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Abstract 

Navier-Stokes equations are based on Newton’s second law and the 
Stokes hypothesis. In this paper, we have derived the fluid dynamic 
equations by applying the powerful tool of the Euler-Lagrangian approach, 
based on the principle of least action. The new equation highlights the 
incompleteness of the Navier-Stokes equations. The main reason is that 
the Stokes hypothesis uses engineering shear strain concept (through an 
average procedure for shear strain) to model the viscous stresses instead 
of using the tensorial shear strain. The general velocity gradient (tensorial 
shear strains) contains stretch, shear, and rotation deformations. The 
average procedure, based on the Stokes hypothesis, can only partially 
account for the shear strains. This deficiency should be remedied by 
adding an extra term – a pure spin tensor. Geometric interpretations and 
geometric algebra explanations are provided to show this deficiency and 
its counterbalance. One of the notable findings is that, both fluid flow and 
electromagnetic fields are, in essence, the same. All of them can be 
described by the same mathematical tools. 

 

1. Introduction 

 

The Navier-Stokes equations express momentum balance for Newtonian 
fluids. They are based on the applying Newton’s second law to the fluid 
motion, together with the Stokes hypothesis that the viscous stresses in 
the fluid are proportional to the first spatial derivatives of the flow velocity. 
The applied force on a fluid parcel is the viscous stress tensor plus a 
pressure gradient term. 

https://doi.org/10.32388/U5N4LV 
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The Newtonian method and the Euler-Lagrangian approach are both 
powerful tools used in classical mechanics to analyze the motion of 
particles and systems.  

 

Newton's laws of motion are based on the concept of forces acting on 
objects and how these forces affect the motion of those objects, on the 
other hand, Euler-Lagrange mechanics focuses on the concept of 
minimizing or maximizing a quantity known as the action based on the 
variational principle, instead of dealing directly with forces. 

 

Despite the differences in formulation, Euler-Lagrange mechanics and 
Newton's laws are fundamentally equivalent in the sense that they both 
describe the dynamic behavior of classical mechanical systems: they can 
be used interchangeably to describe classical mechanical systems.    

 

However, the Euler-Lagrangian approach has some advantages 
compared to the Newtonian method: 

 

The Euler-Lagrangian formulation is based on the principle of least action, 
where the path followed by a system between two points in configuration 
space minimizes the action integral. This provides a powerful and elegant 
framework for deriving the equations of motion. 

 

Another advantage to the Euler-Lagrangian formulation is that it naturally 
leads to the identification of conserved quantities such as energy, 
momentum, etc. through Noether's theorem. These conservation laws can 
be derived systematically from the symmetries of the Lagrangian, which is 
fundamental and common in many branches of physics. 
 

Furthermore, the Euler-Lagrangian approach readily extends to systems 
with curvilinear coordinates or so-called generalized coordinates. This 
makes it to be capable to naturally handle non-inertial forces. 
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This paper is organized as follows: at first, we introduce the principle of 
least action and derive the equation of motion in vector form by the Euler-
Lagrangian approach. Inspired by this approach, the fluid dynamic 
equation was given for a non-relativistic, incompressible fluid. The gradient 
of kinetic energy can be decomposed into two parts: symmetric and 
antisymmetric parts. The main point is that the Stokes hypothesis only 
account for the symmetric part and ignores the antisymmetric part. This 
leads to the Navier-Stokes equation being incomplete. In the following 
section, we give out some scenarios to explain this incompleteness with 
geometric interpretation and geometric algebra explanation. It has been 
further shown that the fluid dynamic equation is similar to the electrical 
particle behavior in the electromagnetic field. At last, the summary and 
conclusion are given.  
 

2. The Principle of Least Action and the Euler-Lagrangian Equation 

 

2.1 The Principle of Least Action 

The Principle of Least Action, also known as Hamilton's Principle or the 
Action Principle, is a fundamental concept in physics that plays a central 
role in physics. 

 

The principle states that the path taken by a physical system between two 
points in configuration space is the one for which the action is minimized, 
or, more precisely, stationary. The action, denoted by the symbol S, is a 
quantity defined as the integral of the Lagrangian over time: 

 

𝑆 = # 𝐿𝑑𝑡

!!

!"

, (1) 

 

where L is the Lagrangian, a function that describes the difference 
between the kinetic and potential energies of the system. 
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The action is a quantity that depends on the trajectory of the particle as it 
moves through spacetime. The least action principle says that if a system 
starts out at point and ends up at another point in spacetime, it will “choose” 
a particular kind of path among all the possible paths. Specifically, it 
chooses the path that minimizes the quantity we call action, 
Mathematically, the Principle of Least Action is expressed as Hamilton's 
stationary action principle: 

 
𝛿𝑆 = 0. (2) 

 

This implies that the true path taken by the system is such that any 
infinitesimally small variation (denoted by δ in above equation) of the path 
leads to zero change in the action [1]. 

 

Hamilton’s principle is more general and permits a natural extension to 
continuum systems (fields), such as fluid flow field. 

 

2.2 The Euler-Lagrangian Equation of Motion 

 

Given a mechanical system in a field, we can define the Lagrangian 
density function in this field as: 

 

ℒ(𝑟, �⃗�, 𝑡). (3) 
 

The system is assumed to occupy the positions 𝑟" and 𝑟# at time t1 and t2 
in the field, respectively. We fix positions of 𝑟(𝑡") 	= 𝑟"	 and 𝑟(𝑡#) 	= 𝑟#  at 
the initial and final times. 
 
The Lagrangian density is a function of positions, velocities and time, 
where the velocity is: 
 

�⃗� =
𝑑𝑟
𝑑𝑡
. (4) 
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Given two instants t1 and t2, then, we define the action 

 

𝑆 = # ℒ(𝑟, �⃗�, 𝑡)𝑑𝑥$𝑑𝑡

!!

!"

. (5) 

 

In field, the Lagrangian can be expressed as spatial integral of the 
Lagrangian density function: 

 

𝐿 = #ℒ𝑑𝑥$. (6) 

 

Principle of least action (or Hamilton's principle) says that from time t1 to 
t2 the system moves in such a way that S is a minimum (extremum) over 
all paths:  
 

𝛿𝑆 = 𝛿 # ℒ(𝑟, 𝑣, 𝑡)𝑑𝑥3𝑑𝑡

𝑡2

𝑡1

= 0. (7) 

 

This implies that the true path taken by the system is such that any 
infinitesimally small variation (denoted by 𝛿𝑆) of the path leads to zero 
change in the action. 

 

𝛿 " ℒ(𝑟, �⃗�, 𝑡)𝑑𝑥𝑑𝑡

!!

!"

= "[ℒ(𝑟 + 𝛿𝑟, �⃗� + 𝛿�⃗�, 𝑡) − ℒ(𝑟, �⃗�, 𝑡)]𝑑𝑥"𝑑𝑡

!!

!"

= 0. (8) 

 

Using the first order Taylor expansion approximation, we have 
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𝛿𝑆 = # 3
𝜕ℒ
𝜕𝑟

∙ 𝛿𝑟 +
𝜕ℒ
𝜕�⃗�

∙ 𝛿�⃗�7 𝑑𝑥$𝑑𝑡

!!

!"

= 0. (9) 

 

Using the chain rule and the product rule, the second term in the integrand 
can be written as: 

 

𝜕ℒ
𝜕�⃗�

∙ 𝛿𝑣 =
𝜕ℒ
𝜕𝑣

∙
𝑑(𝛿𝑟)
𝑑𝑡

=
𝑑
𝑑𝑡
8
𝜕ℒ
𝜕�⃗�

∙ 𝛿𝑟9 −
𝑑
𝑑𝑡
8
𝜕ℒ
𝜕�⃗�
9 ∙ 𝛿𝑟. (10) 

 

Thus, the integrand of the eq. (9) is 

 

𝜕ℒ
𝜕𝑟

∙ 𝛿𝑟 +
𝜕ℒ
𝜕�⃗�

∙ 𝛿�⃗� =
𝜕ℒ
𝜕𝑟

∙ 𝛿𝑟 +
𝑑
𝑑𝑡
8
𝜕ℒ
𝜕𝑣

∙ 𝛿�⃗�9 −
𝑑
𝑑𝑡
8
𝜕ℒ
𝜕�⃗�
9 ∙ 𝛿𝑟. (11) 

 

Hence, equation (9) can be rewritten as: 

 

𝛿𝑆 = 3
𝜕ℒ
𝜕�⃗�

∙ 𝛿𝑟7
!"

!!
+ # ;3

𝜕ℒ
𝜕𝑟

−
𝑑
𝑑𝑡
8
𝜕ℒ
𝜕𝑣
97 ∙ 𝛿𝑟< 𝑑𝑥$𝑑𝑡

!!

!"

= 0, (12) 

 

Since the variation 𝛿�⃗� is arbitrary, equation (20) is only verified, when the 
integrand 

 

𝜕ℒ
𝜕𝑟

−
𝑑
𝑑𝑡
8
𝜕ℒ
𝜕�⃗�
9 = 0, (13) 
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Because the boundaries are fixed, namely, 𝛿𝑟(𝑡") = 𝛿𝑟(𝑡#) = 0, as all 
possible paths are such that 𝑟(𝑡") 	= 𝑟"	 and 𝑟(𝑡#) 	= 𝑟#. 

 

The equation (13) is known as Euler-Lagrange’s equation. When the 
partial derivative of Lagrangian density with respect to velocity is written 
as  

 

𝜕ℒ
𝜕�⃗�

= �⃗� = 𝜌�⃗�, (14) 

 

Euler-Lagrange’s equation can be written more concisely: 

 

𝐷!𝑝 = ∇ℒ. (15) 
 

LHS of the equation (15) is the total derivative of momentum with respect 
to time (also called material derivative). 
 
Lagrangian density for a closed system (not affected by external forces, 
such as gravitational force or more precisely, gravitational potential, etc.) 
reads 
 

ℒ = 𝑇(𝑟, �⃗�, 𝑡) − 𝑉(𝑟, 𝑡), (16) 
 

where 𝑉(𝑟, 𝑡) represents the potential energy density of the interacting 
particles in the system. 

 

T is the kinetic energy density. If T is written explicitly in terms of the �⃗� and 
𝑟, then these equations are just the equations of motions in terms of the �⃗�. 
Since %&

%'(⃗
= 0, as 𝑉(𝑟, 𝑡) depends only on the 𝑟, not the 𝑣. 

 

The Lagrangian density function (16) and the equation (14) are substituted 
into equation (13), then, it reads:  
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𝑑(𝜌𝑣)
𝑑𝑡

=
𝜕𝑇
𝜕𝑟

−
𝜕𝑉
𝜕𝑟
. (17) 

 

The RHS of equation (17) represents the force. It is exactly the Newton’s 
second law. 

 

Actually, we can also derivate the Euler-Lagrangian equation from the 
Newton’s equations of motion [2,3,4]. 

 

3. Fluid Dynamic Equation in the Flow Field 

 

The Euler-Lagrangian approach can be directly applied to the motion of 
fluid in flow field.   For simplicity, we apply Cartesian coordinate for the 
equation of motion. For the sake of illustration, the fluid is assumed to be 
incompressible as an approximation. This assumption implies the 
pressure wave propagation speed is infinitely great. For three-dimensional 
flow, the system has 3 freedoms of motion. 

 

The (non-relativistic) kinetic energy density of a system may be written 
as  

 

𝑇(𝑟, �⃗�, 𝑡) =
1
2
𝜌𝑣 ∙ �⃗�. (18) 

 

The potential energy V in fluid is the pressure energy field: 

 

𝑉(𝑟, 𝑡) = 𝑝(𝑟, 𝑡). (19) 
 

It depends merely on the position of 𝑟.  This is a consequence of the 
assumption that the fluid is incompressible. The interactions (disturbances) 
between particles are instantaneously propagating through the whole field: 
a change of the fluid particle in position a is instantaneously experienced 
by the other fluid particle in position b, through an infinitely great pressure 
wave propagation speed, namely 𝑐 ≈ ∞ , or �⃗� << 𝑐 . If the fluid is 
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compressible, the wave will propagate in the field by a finite wave speed, 
in this case, we should turn to the relativistic fluid dynamics [5].  
 

Equations (14), (16), (18) and (19) are substituted into equation (13), we 
can get the equation of motion: 

 

𝑑
𝑑𝑡
(𝜌�⃗�) = −∇𝑝 + ∇𝑇. (20) 

 

where p is the thermodynamic pressure energy (static pressure, 𝑝*!+!,-). 
The kinetic energy T of the fluid parcels is the form of energy that it 
possesses due to its motion. It represents the amount of energy 
transformed from potential energy into kinetic energy (consumption of 
potential energy in the system). When the kinetic energy or the kinetic 
energy gradient equals zero, P is then equal to the total (stagnation) 
pressure (𝑝*!+./+!,0/). The physical meaning of equation (20) is clear: T is 
the mechanical energy transformation from the potential energy into the 
kinetic energy, and p is the remaining potential energy (static pressure) 
after the transformation. The negative gradient of the potential energy 
(−∇𝑝*!+!,-) is the force, according to the definition. Potential and kinetic 
energy can be changed from one form into another. The collective effects 
(gradients) of both energies are equal to the net force acting on the fluid 
parcel.  

 

3.1 Material Derivative and Convective Term 

 

The LHS of equation (20) is the material derivative of momentum, it can 
be written as a partial derivative of momentum with respect to time plus a 
convective term: 

 

𝑑(𝜌�⃗�)
𝑑𝑡

=
𝜕(𝜌�⃗�)
𝜕𝑡

+ (�⃗� ∙ ∇)(𝜌�⃗�). (21) 

 

The convective term can be written as the directional derivative of the 
momentum along the velocity vector �⃗�  at a given point (𝑥1, 𝑦1, 𝑧1) . It 
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represents an instantaneous rate of change of the momentum in the 
direction 𝑣. It is a second order tensor form, and can be defined as 

 

∇'(⃗ (𝜌�⃗�) = ∇(𝜌�⃗�)
�⃗�
|�⃗�|
. (22) 

 

 
 

Fig. 1. The convective term (𝑣 ∙ ∇)(𝜌�⃗�) = ∇'(⃗ (𝜌𝑣) ∙ 𝑣 
 

The inner product of the equation (21) is the length of the momentum 
gradient tensor ∇(𝜌�⃗�), projected onto �⃗�, multiplied by the length of �⃗�. 

Geometrically, it will be equal to the product of the “projection” of the 
magnitude of ∇(𝜌�⃗�)	 onto the �⃗�  and multiplying the magnitude of the 
velocity vector 𝑣, as shown by Fig. 1. Physically, it can be interpreted as 
the instantaneous rate of change of the momentum (stretching of the 
velocity) along the velocity direction while ignoring the rotational motion 
(perpendicular to the velocity vector). See the parallel component of the 
momentum gradient tensor in Fig.1. 
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3.2 Gradient of Kinetic Energy Density 

 

The kinetic energy density is a scalar function, it is expressed as: 

 

𝑇 =
1
2
𝜌�⃗�2𝑣 =

1
2
(𝜌𝑢𝑢 + 𝜌𝑣𝑣 + 𝜌𝑤𝑤). (23) 

 

where, the velocity vector in Cartesian coordinate is	�⃗� = (𝑢, 𝑣, 𝑤). 

 

A scalar field's gradient is a vector field. The components of the vector 
show how quickly the kinetic energy is changing in each direction. 

 

∇𝑇 = 6
(𝜌𝑢)𝜕#𝑢 + (𝜌𝑣)𝜕#𝑣 + (𝜌𝑤)𝜕#𝑤
(𝜌𝑢)𝜕$𝑢 + (𝜌𝑣)𝜕$𝑣 + (𝜌𝑤)𝜕$𝑤
(𝜌𝑢)𝜕%𝑢 + (𝜌𝑣)𝜕%𝑣 + (𝜌𝑤)𝜕%𝑤

; = 6
𝜕#𝑢 𝜕#𝑣 𝜕#𝑤
𝜕$𝑢 𝜕$𝑣 𝜕$𝑤
𝜕%𝑢 𝜕%𝑣 𝜕%𝑤

; <
𝜌𝑢
𝜌𝑣
𝜌𝑤

=. (24) 

 

The velocity gradient (derivative with respect to position, the Matrix form) 
is a measure of how the velocity of the fluid changes between infinitesimal 
distances within the flow field. The velocity gradient is a second-order 
tensor. It describes the rate of stretching, shearing and the rate of the 
rotation (spinning) of the fluid parcel in the flow field. Namely, the velocity 
gradient contains the total information about the stretching, shearing and 
spinning. 

 

Recalling the Jacobian matrix definition of a vector-valued function, the 
velocity gradient can be written as: 

 

∇𝑇 = 𝐽'(⃗
2(𝜌�⃗�). (25) 

 

In three dimensions, the gradient of the velocity (the transpose of the 
Jacobian matrix) is called infinitesimal displacement in flow field. Thus, the 
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kinetic energy gradient can be expressed as the infinitesimal displacement 
multiplying a momentum vector of (𝜌�⃗�). 

 

Any square matrix can be decomposed into sum of a symmetric matrix 
and an antisymmetric matrix. This decomposition is often referred to as 
the "symmetric part" and "skew-symmetric part".  

 

𝐽'(⃗
2 =

1
2
O𝐽'(⃗
2 + 𝐽'(⃗ P +

1
2
O𝐽'(⃗
2 − 𝐽'(⃗ P = 𝑆̿ + �̿�. (26) 

 

With this decomposition approach, thus, the kinetic energy gradient can 
be written as a symmetric part plus an antisymmetric part.  

 

∇𝑇 = 𝑆̿(ρ�⃗�) + �̿�(ρ�⃗�). (27) 
 

3.2.1 Symmetric Part of the Kinetic Energy Gradient 

 

Accordingly, the symmetric part reads: 

 

𝑆̿(ρ�⃗�) =
1
2
TU
𝜕3𝑢 𝜕3𝑣 𝜕3𝑤
𝜕4𝑢 𝜕4𝑣 𝜕4𝑤
𝜕5𝑢 𝜕5𝑣 𝜕5𝑤

V + U
𝜕3𝑢 𝜕4𝑢 𝜕5𝑢
𝜕3𝑣 𝜕4𝑣 𝜕5𝑣
𝜕3𝑤 𝜕4𝑤 𝜕5𝑤

VW (ρ�⃗�). (28) 

 

It can be explicitly rewritten as: 

 

𝑆̿(ρ�⃗�) =

⎣
⎢
⎢
⎢
⎢
⎡ 𝜕3𝑢

1
2 O
𝜕3𝑣 + 𝜕4𝑢P

1
2
(𝜕3𝑤 + 𝜕5𝑢)

1
2
O𝜕4𝑢 + 𝜕3𝑣P 𝜕4𝑣

1
2
O𝜕4𝑤 + 𝜕5𝑣P

1
2
(𝜕5𝑢 + 𝜕3𝑤)

1
2
O𝜕5𝑣 + 𝜕4𝑤P 𝜕5𝑤 ⎦

⎥
⎥
⎥
⎥
⎤

(ρ�⃗�). (29) 

 

Or more compactly as: 
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𝑆̿(ρ�⃗�) = ^
𝑠33 𝑠34 𝑠35
𝑠43 𝑠44 𝑠45
𝑠53 𝑠54 𝑠55

` (ρ𝑣). (30) 

 

  

where, 𝑆̿ is the strain tensor: 

 

𝑠,6 =
1
2
a
𝜕𝑢,
𝜕𝑥6

+
𝜕𝑢6
𝜕𝑥,

b. (31) 

 

It can be seen that the shear strain components (off-diagonal elements) in 
the symmetric part are expressed as an average shear strain (historically, 
it was called engineering shear strain). 

 

Recalling the Stokes hypothesis, the model of the viscous stress tensor 
in the Navier-Stokes equations: 

 

𝜎d = ^
𝜎33 𝜏34 𝜏35
𝜏34 𝜎44 𝜏45
𝜏35 𝜏45 𝜎55

` = 𝜇(∇𝑢g⃗ + ∇𝑢g⃗ 2) = 2𝜇𝑆,6 . (32) 

 

Comparing equation (30) with (32), it is recognized that 

 

𝑆̿(ρ𝑣) = ∇ ∙ 𝜎d. (33) 
 

From the perspective of mathematics, the symmetric part of the kinetic 
energy gradient represents the divergence of the viscose stress tensor in 
the Navier-Stokes equations. 

 

3.2.2 Antisymmetric Part of the Kinetic Energy Gradient (spin) 
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It can see that the antisymmetric part of the kinetic energy gradient 
reads: 

 

�̿�(ρ�⃗�) =
1
2
TU
𝜕3𝑢 𝜕3𝑣 𝜕3𝑤
𝜕4𝑢 𝜕4𝑣 𝜕4𝑤
𝜕5𝑢 𝜕5𝑣 𝜕5𝑤

V − U
𝜕3𝑢 𝜕4𝑢 𝜕5𝑢
𝜕3𝑣 𝜕4𝑣 𝜕5𝑣
𝜕3𝑤 𝜕4𝑤 𝜕5𝑤

VW (ρ�⃗�). (34) 

 

It can be written more compactly: 

 

�̿�(ρ�⃗�) = −
1
2 C

0 −D𝜕#𝑣 − 𝜕$𝑢E 𝜕%𝑢 − 𝜕#𝑤
𝜕#𝑣 − 𝜕$𝑢 0 −D𝜕$𝑤 − 𝜕%𝑣E

−(𝜕%𝑢 − 𝜕#𝑤) 𝜕$𝑤 − 𝜕%𝑣 0
F (ρ�⃗�). (35) 

 

Recalling the definition of the vorticity (the curl of the flow velocity): 

 

ωgg⃗ = ∇ × �⃗�. (36) 
 

Thus, the antisymmetric part can be expressed as: 

 

�̿�(ρ𝑣) = −
1
2
𝜔gg⃗ × 𝜌�⃗� =

1
2
(𝜌𝑣) × 𝜔gg⃗ . (37) 

 

From equations (30) and (37), finally, the gradient of kinetic energy for an 
incompressible fluid is expressed as: 

 

∇𝑇 = ρ 3𝑆̿(�⃗�) +
1
2
�⃗� × 𝜔gg⃗ 7. (38) 

 

 

Substituting equations (21) and (38) into (20), the equation of motion of 
the fluid dynamic, derived from the Euler-Lagrangian approach, reads 
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𝜕(𝜌�⃗�)
𝜕𝑡

+ (𝑣 ∙ ∇)(𝜌�⃗�) = −∇𝑝 + ρ 3𝑆̿(�⃗�) +
1
2
�⃗� × 𝜔gg⃗ 7. (39) 

 

The vorticity of a fluid element is a measure of the local rotation of the fluid. 
The vorticity field is just twice the local angular velocity at a point in a fluid 
flow field. 
 

𝜔gg⃗ = 2Ωgg⃗ . (40) 

 
The factor of 2 before the local angular velocity arises from the 
mathematical formulation of vorticity and angular velocity in the context of 
fluid dynamics. 

 

Thus, the equation of motion of the fluid dynamic can be also written as: 

 

𝜕(𝜌�⃗�)
𝜕𝑡

+ (�⃗� ∙ ∇)(𝜌�⃗�) = −∇𝑝 + ρl𝑆̿(�⃗�) + �⃗� × Ωgg⃗ m. (41) 

 

4. Geometric Interpretation of the Kinetic Energy Gradient 

 

Compared to the equation (39) with the Navier-Stokes equations, the 
Stokes hypothesis only accounts for the symmetric part of the kinetic 
energy gradient and ignores the antisymmetric part. In the following, we 
will show some scenarios to illustrate the deficiency of the Navier-Stokes 
equations.   

 

4.1 General Kinetic Energy Gradient 

 

For illustration and simplicity, consider a 2-dimensional deformation of an 
infinitesimal square control volume in a flow field, as shown by Fig. 2. In 
the general case, the rate of change of the shear strain (the change in 
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angle between two originally orthogonal control volume lines) is not 
necessarily equal to each other, namely, 𝜕4𝑢 ≠ 𝜕3𝑣. 

 

 

As mentioned above, the infinitesimal velocity gradient of equation (29) 
in the symmetric part is called the strain rate tensor and describes the 
infinitesimal rate of stretching and shearing. 

 
 

Fig. 2 General velocity gradient tensor, 𝜕4𝑢 ≠ 𝜕3𝑣. 
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Its diagonal elements represent the rate of stretching (or extensional strain 
rate). By the definition, its off-diagonal elements represent an average rate 
of shear deformation (because of the averaged procedure).  As shown by 
Fig. 2, the averaged shear strain rate accounts only for a part of the shear 
deformation. 

 

As shown in Fig. 2, the real rate of change of the velocity vector is 
represented by the vector 𝐴𝐵ggggg⃗ . Due to the average procedure of the off-
diagonal elements, "

#
O𝜕4𝑢 + 𝜕3𝑣P, the averaged shear strain rate in the 

symmetric parts only represents a deformation vector of  𝐴𝐶ggggg⃗ . Thus, this 
averaged procedure accounts only partially for the spinning motion. 

 

The velocity gradient in the antisymmetric part (pure spin) will supplement 
another part of the shear deformation and can correct this deficiency; this 
shear strain rate is represented by the vector of  𝐶𝐵ggggg⃗ . Thus, the collective 
effects of the symmetric and antisymmetric parts give the correct velocity 
gradient: 𝐴𝐵ggggg⃗ = 𝐴𝐶ggggg⃗ + 𝐶𝐵ggggg⃗ . 

 

 

4.2 Simple Shear Flow 

 

Simple shear flow will give a clearer image of this deficiency of the 
Navier-Stokes equations. 

 

Fig. 3 shows a simple shear flow for 2-dimensional deformation; we 
assume the 𝜕3𝑣 = 0 and 𝜕4𝑢 = 2𝜀 = 𝐴𝐵ggggg⃗ . Through the average procedure, 
the symmetric part represents an instantaneous rate of pure shear.  It is 
represented by a vector of 𝐴𝐶ggggg⃗ .  
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The antisymmetric part represents a pure, rigid rotation of vector 𝐴𝐷ggggg⃗ .  The 
direction of the rotational axes is also given in this figure; it is going into 
the page. By applying the right-hand rule of the vector cross product, it can 
be recognized that the resulted force by the antisymmetric part, �̿�(ρ�⃗�) =
1
2
(𝜌𝑣GG⃗ )×𝜔GGG⃗ , of equation (37), is in an upward direction. 

  

 
 

Fig. 3 simple shear flow is the combination of pure shear and rigid 
rotation. 
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4.3 Navier-Stokes Equations are a Special Case  

 

As shown by Fig. 4, if the corresponding off-diagonal elements of the rate 
of velocity change are equal to each other, namely 𝜕4𝑢 = 𝜕3𝑣. 

 

 
 

Fig. 4. The corresponding off-diagonal elements are equal to each 
other: 𝜕4𝑢 = 𝜕3𝑣 
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The symmetric part really represents the actual shear strain rate. In this 
case, the antisymmetric part is equal to zero, because of 𝜕4𝑢 − 𝜕3𝑣 = 0.  
Under this circumstance, the Navier-Stokes equations can just describe 
the correct flow behavior.  

 

4.4 Geometric Algebra Explanation 

 

Assuming the velocity has an infinitesimally small variation in space from 
𝑟 to 𝑟 + 𝛿𝑟 in flow field (time keeps constant), it is denoted by 𝛿𝑣(𝑟 + 𝛿𝑟). 
For two vectors 𝜌�⃗�(𝑟) and 𝛿�⃗�(𝑟 + 𝛿𝑟), we may write the geometric product 
of two vectors, 𝜌�⃗�(𝑟) and 𝛿�⃗�(𝑟 + 𝛿𝑟), as the sum of an inner product (a 
scalar field) and an exterior product of vectors (also called wedge product), 
it is a bivector field (in three dimensions, it represents a vector rotation, 
physically, it represents a vorticity field). 

 

𝜌�⃗�𝛿�⃗� = 𝜌�⃗� ∙ 𝛿�⃗� + 𝜌�⃗� × 𝛿𝑣. (42) 
 

Both sides divided by the small variation of 𝛿𝑟: 

 

𝜌�⃗�
𝛿�⃗�
𝛿𝑟

= 𝜌�⃗� ∙
𝛿�⃗�
𝛿𝑟

+ 𝜌�⃗� ×
𝛿�⃗�
𝛿�⃗�
. (43) 

 

Take a limit,  𝛿�⃗� 𝛿𝑟⁄  approaches the velocity gradient tensor,	∇�⃗� , see 
equation (24). 

 

𝜌�⃗�(∇�⃗�) = 𝜌�⃗� ∙ (∇�⃗�) + 𝜌𝑣 × (∇𝑣). (44) 
 

Re-arrange it: 

(𝜌�⃗�) ∙ (∇�⃗�) = 𝜌�⃗�(∇�⃗�) − 𝜌�⃗� × (∇�⃗�). (45) 
 

The LHS of equation (45) represents the projection of the velocity gradient 
onto the vector of 𝜌�⃗�. It is parallel to 𝜌𝑣, while the cross-product term of 
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𝜌𝑣 × (∇𝑣) is perpendicular to 𝜌𝑣. See Fig. 5b. Mathematically, it is the 
orthogonal decomposition. 

 

With the help of Lagrange’s identity (Pythagorean theorem), in three 
dimensions, equation (42) has the following relation: 

 

|𝜌𝑣|#|𝛿�⃗�|# = |𝜌𝑣 ∙ 𝛿�⃗�|# + |𝜌�⃗� × 𝛿�⃗�|#.  (46) 

 
 

Fig. 5 Geometric product of two vectors contains all the information of 
the stretching (dot product) and spinning (cross product or vorticity) 

motion of the flow field. 
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where |𝜌�⃗� ∙ 𝛿�⃗�|  is the length of the inner product of 𝜌�⃗�  and 𝛿�⃗� , and 
|𝜌�⃗� × 𝛿𝑣| represents the length of the exterior (wedge) product. Equation 
(46) forms a right-angled triangle (see Fig. 5c). Thus, the geometric 
product of two vectors contains the total information between two vectors: 
stretching (dot product term) and local rotation (cross-product term). 

 

5. Similarity between Flow Field and Electromagnetic Field 

 

For vectors in three-dimensional Cartesian coordinate, we have the 
following vector calculus identity: 

 

∇𝑇 =
1
2
(𝜌�⃗� ∙ �⃗�) = (𝑣 ∙ ∇)(𝜌�⃗�) + (𝜌�⃗�) × (∇ × �⃗�). (47) 

 

The first term of the RHS of the equation (47) is the convective term and 
parallel to the velocity vector (“projected” onto the velocity vector), the 
second term is the cross product of velocity and vorticity vectors 
(perpendicular to both the vectors of velocity and vorticity). Geometrically, 
it just is the orthogonal decomposition of the kinetic energy gradient. See 
Fig. 5.  Physically, it includes local stretching (dot product) and rotational 
motions (cross product of the velocity and vorticity) of the flow field. 

 

Equation (47), together with the material derivative of equation (21), are 
substituted into the Euler-Lagarangian equation (20), yielding: 

 

𝜕(𝜌�⃗�)
𝜕𝑡

+ (�⃗� ∙ ∇)(𝜌�⃗�) = (𝑣 ∙ ∇)(𝜌�⃗�) + (𝜌�⃗�) × (∇ × �⃗�) − ∇𝑝. (48) 

 

The convective terms in both sides cancel out. The resulting equation 
reads: 
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𝜕(𝜌�⃗�)
𝜕𝑡

+ ∇𝑝 − (𝜌�⃗�) × (∇ × �⃗�) = 0. (49) 

 

For incompressible flow, it can be written as: 

 

𝜌 sa−
𝜕�⃗�
𝜕𝑡
−
1
𝜌
∇𝑝b + �⃗� × (∇ × 𝑣)t = 0. (50) 

 

If we define a force field per unit mass density as: 

 

𝐸g⃗ = −
1
𝜌
∇𝑝 −

𝜕�⃗�
𝜕𝑡
. (51) 

 

Similar to the definition of magnetic field, the vorticity field is written as 

 

𝐵g⃗ = 𝜔gg⃗ = ∇ × �⃗�. (52) 
 

Then the force in the flow field can be written as following: 

 

�⃗� = 𝜌𝐸g⃗ + 𝜌�⃗� × 𝐵g⃗ . (53) 
 

Mathematically, it is similar to the Lorentz force (electromagnetic force) 
expression for charged particles in an electromagnetic field. 

 

It says that the force on a fluid particle, with mass density of 𝜌, in flow field 
is a combination of  

(1) a force in the direction of the translational force density of 𝑬gg⃗  
(proportional to the magnitude of the field strength and the fluid 
mass density, parallel to the negative gradient of pressure, similar 
to the electric field), and  

(2) a force at right angles to both the vorticity field 𝝎ggg⃗  and the velocity 
𝒗gg⃗  of the fluid particle (proportional to the magnitude of the vorticity 
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field strength, the mass density, and the velocity, similar to the 
charged particle moving in magnetic field). 

 

It can be concluded that the trajectory of the fluid particle in the flow field 
will show the combination of a translation and a rotation motion (a vortex 
tube or helical shape). 

 

It may be induced that an electromagnetic field is produced by a mixture 
of free-flowing particles with positive and negative charges, such as 
plasma flow in three-dimensions. 

 

In this case, the fluid flow field, electromagnetic field, or, plasma flow field 
are, in essence, the same. All of them can be integrated within the same 
mathematical frame. Both can be written as the same field tensor: 

 

𝐹9: =

⎣
⎢
⎢
⎢
⎡

0 𝐸3 𝑐⁄ 𝐸4 𝑐⁄ 𝐸5 𝑐⁄
−𝐸3 𝑐⁄ 0 −𝐵5 𝐵4
−𝐸4 𝑐⁄ 𝐵5 0 −𝐵3
−𝐸5 𝑐⁄ −𝐵4 𝐵3 0 ⎦

⎥
⎥
⎥
⎤
, (54) 

 

where, c represents the mechanical wave propagation speed for the fluid 
flow field (compressible fluid, incompressible flow is just an approximation 
that v<<c), while for the electromagnetic field it is the speed of light [5].  

 

The equation (53), namely the force components in the spatial directions 
(𝑥, 𝑦, 𝑧), can be rewritten as: 

 

�⃗� = −𝐹9:O𝜌𝑉g⃗ P. (55) 
 

Here O𝜌𝑉g⃗ P represents the four-velocity vectors: 

𝜌𝑉g⃗ = (𝜌𝑐, 𝜌𝑢, 𝜌𝑣, 𝜌𝑤). (56) 
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6 Summary and Conclusion 
 

In this work, we explore the Euler-Lagrangian approach to flow fields and 
highlight the incompleteness of the Navier-Stokes equations. The Euler-
Lagrangian approach and the Newtonian method are both equivalent in 
classical mechanics, but the Euler-Lagrangian approach has advantages 
such as handling non-inertial forces and deriving equations of motion for 
systems with a curvilinear trajectory. The incompleteness of the Navier-
Stokes equations is explained by geometric interpretations and geometric 
algebra explanations. The Stokes hypothesis can only account for a part 
of the spin motion of the fluid particles in the flow field because of the 
average procedure of the shear strain. In order to describe the flow field 
correctly, a spinning term (represented by an antisymmetric tensor 
multiplying the linear momentum) cannot be ignored. At last, we discuss 
the similarities between flow fields and electromagnetic fields. It is an 
amazing thing that fluid flow fields and electromagnetic fields, in essence, 
are the same. All of them can be described by the same mathematical 
frame.  
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