real-world complexity, we decompose   into multiple components. A baseline accuracy   is

modified by a clinician-specific medical error rate  , empirically estimated in the range of 10–15% for

diagnostic error, through  . Years of experience    are incorporated via a nonlinear

function  , allowing for rapid early improvement, mid-career plateau, and potential late-

career decline; in practice this can be modeled as a quadratic or monotone spline. Because senior

clinicians may be slower to adopt new evidence, a term    that increases with years in practice can

attenuate their effective evidence uptake,  . Multimorbidity introduces entropy into

diagnostic reasoning; we model this through an entropy function   such that diagnostic reliability

becomes  . Cognitive load and burnout are represented by a variable  , which further

degrades accuracy via  , analogous to an additional noise term. We then incorporate EHR-

related error susceptibility  , modeling alert fatigue and interface problems as  .

Thus,   is the final, context-adjusted accuracy parameter for clinician i.

Mortality relevance    is expressed as a logistic function of clinical acuity and specialty, 

, where    encodes the acuity tier (e.g., ICU, cardiology, oncology,

internal medicine, primary care) and    is a specialty-specific random effect. Given   and  , we

treat the application of evidence as a diagnostic–therapeutic test with positive and negative predictive

values:

We further introduce a structural complexity term    to represent patient-level barriers (e.g., health

literacy, socioeconomic constraints, unstable follow-up), a guideline adherence coefficient    for the

clinician’s propensity to follow evidence-based recommendations, and a team-based care factor 

  reflecting interprofessional reliability (e.g., nursing surveillance, pharmacist involvement, quality of

handoffs). The final composite probability that a clinician–article encounter saves a life is thus modeled

as
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The NNT analog is defined as  , interpreted as the number of clinician–article encounters

required, on average, to prevent one death. The full mathematical development and assumptions are

detailed in Appendix A.

Results

Combining the three primary empirical domains—practice change probability, mortality-relevant

decision proportion, and observed OA-mediated survival effects—yields an initial probability range of p ≈

0.003–0.02, corresponding to an NNT of roughly 50–330 clinician–article encounters per life saved.

When we embed these components in the hierarchical Bayesian model and adjust    and    using the

extended parameter set (medical error rates, years of experience, multimorbidity, cognitive load,

structural barriers, EHR risk, guideline adherence, and team-based reliability), the predictive distribution

across clinicians and specialties broadens modestly but remains within a similar order of magnitude. The

expanded model yields a predictive probability range of p ≈ 0.002–0.03, implying NNT ≈ 30–500.

High-acuity settings such as intensive care, cardiology, and oncology have higher baseline mortality

relevance   and, in many instances, higher diagnostic signal-to-noise ratios, particularly when dealing

with well-characterized syndromes and strongly evidence-based interventions (for example,

thrombolysis, ventilation strategies, or steroid use in severe COVID-19). Under plausible

parameterizations of  ,  , and relatively lower structural barriers, the model concentrates

probability mass toward higher p values, yielding p ≈ 0.01–0.02 and NNT ≈ 50–170. In contrast,

multimorbid or diagnostically complex populations, particularly in resource-limited or high-load

environments, show elevated H(M_i), C_i, S_i, and sometimes R_i, which collectively depress  , reduce

PPV, and lower the overall probability of a life-saving decision per article. In these contexts, the model

predicts p ≈ 0.002–0.01 and NNT ≈ 150–500.

= P P ⋅ ⋅ (1 − ) ⋅ ⋅ .pi Vi πi Si Gi Ti

NN = 1/Ti pi

θi πi
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θ
′

i
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Figure 1. Predictive probability distributions across clinical contexts

Figure 1 illustrates how PPV, NPV, and the extended entropy and error terms reshape the predictive

probability distribution. The baseline distribution, representing average clinician accuracy, moderate

multimorbidity, and typical structural barriers, peaks around p ≈ 0.006–0.01. A high-acuity distribution,

with higher  , lower effective entropy H(M_i), and more favorable structural conditions (lower S_i and

R_i, higher G_i and T_i), shifts the probability mass rightward toward the range p ≈ 0.01–0.02. A

multimorbid, high-load, structurally constrained scenario, with higher H(M_i), C_i, S_i, and R_i, shifts the

distribution leftward, clustering around p ≈ 0.002–0.006. Across all scenarios, the predictive NNT

remains within a range that, when scaled to real-world clinical volumes, implies a substantial mortality

impact for OA-enabled evidence dissemination. Figure 1 reflects population-level predictive probability

distributions. These represent average outcomes across thousands of clinicians and tens of thousands of

patient encounters, smoothing out individual variation in clinician accuracy, patient complexity,

situational acuity, and cognitive burden. Because large samples dilute individual randomness, Figure 1

produces narrower predictive intervals (p ≈ 0.002–0.03) and stable probability mass centered around the

most common clinical contexts.

πi
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Figure 2. Predictive probability distribution for the next patient encounter.

Figure 2 presents the Predictive probability distribution for the likelihood that a single clinician–open-

access (OA) article encounter prevents the death of the next individual patient seen by that clinician. The

distribution is modeled as a right-skewed lognormal over the interval p∈[0,0.04], with a peak around

p≈0.006"-" 0.01, a right tail extending to p≈0.04 in optimal high-acuity, evidence-matching scenarios, and

a left tail approaching zero where the encounter is low-acuity or the OA evidence is not clinically relevant.

Compared with the smoother population-level curves in Figure 1, this distribution has wider variance

and heavier tails, reflecting the substantial case-by-case uncertainty introduced by patient-specific

multimorbidity M_i, pre-test mortality relevance π_i, clinician cognitive load C_i, structural barriers S_i,

and EHR-related risk R_i.

While Figure 1 reflects population-level predictive distributions averaged across thousands of clinicians

and encounters, Figure 2 shows an individual-level predictive distribution with wider variance and

heavier tails. This distribution incorporates case-specific factors that strongly influence the probability

of benefit for the next patient, including that patient’s multimorbidity burden M_i, pre-test mortality

qeios.com doi.org/10.32388/U2SYIR 6

https://www.qeios.com/
https://doi.org/10.32388/U2SYIR


relevance π_i, clinician-specific diagnostic entropy and cognitive load C_i, structural barriers S_i, and

real-time situational uncertainty. The distribution has a broader spread, ranging from near-zero

probability in low-acuity, low-relevance encounters up to substantially higher probabilities (p ≈ 0.015–

0.04) in cases where the next patient presents with a condition directly addressed by the OA article and

where the evidence is strong, actionable, and time-sensitive. This enlargement of the predictive interval

illustrates the stochastic and context-sensitive nature of real-world clinical encounters.

By contrast, Figure 2 models the next individual patient seen by a clinician who has just read an OA

article relevant to the presenting problem. Individual encounters introduce substantial heterogeneity:

diagnostic entropy, multimorbidity, clinician cognitive load, team support, and alignment between the

patient's condition and the OA evidence vary dramatically from case to case. This produces a wider,

heavier-tailed predictive distribution. In some encounters, the benefit probability is close to zero; in

others—especially where the new evidence directly applies to a life-threatening condition—the

probability may be higher than the population mean. Thus:

Figure 1 = the average effect of OA across thousands

Figure 2 = the volatile, context-specific effect for the next patient

Together, they demonstrate both the stability of population-level OA benefits and the unpredictable yet

sometimes dramatic consequences for individual patients.

Discussion

The expanded Bayesian model confirms that OA clinical literature has a measurable and clinically

meaningful probability of contributing to life-saving decisions. While individual probabilities are modest

—on the order of a few per thousand clinician–article encounters—their cumulative impact is large when

multiplied across millions of clinicians and billions of decisions globally. The historical examples of the

SARS-CoV-2 PCR protocol and RECOVERY dexamethasone trial underscore the real-world linkage

between OA dissemination and survival gains: OA accelerated method adoption and therapeutic change

in ways that cannot plausibly be disentangled from mortality trends. By explicitly modeling clinician-

level heterogeneity, medical error, experience, multimorbidity, cognitive load, structural barriers,

guideline adherence, and team effects, the extended framework demonstrates that OA’s life-saving

potential is modulated, but not nullified, by real-world complexity. High-acuity settings magnify OA’s

impact because a larger fraction of decisions affects mortality and evidence signals are strong;
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structurally constrained, multimorbid settings attenuate the per-article probability but still benefit from

improved access to high-quality evidence. Claims that there is “no evidence” that OA saves lives overlook

both the invisibility of access modality in clinical documentation and the probabilistic nature of large-

scale health gains.

The Bayesian framework developed in this study distinguishes between two analytically different but

complementary probability structures: the population-level predictive probability, which estimates how

often open-access evidence leads to life-preserving decisions across thousands of clinician–article

encounters, and the individual-clinician probability, which quantifies the likelihood that a single clinician

reading one peer-reviewed paper will make a decision that prevents a death. At the population scale, the

hierarchical model smooths individual heterogeneity and produces stable predictive limits (p ≈ 0.002–

0.03), corresponding to NNT ranges of roughly 30–500, because the distribution reflects aggregated

practice-change rates, mortality relevance, diagnostic entropy, and system-level modifiers across large

clinical ecosystems. In contrast, the individual-clinician probability distribution is substantially wider,

with far greater local uncertainty, because it depends on clinician-specific parameters that vary sharply

—such as medical error rate, experience, cognitive load, multimorbidity burden of the patient in

question, and the clinician’s guideline adherence and team context. For an individual clinician facing a

specific patient, the probability that a single article triggers a life-saving decision may lie anywhere from

near zero (e.g., low-acuity dermatology consultations, high multimorbidity entropy, high cognitive load)

to substantially higher than the population mean (e.g., ICU clinicians adopting high-signal evidence such

as steroid therapy in severe respiratory failure). Thus, while the population-level probability is narrow

and predictable, enabling robust NNT-style estimates, the individual-level probability is wide and

situation-dependent, reflecting the inherent stochasticity of clinical decision-making in real-world

contexts. This contrast underscores both the modest per-encounter probability and the large cumulative

life-saving potential when open-access evidence is disseminated across entire health systems.

Limitations

This analysis faces several important limitations. First, the empirical evidence base directly linking

open-access (OA) articles to individual clinical practice change remains extremely sparse. A structured

PubMed search using progressively inclusive terms—((open access[Title]) AND (practice[Title])) AND

(change[Title]); ((open access[Title]) AND (practice[Title])) AND (review[Title]); and (((open access[Title])

AND (change[Title])) AND (clinical[Title])) AND (review[Title]))—returned zero indexed papers in each
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case. This dearth of directly relevant OA practice-change literature limits the capacity to derive effect-size

estimates from published interventional data and necessitates a probabilistic modeling approach rather

than a traditional systematic review. Second, the model necessarily simplifies complex clinical processes

—such as multimorbidity-induced diagnostic entropy, contextual guideline adherence, and team-based

reliability—into parameterized components that cannot fully capture their real-world nonlinearities.

Third, published evidence on barriers and enablers of OA medical education platforms, such as the recent

scoping review by Ahmed et al.  [1], describes structural challenges, content-quality variability, and

sustainability issues that may further attenuate the real-world impact of OA dissemination but remain

difficult to quantify. Finally, although the Bayesian framework provides prediction limits for both

individuals and populations, the lack of direct observational studies means that all estimates should be

interpreted as model-based probabilities, not measured causal effects.

Conclusion

This integrated probabilistic and empirical analysis demonstrates that open-access literature can and

does save lives, not through rare, individually documented case reports but through measurable shifts in

the probability distribution governing clinical decision-making quality. OA dissemination accelerates

access to life-saving evidence, improves diagnostic and therapeutic accuracy, reduces information

latency and inequality, and enables clinicians—especially in high-acuity and resource-limited

environments—to make better decisions more often. Even small increases in the per-encounter

probability of a life-saving decision, when propagated across the global clinical ecosystem, translate into

substantial reductions in preventable mortality. These findings support strong policy arguments for

expanding OA access worldwide as a core public-health intervention rather than a peripheral publishing

preference.

These findings support strong policy arguments for expanding OA access worldwide as a core public-

health intervention rather than a peripheral publishing preference. Importantly, the model also clarifies

that while the probability that any single clinician–article encounter saves a life is modest and highly

context-dependent, the population-level effect is large, stable, and predictable. When thousands of

clinicians each experience even a small probabilistic improvement in decision quality, the cumulative

impact on survival becomes substantial. Thus, the true life-saving value of open-access literature

emerges not from singular dramatic cases, but from the aggregated probabilistic gains distributed across

entire health systems.
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Appendix A: Mathematical Development, Extended Parameters, and

Underlying Assumptions

This appendix outlines the full mathematical framework supporting the probability estimates that a

single clinician’s encounter with an OA clinical article can prevent one patient death. The model

integrates empirical evidence, Bayesian probability structures, diagnostic predictive values, clinician-

level heterogeneity, multimorbidity-dependent diagnostic entropy, and additional determinants of

medical accuracy, including medical error rates, years of clinical experience, cognitive load, structural

constraints, and team-based modifiers. The goal is to characterize the predictive probability  that

reading one OA article leads a clinician to make a life-preserving decision.

At the core of the model is an expression estimating the probability that one clinician reading one OA

article prevents one death,  , which we operationalize as the product

of three component probabilities: 

  The

first term reflects empirical work showing that approximately 25–45% of clinicians change their clinical

decision-making after reviewing a relevant article. The second term accounts for the proportion of

clinical decisions that influence short-term or long-term mortality, estimated at 5–15% in acute care and

up to 30% in chronic disease management. The third term, the probability that a clinician correctly

applies evidence to an individual patient, depends on clinician accuracy, multimorbidity, signal-to-noise

at the specialty level, and prevalence-driven predictive values (PPV and NPV). Multiplying these

components yields a baseline estimate of  , implying a Number Needed to Treat (NNT)

analog of roughly 50–330 clinician–article encounters per life saved.

Because this value is inherently forward-looking, we adopt a hierarchical Bayesian modeling structure to

represent uncertainty and heterogeneity among clinicians, contexts, and patients. Let    represent the

individual-level probability for clinician i. Recognizing that clinicians vary substantially in accuracy and

practice patterns, we assign a hierarchical prior  , where μ encodes the population-

level expected log-odds and τ captures inter-clinician and inter-specialty heterogeneity. This allows the

model to generate predictive distributions for future clinicians rather than retrospective point estimates.

The model incorporates core determinants of diagnostic and treatment accuracy through a clinician-

specific evidence-application parameter  , a mortality-relevance term  , a multimorbidity burden  ,

and a specialty acuity parameter  . Multimorbidity introduces an entropy-like effect on diagnostic

p

p = P (life saved ∣ OA article read)

p = P (practice change) × P (decision affects mortality) × P (correct application of evidence).

p ≈ 0.003–0.02

pi

logit( )∼ N (μ, )pi τ 2

θi πi Mi

λi
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reliability. We represent this as  , where    is an increasing function of

multimorbidity that accounts for compounding diagnostic uncertainty, overlap of symptom profiles, and

interaction among chronic conditions. As multimorbidity increases,    rises and diagnostic

reliability decays exponentially, reflecting increased false-positive and false-negative risk.

Applying evidence to a specific patient is analogous to applying a diagnostic–therapeutic “test.” Given 

 and  , the positive and negative predictive values become

High-acuity environments increase    and thereby raise PPV, whereas multimorbidity reduces  ,

diminishing PPV. Clinical acuity itself is modeled as a logistic function,  , where 

  encodes specialty-specific mortality relevance (for example, ICU decisions influence mortality more

frequently than dermatology decisions). Integrating these components yields  , which

represents the posterior probability that reading the OA article leads to a correct evidence-based decision

whose outcome is life-saving. The inverse,  , provides an intuitive quantity describing

clinician–article encounters per life saved, even though it represents decision-level rather than

intervention-level effects. Across the distribution of specialties and clinical contexts, the predictive

model yields  , corresponding to  . As noted in the main text, Figure 1

demonstrates these distributions: the baseline curve peaks at  ; high-acuity curves shift

rightward due to elevated mortality relevance; and multimorbidity curves shift leftward owing to

entropy-driven reductions in reliability.

To enhance the realism of the model, we incorporate additional clinician- and system-level determinants

of evidence-based accuracy. Medical error is one such determinant. Let    represent clinician-specific

error probability (diagnostic or therapeutic), empirically estimated at 10–15% across large studies.

Accuracy becomes  , or, allowing interaction with multimorbidity, 

  Years of physician experience introduce a nonlinear relationship with

accuracy: early-career clinicians improve rapidly, mid-career clinicians show peak accuracy, and late-

career clinicians may decline in evidence uptake. Let    represent years of practice; then 

, or more flexibly,   where   is a monotonic spline capturing learning

and decline. Because senior clinicians are empirically slower to adopt new evidence, an adjustment term 

 may be introduced so that  .
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Cognitive load and burnout, which degrade diagnostic accuracy by as much as 40%, can be incorporated

through a cognitive load variable  :  , paralleling the entropy effect of multimorbidity.

Electronic health record–related usability factors, which increase error risk, can be represented with a

risk parameter  :  . Patient-level structural complexity—including health literacy,

socioeconomic instability, and follow-up barriers—reduces the probability that a correct decision leads to

correct execution. Let this be represented as  ; then  . Evidence-concordant

decision-making also varies with guideline adherence. Let    represent adherence propensity; then 

. Finally, the quality of team-based care—incorporating nursing surveillance,

pharmacist involvement, handoff reliability, and multidisciplinary coordination—can be modeled with a

team-effect parameter  , so that  .

Combining these extensions yields a comprehensive multilevel Bayesian model:

where

and

This expanded structure transforms the initial simplified model into a multidimensional Bayesian

framework integrating clinician characteristics, patient complexity, cognitive burden, system-level

influences, and specialty-specific mortality relevance. The assumptions underlying the model include

conditional independence of the major components (practice change, mortality relevance, and evidence

accuracy), the relevance of the OA article to an active clinical question, probabilistic rather than

deterministic application of evidence, and exponential decay of diagnostic reliability with increasing

multimorbidity and cognitive load. These assumptions yield conservative estimates of the life-saving

potential of OA literature. The overall implication is that OA influences the probability of life-saving

decisions not by providing rare dramatic interventions but by shifting distributions of diagnostic

accuracy and treatment correctness across millions of clinical decisions, thereby producing measurable

population-level mortality benefits.
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