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Abstract

Liver cancer, the sixth most diagnosed cancer worldwide is the third most common cause of cancer related deaths. The

two most prevalent diagnosed subtypes include Hepatocellular carcinoma (HCC) and Cholangiocarcinoma (CCA) which

comprise about 75% and 12-15% of all liver cancer cases, respectively. The liver is known to be a primary target and

metabolic organ of the sex steroid hormone progesterone (PRG), which can induce its effects through either classic

nuclear PRG receptors (nPRs), non-classic membrane PRG receptors (mPRs), or combined responses. In our

previous studies we have demonstrated that the CCM signaling complex (CSC) couples both nPRs and mPRs to form

the novel CmPn signaling network, which is involved in multiple cellular signaling pathways including angiogenesis and

tumorigenesis of multiple cancers including breast cancers. Utilizing RNAseq data and Immunofluorescence

approaches, we investigated the CmPn network to measure alterations to key cancer pathways during liver

tumorigenesis by examining expression profiling for key CmPn members across multiple liver cancer subtypes, at both

the transcriptional and translational levels. Our results demonstrated significant differential expression for multiple

members of the CmPn signaling network including CCM1, PAQR7, PGRMC1, and nPRs, for both HCCs and CCAs,

reinforcing the definitive roles of mPRs, nPRs, and CSC signaling during liver tumorigenesis. Therefore, we propose

the future use of CmPn members’ expression data as potential prognostic hepatic cancer biomarkers or biomarker

signatures to not only distinguish between two major subtypes, HCCs and CCAs, but also to define some rare

subtypes, such as undifferentiated pleomorphic sarcoma (UPS) and hepatic angiosarcoma (HAS), which may lead to

hopeful new therapeutic strategies for hepatic cancers.
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Introduction

        Liver cancer is the third most common cause of cancer related death and is the sixth most diagnosed cancer

worldwide [1]. Hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA) are the leading primary liver cancers,

comprising about 75% and 12-15% of all liver cancer cases, respectively [2]. 5-year survival rates for patients with liver

cancer, in general, is ~5-30% [3], and more specifically, around 15% for HCC and 5-15% for CCA patients [4]. Patients

diagnosed with HCC who receive early treatment are more likely to have longer recurrence-free periods and better overall

survival rates compared to similar conditions in patients diagnosed with rarer subtypes of liver cancer [5]. Generally, the

prognosis of HCC is poor as a result of their characteristic “chemoresistant” nature [6]. Studies have identified major

prognostic factors that are associated with postoperative recurrence of HCCs to include tumor size, number of nodules,

vascular invasion, tumor encapsulation, blood transfusion, high α-fetoprotein (AFP) levels, and resection margin status [7].

Liver cancer is seen two to three times more often in males than females worldwide, which could be due to risk factors

such as alcohol consumption, Hepatitis B virus (HBV), Hepatitis C virus (HCV), or nonalcoholic fatty liver disease

(NAFLD) [8]. Though about 70% of CCA cases occur sporadically, risk factors such as HBV, HCV, infection-associated

cirrhosis, diabetes, and obesity have recently been associated with increased CCA risks [9]. Although HCC and CCA are

the most commonly diagnosed types of liver cancer, rarer liver cancer subtypes have worse prognosis and fewer

successful treatment options available [10][11]. Low incidences of these rare hepatic cancers have made it difficult for in-

depth analysis, as well as present challenges in early diagnosis before the cancer has metastasized [11]. Finally, since

liver cancer is a male-dominant disease the role of Progesterone (PRG) signaling cascades is usually ignored.

        The liver is known to be a primary target and metabolic organ of the sex steroid hormone PRG, and the possible role
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that PRG plays in HCC progression has recently been explored [12][13][14][15]. PRG can act through classic, non-classic, or

mixed responses, by binding either to classic nuclear PRG receptors (nPRs) or non-classic membrane PRG receptors

(mPRs) [16]. It has been observed that the CSC, which is comprised of KRIT1 (CCM1), MGC4607 (CCM2)

and PDCD10 (CCM3), interacts with mPRs and nPRs to form the CSC-mPRs-PRG-nPRs (CmPn) signaling network

under PRG actions [17][18]. The CmPn network has also been recognized to be involved in multiple cellular signaling

pathways, most notably angiogenesis and the tumorigenesis of multiple types of cancers, including liver and breast

cancers [17][19][20][21]. Within mPRs, there are 5/11 members that have been investigated for their involvement in

angiogenesis and tumorigenesis of different cancer tissues: mPRα (PAQR5), mPRβ (PAQR6), mPRγ (PAQR7), mPRδ

(PAQR8) and mPRε (PAQR9) [22][23]. This leads us to our current investigation on evaluating alterations to key members

of the CmPn signaling network, among various hepatic cancers, for discovery of potential biomarkers for not only HCCs

and CCAs, but for rarer subtypes as well.

        Due to their suspected involvement in HCC, members of the CmPn network have been investigated as potential

biomarkers. Down-regulation of progesterone receptor membrane component 1 (PGRMC1), a non-classical membrane

progesterone receptor, has been associated with progression of HCC from tumor size G2 to G3 [24], and therefore, has

been investigated as a possible prognostic biomarker for HCCs [25]. Previous studies have also shown that

high CCM3 gene expression promotes cell proliferation and metastasis of HCC, leading to poor prognosis [26].

Additionally, our foundational studies demonstrated altered expression of all three members of the CSC, along with

PAQR7, during the early stages of tumorigenesis in liver cancer [20]. Currently, there is a lack of non-invasive diagnostic

and prognostic measures for diagnosing hepatic cancer and differentiating the various subtypes which differ drastically in

their histology and morphology. The current gold standard biomarker for diagnosing liver cancer is alpha-fetoprotein

(AFP), which can also be used to distinguish between HCCs and CCAs [27]. AFP displays variable sensitivity and

specificity, and therefore, is often used as a complementary biomarker, as high AFP levels can also be a sign of acute

hepatitis, cirrhosis, or pregnancy [28]. The lack of sensitive/specific biomarkers used for the prognosis and diagnosis of

liver cancer emphasizes the urgent need for identification of new potential biomarkers that can be utilized to not only

diagnose liver cancer earlier, but also provide non-invasive prognostic methods to distinguish between liver cancer

subtypes.

        In our study, we profiled mRNA expression of key CmPn players including the CSC (CCM1-3), mPRs (PAQR5-

9, PGRMC1/2) and nPRs (PGR1/2), along with the current “gold standard” liver biomarker AFP, across different liver

tissue types and cancer types, in combination with clinical patient information. Additionally, we analyzed protein

expression of key CmPn members including CCM1/3, PAQR7/8, PGRMC1 and nPRs using immunofluorescence (IF)

methods. Our results demonstrated potential for several key members of the CmPn network to be utilized as biomarkers

for the diagnosis and prognosis of different liver cancer subtypes, at both the transcriptional and translational levels,

through our comparative bioinformatics and IF approaches.

Materials and Methods
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Bioinformatics analysis

Clinical profiling for hepatic cancers utilizing the NCI-GDC data portal. Utilizing the Genomic Data Commons (GDC) data

portal from the National Cancer Institute (NCI), we assessed all available sociological/clinical/diagnostic data for patients

diagnosed with liver (Hepatocellular carcinoma, HCC) or intrahepatic bile duct cancers (Cholangiocellular carcinoma,

CCA) [29][30][31][32][33][34]. We performed preliminary general clinical analysis for HCC and CCA patients, which utilized 14

publicly available databases (Suppl. table 1) and repeated our clinical analysis for CmPn network associated clinical

observations utilizing only 2 databases (Suppl. table 1) containing patient samples with differential expression data for any

of the key CmPn players.

Differential expression profiling of key CmPn members, along with AFP, using microarray expression data. Expression

analysis was performed as previously described [16]. Briefly, differential expression profiling was preliminarily performed

utilizing the TCGA-TARGET-GTEx database, which is a unique database that contains two types of 'normal' tissues’; 1).

“solid tissue normal” which are taken from normal tissue, near the tumor site and 2). ‘normal healthy tissue’ from

individuals without cancer. This data originates from the UCSC RNAseq compendium, where TCGA, TARGET, and GTEx

samples are re-analyzed (re-aligned to human hg38 reference genome and expressions are processed using RSEM and

Kallisto methods) by the same RNA-seq pipeline, thereby eliminating batch effects. Additionally, the TCGA-PANCAN

database was also used to validate results obtained using the TCGA-TARGET-GTEx database. Available sociological,

pathological, and follow-up clinical data [35], for both HCC and CCA patients, was extracted from the TCGA-LIHC and

TCGA-PANCAN databases and used during expression profiling to investigate differentially expressed genes among race,

gender, family cancer history, vascular invasion, stemness scores across histological types, new tumor events (type and

site), vital status, and residual tumor status [35].

        Additionally, RNAseq data from the TCGA-TARGET-GTEx, as well as the TCGA-PANCAN databases, was used to

investigate differential expression of key CmPn members, along with AFP, for both HCCs and CCAs, based on

histological sample type (normal healthy tissue vs primary tumor samples). We then repeated expression profiling for each

cancer type based on immune subtypes, in a pair-wise fashion. Finally, we evaluated expression profiling of key CmPn

members, along with AFP, between HCCs and CCAs, to evaluate overlaps and differences in expression between these

two cancer subtypes. Significant differential expression was performed using Xenabrowser with a cutoff p-value <0.05.

Gene ontology, KEGG and reactome pathways enrichment analysis was performed from the RNAseq data using Enrichr.

Significance was evaluated using a cutoff p-value <0.05 and FDR cutoff value <0.1.

Immunofluorescence (IF)

Deparaffinization of paraffin-embedded tissue sections. IF processing of slides was performed as previously

described [16]. Briefly, liver tissue microarray slides were purchased from US Biomax (Suppl. Table 3) and were baked at

60℃ for 2 hrs. Once the slides cooled, the sections underwent 3 xylene washes at 5 min each, followed by sequential 3-

min washes of 100, 95, 90, 80, and 70% ethanol and soaked in water before undergoing antigen retrieval.
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Antigen Retrieval. Tissue sections were washed in 1X PBS 3 times, 3 min per wash before being permeabilized in PBS

containing 0.2% Triton X-100 (wash buffer) for 10 min. Tissue slides were then submerged in 10mM sodium citrate buffer

(Na3C6H5O7, pH 6.0) containing 0.01% Triton X-100. Tissues were maintained at 95-98℃ for 30 min in citrate buffer and

then set aside to cool at room temperature (RT).

Blocking and Antibody Incubation. Following antigen retrieval, slides were washed 3 times in wash buffer at 3 min per

wash at RT. Tissues were then blocked using Pierce fast blocking buffer (Fisher) for 90 min at RT. A hydrophobic pen was

used to draw a barrier around the tissue sections to conserve antibodies. All primary antibodies were diluted in wash

buffer and Pierce fast blocking buffer (1:1). An initial 500ul was added to the tissues and left to incubate for 2 hrs at RT in

the dark. Primary antibody was removed, and tissues were washed 3 times in wash buffer at 3 min per wash at RT. 400ul

of secondary antibody, which was diluted in wash buffer and Pierce fast blocking buffer (1:1), was added to the slide and

left to incubate for 2 hrs at RT. All antibodies used are listed in Suppl. Table 3. Tissues were washed 3 times in wash

buffer at 3 min per wash at RT before continuing to the mounting/sealing step.

Nuclear Staining and Mounting/Sealing. Tissue sections were stained with DAPI by adding two drops of mounting media

containing DAPI directly to the sections. Tissues were left to rest O/N at 4℃ in the dark to allow efficient staining of DAPI.

Slides were sealed with nail polish the next day and allowed time to dry before imaging.

Imaging and Quantification. IF imaging/quantification of microarray slides was performed as previously described [16].

Briefly, imaging was performed utilizing a Nikon Eclipse Ti confocal microscope using 10X, 20X and 60X objective lenses.

Nikon Elements Analysis software, equipped on the Nikon microscope, was used to automatically quantify protein

abundance in the tissues. Bias was avoided by maintaining thresholding values across all images and to dismiss low and

high outliers. IF images were quantified for CCM1 and PGRMC1 using 488nm wavelength channel, while images for

CCM3, PAQR7/8, nPRs, and AFP were quantified using the 555nm channel.

Prognostic outcomes for key CmPn members using HCC patient samples

Construction of Kaplan-Meier (KM) survival curves to determine prognostic effects. Publicly available microarray data

(22,277 probes) from 364 liver cancer patients (only available for HCCs due to small sample size for CCAs) was analyzed

using KMplotter [36] to integrate gene expression and clinical data simultaneously. To ensure patients in the database

reflected cohorts seen in the everyday clinical practice, we filtered the patient data by only selecting cohort data similar to

SEER published prevalence [36]. Additionally, publicly available microarray data from 374 liver cancer patients (again, only

available for HCCs due to small sample size for CCAs) was also assessed from TCGA to integrate gene expression and

clinical data simultaneously [35] to confirm the initial analysis performed using KMplotter. Logrank P-values, hazard ratios

and 95% confidence intervals were calculated by the software [36].

Statistical Analysis

For IF analysis, One-way analysis of variance (ANOVA) or two-way ANOVA (for co-stained sections) were used to detect
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differences in the mean abundance of proteins among the various liver tissue types with Holm-Sidak’s multiple

comparisons correction. Welch’s t-test was used to detect the differences in the mean values among two comparing

groups. For Bioinformatics Analysis, Welch’s t-test was also used to detect the differences in the mean values among two

comparing groups, while one-way ANOVA was used to detect the differences in the mean values among more than two

groups. All IF graphs/plots/charts were constructed and produced using GraphPad Prism 9.3.1, while bioinformatics

graphs/plots/charts were produced using either the Xena, KMplotter or NCI-GDC built-in analysis software.

Results

Clinical profiling of hepatic cancers with altered CmPn expression

        Given our recent findings of the potential role of the CmPn signaling network in tumorigenesis of multiple types of

cancers [16][20][21][37][38][39], we began our investigation by assessing general clinical information for hepatic cancers

utilizing the Genomic Data Commons (GDC) data portal from the National Cancer Institute (NCI). We then compared

these results to filtered data only analyzing patient samples with differential expression for any key CmPn players (Fig. 1,

Suppl. Table 1). By filtering the NCI-GDC data to look only at patients with differential CmPn expression, we observed that

approximately 80% of hepatic cancer patients with altered expression of key CmPn members had a life expectancy of ~9

years, compared to ~10 years for hepatic cancer patients without modified CmPn expression (Figs. 1A-1 & 1A-5, left

panels). It was also noted that patients with CmPn alterations were diagnosed later in life ~61 years old, compared to ~58

years for hepatic cancer patients without modified CmPn expression (Figs. 1A-1 & 1A-5, right panels). Both year of

diagnosis (Figs. 1A-2 & 1A-6) and year of death analyses (Figs. 1A-4 & 1A-8) were similar, indicating that regardless of

differential expression of key CmPn members, there has been an exponential increase in both categories for hepatic

cancer patients. Interestingly, when evaluating tissue of origin (Figs. 1A-3 & 1A-7), there was a noticeable increase in the

number of cases originating in the intrahepatic bile ducts for patients with differential expression of CmPn members

(~12%) compared to patients without CmPn alterations (~3%) . 

        We additionally performed socioeconomic status (SES) and diagnostic comparative profiling utilizing clinical data for

patient samples without (Fig. 1B1-1B5) or with differential expression for key CmPn players (Fig. 1B6-1B9). Our analysis

revealed that the majority of patients diagnosed with hepatic cancers were not Hispanic/Latino, irrespective of CmPn

members’ expression (Figs. 1B-1 & 1B-6, left panels). The percentage of patients among the four primary racial categories

between our two groups were relatively similar, although with a higher number of Asian patients (~40%) with altered

CmPn expression data (Fig. 1B-6, right panel) compared to patients without CmPn alterations (~14%; Fig. 1B-1, right

panel). Gender stratification of patients illustrated that hepatic cancer is dominant in males (Figs. 1B-2 & 1B-7) regardless

of altered expression of key CmPn members. Interestingly, an 11% increase was observed in patients with prior

malignancy with differential expression of CmPn genes (Fig.1B-8) compared to those without (Fig. 1B-3). Additionally,

when we examined primary diagnosis status, we saw that nearly half of cases were identified as either CCA or HCC, while

<1% were recognized as either combined hepatocholangiocarcinoma (cHCC-CCA) or clear cell adenocarcinoma (CCC)
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(Fig. 1B-4) for patients without CmPn alterations. Interestingly, when we repeated the analysis for patients with altered

CmPn expression, we observed a switch in the primary diagnosis classifications in which now ~80% were diagnosed with

HCC and only ~10% with CCA (Fig. 1B-9), while cHCC-CCA and CCC remained the least diagnosed subtypes. Finally,

we conducted an assessment on general tumor classification data for patients without CmPn expression (not enough data

for altered CmPn expression analysis) and observed more hepatic cancer cases that began as primary cancers rather

than a result of metastasis from another organ (Fig. 1B-5).

Altered expression of CmPn genes across clinical tumors in hepatic cancers suggest their involvement in

liver cancer tumorigenesis

        Based on our preliminary clinical analysis of altered SES and diagnostic profiling between patients with and without

differential expression of key CmPn players, we next evaluated expression of CmPn players in liver tissues using publicly

available RNAseq data from The Cancer Genome Atlas (TCGA). To evaluate differential expression of key CmPn players

and their potential role as prognostic biomarkers, we also profiled AFP, an established liver cancer biomarker, to compare

with our CmPn profiling analysis. For our first analysis, we utilized two databases in TCGA containing two categories of

‘normal’ tissues; “solid tissue normal” which are normal tissue sections taken adjacent to primary tumor tissue and “normal

healthy tissue” taken from healthy individuals with no diagnosis of cancer. We observed significant differential expression

patterns, in both HCCs and CCAs, for almost all CmPn players (except PGRMC2 in CCAs), along with AFP, in our

preliminary analysis (Fig. 2A-1 & 2A-2). Next, we repeated expression profiling using a separate database in TCGA,

based on tissue type (normal healthy tissue unavailable in this database), confirming several of our previous observations.

We confirmed significant differential expression patterns for CCM2, PAQR6/8, PGRMC1/2, nPRs, along with AFP, for

HCCs (Fig. 2B-1), while analysis of CCAs (recurrent tumor data unavailable) confirmed significant differential expression

patterns for almost all CmPn players (except CCM1/PAQR7), along with AFP (Fig. 2B-2). 

        To further validate the role of the CmPn network during liver cancer tumorigenesis, we analyzed differentially

expressed genes (DEGs) in a pair-wise fashion, comparing normal healthy liver tissue to HCC primary tumor tissues,

using publicly available RNAseq data. After analyzing DEGs between 110 normal healthy liver tissues and 369 HCC

primary tumor tissues (Suppl. Table 2A), we observed down-regulation of CCM1/2, PAQR6, and nPRs in HCC primary

tumor tissues, while all other CmPn players were up-regulated, along with AFP (Fig. 2C-1). We then utilized all DEGs to

perform pathway enrichment analysis to display the top 15 affected biological processes, molecular functions, and KEGG

pathways between HCC primary tumor tissues and normal healthy liver tissues (Fig. 2C-2 and Suppl. Table 2A). Our

results illustrated that up regulated DEGs in HCC primary tumors significantly affected cell cycle regulation, protein

binding, ATP-dependent activity, histone phosphorylation and cancer signaling pathways including DNA replication,

spliceosomes/lysosomes, pancreatic cancer, and hormone signaling pathways including Oocyte meiosis and

Progesterone-mediated oocyte maturation (Fig. 2C-2, left panels and Suppl. Table 2A). Down-regulated DEGs

significantly affected actin filament-based processes, protein digestion and absorption (also seen in a recent analysis of

HCC tumors using 4 separate independent databases) [40] and pancreatic secretion (Fig. 2C-2, right panels and Suppl.

Table 2A). Interestingly, dysfunction of pancreatic secretion has been reported as a metabolic change resulting from liver
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cancer [41][42]. Several important cancer signaling pathways were also observed to be affected (with significant p-values,

but FDR>0.1) including P53 signaling, viral carcinogenesis, colorectal cancer, base excision repair, and the Fanconi

anemia pathway (Fig. 2C-2, lower left panel and Suppl. Table 2A). 

        We repeated DEG analysis this time comparing 110 normal healthy liver tissues to 36 CCA primary tumor tissues,

which demonstrated more overall down-regulated CmPn genes in CCA primary tumors, compared to our HCC analysis

(Fig. 2D-1 and Suppl. Table 2B). We observed down regulation of CCM1/2 (down in HCC), PAQR9 (up in HCC),

PGRMC1/2 (up in HCC), nPRs (down in HCC) and AFP (up in HCC) in CCA primary tumors.

Interestingly, CCM3 and PAQR5/7/8 were up regulated in CCAs (Fig. 2D-1 and Suppl. Table 2B) which were also up

regulated in our HCC analysis. Utilizing DEGs from CCAs we performed pathway enrichment analysis and observed that

up-regulated DEGs in CCA primary tumors were significantly enriched in mainly regulation of cell communication, cell

population proliferation, cell differentiation, cell junction assembly, and regulation of Wnt signaling, (Fig. 2D-2, left panels

and Suppl. Table 2B). KEGG pathway analysis also revealed several important cancer signaling pathways were observed

to be up regulated (with significant p-values, but FDR>0.1) including PI3K-Akt, Notch, ECM-receptor interactions,

regulation of actin cytoskeleton, tight junction, focal adhesion, and adherens junction signaling pathways (Fig. 2D-2, lower

left panel and Suppl. Table 2B), which have been previously observed in our breast cancer studies with disruption of the

CmPn network [17][19][20][21]. Down regulated DEGs mainly affected cholesterol/sterol/lipid homeostasis and transporting

processes, hydrolase/transferase activity, cholesterol metabolism, regulation of blood coagulation, several cancer

signaling cascades including complement and coagulation cascades, PPAR pathway, bile secretion, peroxisomes, and

ABC transporters, as well as metabolic signaling pathways including fat digestion/absorption (Fig. 2D-2, right panels and

Suppl. Table 2B). 

        Lastly, to validate diagnostic potential of key CmPn players, we analyzed DEGs comparing both primary liver tumor

subtypes. After profiling DEGs between 438 HCC tumor samples with 45 CCA tumor samples, we observed down-

regulation of CCM2, PAQR9, and PGRMC1/2, along with AFP, in CCA tumor tissues, while CCM1, nPRs, and PAQRs5-

8 was up regulated in CCA tissues (Fig. 2E-1, and Suppl. Table 2C). Pathway enrichment analysis revealed up regulation

of mainly cellular localization, cellular component biogenesis, transmembrane transport processes, transmembrane

signaling receptors, frizzled binding, G protein-coupled receptors, MAPKKK cascades, cell-cell adhesion, and proton

transmembrane transport functions in CCAs (Fig. 2E-2, left panels and Suppl. Table 2C). KEGG pathway analysis of CCA

tumor tissues revealed several up regulated pathways (with significant p-values, but FDR>0.1) important in cancer

signaling including Wnt, AMPK, PI3K-Akt, breast cancer, prostate cancer, ECM-receptor interactions, and proteoglycans

in cancer signaling pathways (Fig. 2E-2, left bottom panel and Suppl. Table 2C). Down-regulated DEGs significantly

impacted exocytosis, sterol homeostasis, lipid/sterol transport, cholesterol/sterol metabolism, hemostasis, blood

coagulation, wound healing processes, lipase/endopeptidase activity, regulation of proteolysis, sterol binding/transport

and lipid localization (Fig. 2E-2, right panels and Suppl. Table 2C). Similar to the analysis performed with CCA tumors and

normal healthy tissue, down regulated signaling pathways in CCAs when compared to HCCs also included cholesterol

metabolism, several cancer signaling cascades including chemical carcinogenesis, complement and coagulation

cascades, PPAR pathway, bile secretion/synthesis, peroxisomes, and ABC transporters, as well as metabolic signaling
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pathways including fat digestion/absorption (Fig. 2E-2, right bottom panel and Suppl. Table 2C).

Differential expression patterns of key CmPn genes across various histological categories of hepatic cancers

and their associated prognostic effects. 

        Utilizing TCGA databases, we compiled expression profiles for hepatic cancers by filtering histological types

comparing HCC, the three major types of CCA (Intrahepatic, distal, and hilar/perihilar) and cHCC-CCAs. After comparing

all subtypes of CCA to HCC and cHCC-CCA clinical tumors, we observed significant differential expression of almost all

CmPn members, as well as AFP, except for CCM3 (Fig. 3A). Recently, there has been mounting evidence that tumor cells

can exhibit stem cell-like properties, allowing tumor cells the capacity of self-renewal and is responsible for the long-term

maintenance of tumors including therapeutic resistance, tumor dormancy, and metastasis [43][44][45]. Given the importance

of this, we next assessed stemness scores between HCCs, the three subtypes of CCAs, and cHCC-CCAs. Utilizing

clinical RNAseq data, we obtained significant differences between stemness scores among the three major subtypes of

CCAs, HCCs, and cHCC-CCA clinical tumors (Fig. 3B), suggesting that all subtypes analyzed have significant differences

in terms of self-renewal and repopulation capacities. 

Differential expression patterns of key CmPn genes across immune subtype classifications among hepatic

cancers and their associated prognostic effects.

        Given the importance of tumor microenvironments for both tumorigenesis and immunogenicity [46], we analyzed

differential expression of CmPn network genes, along with AFP, among immune subtypes for both HCCs and CCAs.

Clinical data available for HCC and CCA tumors included immune subtype classifications for wound healing (C1), IFN-

gamma dominant (C2), inflammatory (C3), and lymphocyte depleted (C4) subtypes. Overall expression profiling of 355

HCC tumors, across all immune subtypes, reveled significant differential expression patterns for almost all CmPn players,

along with AFP, excluding CCM2 and PAQR7/9 (Fig. 3C-1). When we repeated our analysis for overall expression

profiling of 35 CCA tumors, across all immune subtypes, we only obtained significant differential expression patterns

for PAQR6, which may be attributable to a small sample size of available clinical data for CCAs, in TCGA, regarding

immune subtype classifications (Fig. 3C-2). These results illustrate not only the involvement of the CmPn network in the

tumor microenvironment, but also demonstrates the potential use of expression profiling among multiple members of the

CmPn signaling network for HCCs, and PAQR6 for CCAs, as potential prognostic biomarkers across various immune

subtypes in hepatic cancers. 

Differential expression patterns of mPR and CCM genes between wound healing (C1) and IFN-γ dominant (C2) immune

subtype classifications

        To further investigate significance of immune subtypes among HCCs and CCAs, we performed pairwise comparisons

between various immune subtypes, given their importance in influencing the tumor microenvironment. First we compared

wound healing (C1), characterized with elevated expression of angiogenic genes, a high proliferation rate, and a Th2 cell
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bias to the adaptive immune infiltrate with IFN-γ dominant (C2) immune subtype, which has the highest M1/M2

macrophage polarization, a strong CD8 signal, high proliferation rate, and high T-cell receptor diversity [47]. Analysis of

HCCs demonstrated mainly up regulation in C1 subtype for members of the CSC and mPRs (thereby down regulated in

C2 subtype), with significance obtained for CCM1 and PAQR6 (Suppl. Fig. 1A, left upper panel and Suppl. Table 4A).

Interestingly, pathways functional enrichment analysis (Suppl. Table 4A) revealed mainly down regulated pathways for C1

subtype (thereby up regulated in C2 subtype) including chemokine receptor binding, MHC protein binding, and antigen

processing and presentation (Suppl. Fig. 1A, lower left panel and right panels). 

        Interestingly, when we repeated this analysis for CCAs, we did not observe any significant differential expression for

key CmPn members (Suppl. Fig. 2A and Suppl. Table 5A), most likely due to a limited sample size. 

Differential expression patterns of mPR and CCM genes between wound healing (C1) and inflammatory (C3) immune

subtype classifications

        We next compared C1 subtype with the inflammatory immune subtype (C3), characterized by elevated Th1/Th17

genes, low to moderate tumor cell proliferation, lower levels of aneuploidy and lower overall somatic copy number

alterations than the other immune subtypes [47]. Analysis of HCCs demonstrated significant up regulation in C1 subtype

(thereby down regulated in C3 subtype) for CCM3 and PAQR5/6, along with AFP (Suppl. Fig. 1B, left upper panel and

Suppl. Table 4B). We only observed significant down regulation (thereby up regulated in C3 subtype)

for PGRMC1/2 (Suppl. Fig. 1B, left upper panel and Suppl. Table 4B). Interestingly, pathways functional enrichment

analysis (Suppl. Table 4B) revealed mainly up regulation for C1 subtype (thereby down regulated in C3 subtype) for p53

signaling, Fanconi anemia pathway, and progesterone-mediated oocyte maturation (Suppl. Fig. 1B, lower left and right

panels). Down regulated pathways for C1 subtype (thereby up regulated in C3 subtype) mainly included fatty acid

metabolic processes, oxidoreductase activity, and complement/coagulation cascades (Suppl. Fig. 1B, lower left and right

panels). 

        When we repeated this analysis for CCAs, with a much smaller sample size, we observed significant down regulation

in C1 subtype (thereby up regulated in C3 subtype) for PAQR6 (Suppl. Fig. 2B, left upper panel and Suppl. Table 5B),

which interestingly was up regulated for HCCs in the same comparison (Suppl. Fig. 1B, left upper panel). Pathways

functional enrichment analysis (Suppl. Table 5B) in CCAs revealed significant up regulated pathways in C1 subtype

(thereby down regulated in C3 subtype) for PPAR, IL-17, and HIF-1 signaling pathways (Suppl. Fig. 2B, lower left panel

and right panels). Interestingly, there were very few significant down regulated pathways observed in CCAs which

included oxidoreductase activity, bile secretion and Rap1 signaling pathways (Suppl. Fig. 2B, lower left panel and right

panels). 

Differential expression patterns of mPR and CCM genes between wound healing (C1) and lymphocyte depleted (C4)

immune subtype classifications

        We then compared C1 subtype with lymphocyte depleted immune subtype (C4), characterized by a more prominent
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macrophage signature, with Th1 suppressed and a high M2 macrophage response [47]. Analysis of HCCs demonstrated

significant up regulation in C1 subtype (thereby down regulated in C4 subtype), for PAQR5/6/8, along with AFP (Suppl.

Fig. 1C, left upper panel and Suppl. Table 4C). Significant down regulation in C1 subtype (thereby up regulated in C4

subtype) was observed for PGRMC1/2, PAQR9 and CCM2 (Suppl. Fig. 1C, left upper panel and Suppl. Table 4C).

Interestingly, pathways functional enrichment analysis (Suppl. Table 4C) revealed mainly up regulation for C1 subtype

(thereby down regulated in C4 subtype) for Wnt signaling, ECM proteoglycans in cancer pathways, and Hippo signaling

pathways (Suppl. Fig. 1C, lower left and right panels). Down regulated pathways in C1 subtype (thereby up regulated in

C4 subtype) were more prominent including fatty acid/acyl-CoA metabolic and ligase processes, cholesterol metabolism,

and PPAR signaling pathways (Suppl. Fig. 1C, lower left panel and right panels). 

        When we repeated this analysis for CCAs, with a much smaller sample size, we observed significant down regulation

in C1 subtype (thereby up regulated in C4 subtype) for PAQR6 (Suppl. Fig. 2C, left upper panel and Suppl. Table 5C),

which was up regulated for HCCs in the same comparison (Suppl. Fig. 1C, left upper panel). Pathways functional

enrichment analysis (Suppl. Table 5C) in CCAs revealed significant up regulated pathways in C1 subtype (thereby down

regulated in C4 subtype) for cytokine activity, TNF, IL-17, and PIK3-Akt signaling pathways (Suppl. Fig. 2C, lower left

panel and right panels). Significantly down regulated pathways in C1 subtype (thereby up regulated in C4 subtype)

included mitochondrial translational pathways, non-alcoholic fatty liver disease signaling, and shared signaling cascades

with other diseases including Parkinson’s/Alzheimer’s/Huntington’s disease (Suppl. Fig. 2C, lower left panel and right

panels). 

Differential expression patterns of mPR, nPRs, and CCM genes between IFN-γ dominant (C2) and inflammatory (C3)

immune subtype classifications

        We next compared C2 with C3 immune subtypes. Analysis of HCCs demonstrated significant up regulation in C2

subtype (thereby down regulated in C3 subtype), for CCM3 and PAQR6/8, along with AFP (Suppl. Fig. 1D, left upper

panel and Suppl. Table 4D). Significant down regulation in C2 subtype (thereby up regulated in C3 subtype) was observed

for PGRMC1/2, nPRs and CCM1 (Suppl. Fig. 1D, left upper panel and Suppl. Table 4D). Pathways functional enrichment

analysis (Suppl. Table 4D) revealed significant up regulation for C2 subtype (thereby down regulated in C3 subtype) for

cell cycle phase transition, chemokine activity, and TH1/TH2 cell differentiation pathways (Suppl. Fig. 1D, lower left panel

and right panels). Down regulated pathways in C2 subtype (thereby up regulated in C3 subtype) included Notch signaling,

breast/endometrial/prostate cancer signaling pathways, mTOR and FoxO signaling pathways (Suppl. Fig. 1D, lower left

panel and right panels). 

        When we repeated this analysis for CCAs, with a much smaller sample size, we observed significant down regulation

in C2 subtype (thereby up regulated in C3 subtype) for PAQR5/6, and PGRMC1, while observing significant up regulation

of CCM2 (Suppl. Fig. 2D, left upper panel and Suppl. Table 5D). Pathways functional enrichment analysis (Suppl. Table

5D) in CCAs revealed significant up regulated pathways in C2 subtype (thereby down regulated in C3 subtype) for T-cell

proliferation/activation, cytokine/chemokine signaling, and lymphocyte differentiation pathways (Suppl. Fig. 2D, lower left

panel and right panels). Significantly down regulated pathways in C2 subtype (thereby up regulated in C3 subtype)

Qeios, CC-BY 4.0   ·   Article, November 18, 2022

Qeios ID: UFK906   ·   https://doi.org/10.32388/UFK906 11/28



included cell adhesion molecules (CAMs), PI3K-Akt signaling, and carbohydrate digestion/absorption pathways (Suppl.

Fig. 2D, lower left panel and right panels). 

Differential expression patterns of mPR and CCM genes between IFN-γ dominant (C2) and lymphocyte depleted (C4)

immune subtype classifications

        We next compared C2 with C4 immune subtypes. Analysis of HCCs demonstrated significant up regulation in C2

subtype (thereby down regulated in C4 subtype), for PAQR5/8 along with AFP (Suppl. Fig. 1E, left upper panel and Suppl.

Table 4E). Significant down regulation in C2 subtype (thereby up regulated in C4 subtype) was observed

for PGRMC1/2 and CCM1 (Suppl. Fig. 1E, left upper panel and Suppl. Table 4E). Pathways functional enrichment

analysis (Suppl. Table 4E) revealed significant up regulation for C2 subtype (thereby down regulated in C4 subtype) for

neutrophil activation/degranulation, hemostasis, and CAMs pathways (Suppl. Fig. 1E, lower left panel and right panels).

Down regulated pathways in C2 subtype (thereby up regulated in C4 subtype) included fatty acid processes, bile acid

biosynthesis, and PPAR signaling (Suppl. Fig. 1E, lower left panel and right panels). 

        When we repeated this analysis for CCAs, with a much smaller sample size, we observed significant down regulation

in C2 subtype (therefore up regulated in C4 subtype) for PAQR6 and PGRMC1 (Suppl. Fig. 2E, left upper panel and

Suppl. Table 5E). Pathways functional enrichment analysis (Suppl. Table 5E) in CCAs revealed significant up regulated

pathways in C2 subtype (thereby down regulated in C4 subtype) for B-cell activation and lymphocyte differentiation

pathways (Suppl. Fig. 2E, lower left panel and right panels). Significantly down regulated pathways in C2 subtype (thereby

up regulated in C4 subtype) included VEGFR binding/functions, cadherin binding, and SIRT1 negative regulation of rRNA

pathways (Suppl. Fig. 2E, lower left panel and right panels). 

Differential expression patterns of mPR, nPRs, and CCM genes between inflammatory (C3) and lymphocyte depleted

(C4) immune subtype classifications

        Finally, we performed pair-wise comparisons between C3 and C4 immune subtypes. Analysis of HCCs demonstrated

significant up regulation in C3 subtype (thereby down regulated in C4 subtype) for PAQR5/8 along with nPRs (Suppl. Fig.

1F, left upper panel and Suppl. Table 4F). Significant down regulation in C3 subtype (thereby up regulated in C4 subtype)

was observed for CCM2/3 (Suppl. Fig. 1F, left upper panel and Suppl. Table 4F). Pathways functional enrichment

analysis (Suppl. Table 4F) revealed significant up regulation for C3 subtype (thereby down regulated in C4 subtype) for

angiogenesis, ERK1/2 and MAPK cascades, as well as PI3K-Akt signaling (Suppl. Fig. 1F, lower left panel and right

panels). Down regulated pathways in C3 subtype (thereby up regulated in C4 subtype) included G2/M phase transition,

Fanconi anemia pathway, and ubiquitin protein activities (Suppl. Fig. 1F, lower left panel and right panels). 

        When we repeated this analysis for CCAs, with a much smaller sample size, we only observed significant down

regulation in C3 subtype (thereby up regulated in C4 subytpe) for CCM3 (Suppl. Fig. 2F, left upper panel and Suppl. Table

5F). Pathways functional enrichment analysis (Suppl. Table 5F) in CCAs revealed significant up regulated pathways in C3

subtype (thereby down regulated in C4 subtype) for Notch signaling, blood coagulation, and semaphorin interactions

Qeios, CC-BY 4.0   ·   Article, November 18, 2022

Qeios ID: UFK906   ·   https://doi.org/10.32388/UFK906 12/28



(Suppl. Fig. 2F, lower left panel and right panels). Significantly down regulated pathways in C3 subtype (thereby up

regulated in C4 subtype) included non-alcoholic fatty liver disease, glycolysis/gluconeogenesis, and TCA cycle pathways

(Suppl. Fig. 2F, lower left panel and right panels). 

Expression profiling of key CmPn players across HCC tumors integrating SES, follow-up and clinical survival

data

        We repeated expression-profiling patterns for key CmPn players, along with AFP, in liver tumor tissues using patient

clinical data including race, family cancer history, and vascular invasion, as well as follow-up data regarding new tumor

events/sites and vital status. We first evaluated expression profiles based on the four major race categories available.

Interestingly, for patients diagnosed with HCCs, significant differential expression of CCM1/2, PAQR7, PGRMC1/2,

and nPRs, along with AFP, were observed across the four major races (Fig. 3D). Interestingly, when we repeated our

analysis for CCAs, we observed no significance among CmPn genes (Suppl. Fig. 3A). Next, we performed expression

profiling based on family cancer history, and observed significant differential expression patterns for PAQR6, PGRMC1/2,

and nPRs among HCC patients (Fig 3E). We then explored expression patterns among genders and observed significant

differential expression for PAQR6 and nPRs in HCC patients (Suppl. Fig 4D-1), with no significance for CmPn genes,

except AFP, in CCA patients (Suppl. Fig 4D-2). We next evaluated expression profiling based on vascular invasion and

tumor recurrence for HCC clinical tumors. The three main categories for vascular invasion (defined as malignant cells

lining the vascular cavities of endothelial cells or portal/hepatic veins)[48] included macro (gross tissue evaluation), micro

(histopathological examination of tumor and surrounding hepatic tissue) or none. Significant differential expression

patterns for PAQR5 and PGRMC1 were observed in HCC patients (Fig. 3F), demonstrating the importance of mPRs in

influencing vascular invasion. 

        We next evaluated differential expression among HCC patients with new tumor events including locoregional

recurrence (growth of cancer cells at the same site as the primary tumor), intrahepatic recurrence (recurrence of cancer in

the liver after hepatic resection), extrahepatic recurrence (recurrence of the cancer in the lungs, lymph nodes, etc.), new

primary tumor, or no new tumor events. Interestingly, we observed significant differential expression in HCC patients

for CCM2, PGRMC1, and nPRs, along with AFP, demonstrating the importance of the CmPn network in influencing tumor

recurrence (Fig. 3G). Next, we profiled expression patterns based on new tumor event site and vital status for HCC and

CCA patients. Anatomical tumor recurrence between the lungs, liver, lymph nodes, bones, and brain revealed significant

differential expression for CCM1, PAQR9, and PGRMC1, along with AFP, in HCC patients (Fig. 3H), while no significance

was observed for CCA patients (Suppl. Fig. 4B). Interestingly, we also evaluated residual tumor classification, which

evaluates tumor status, post treatment/resection, for CCA and HCC patients with either micro (R1), macro (R2) or no

residual tumors (R0). We observed no significant expression differences for HCC patients (Suppl. Fig 4E-1) but observed

significant expression differences in CCM2/3, along with AFP, for CCA patients (Suppl. Fig. 4E-2). Finally, for HCC

patients, we observed significant differential expression for PAQR6/7 and nPRs based on vital status (Fig. 3I), while

observing no significant expression differences for CCA patients (Suppl. Fig. 4C). Together, these results validate the

involvement of the CmPn signaling network in liver cancer tumorigenesis, and furthermore demonstrate their involvement
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in tumor recurrence mechanisms. In sum, our clinical data support the future use of CmPn members’ expression data,

confirmed with AFP, as potential prognostic biomarkers for distinguishing between primary subtypes of liver cancer and

evaluating tumor recurrence in patients. Given these results, we wanted to further our investigation by assessing whether

altered expression of these genes was also observed at the translational level using immunofluorescent techniques.

Protein expression profiling of key CmPn members among normal and liver cancer tissues 

        To further examine the involvement of the CmPn network in liver tumorigenesis, we next examined differential

expression patterns of key CmPn proteins across seven liver cancer subtypes and normal liver tissues (Suppl. Fig. 4).

Utilizing liver tissue microarrays (Suppl. Fig. 4 and Suppl. Table 3), we analyzed protein expression levels of CCM1/3,

PAQR7/8, PGRMC1, and nPRs, along with AFP, using immunofluorescence (IF) imaging (Suppl. Table 3). We observed

significantly decreased protein expression for CCM1 (Fig. 4A-1 & 4A-2), CCM3 (Fig. 4B-1 & 4B-2), PAQR8 (Fig. 4C-1 &

4C-2), PGRMC1 (Fig. 4D-1 & 4D-2) and nPRs (Suppl. Fig. 5B) in all liver cancer subtypes, compared to normal healthy

liver tissues. Interestingly, PAQR7 displayed similar decreased trends among liver cancer subtypes, with the exception of

HCC, which had increased expression compared to normal liver cancer tissues (Fig. 4E-1 & 4E-2). When comparing

protein expression of key CmPn players within liver cancer subtypes, PAQR7, PGRMC1 and nPRs proteins were

significantly differentially expressed only when comparing HCC to all other subtypes (Fig. 4D-E and Suppl. Fig. 5B), which

was also observed in our preliminary TCGA analysis between HCCs and CCAs (Fig. 3A). Interestingly, for CCM1/3 and

PAQR8, we observed more significant differential expression patterns within all cancer subtypes imaged, with

undifferentiated pleomorphic sarcoma (UPS) displaying the lowest levels for CCM3 (Fig. 4B) and PAQR8 expression (Fig.

4C), while hepatic angiosarcoma (HAS) displayed the weakest expression of CCM1 (Fig. 4A), which was also true for

PGRMC1 (Fig. 4D) and PAQR7 (Fig. 4E). These results demonstrate that PAQR7, PGRMC1 and nPRs can be used as an

HCC specific biomarker, while CCM1/3 and PAQR8 can be used as a biomarker signature to differentiate undifferentiated

pleomorphic sarcoma (UPS) and hepatic angiosarcoma (HAS) from other hepatic cancer subtypes.

Altered expression levels of CCM3 and PAQR7 in biphenotypic liver cancer subtype

        Furthermore, we compared CCM3 and PAQR7 protein expression between HCC and cHCC-CCA (Fig. 5 and Suppl.

Table 3), since cHCC-CCA is known to be a biphenotypic liver cancer subtype, presenting hepatocytic and biliary

differentiation [49]. IF methods revealed cHCC-CCA tissues exhibited the lowest abundance of both proteins compared to

NORM and HCC tissues (Fig. 5A-1 and 5A-2). While examining CCM3 and PAQR7 expression, we observed NORM

tissue samples contained more co-localized “clumped” patterns for CCM3 and PAQR7 (Fig. 5B-60X imaging) compared to

both HCC and cHCC-CCA tissues, suggesting down-regulation of key members of the CmPn network during liver

tumorigenesis. Our data also indicate the loss of specific cellular co-localization patterns of both CCM3 and PAQR7 can

be used as a pathological biomarker signature for diagnosing cHCC-CCAs and HCCs. 

Copy number variations of CmPn players in HCC tissues confirms crosstalk among the CmPn signaling

network during liver cancer tumorigenesis

Qeios, CC-BY 4.0   ·   Article, November 18, 2022

Qeios ID: UFK906   ·   https://doi.org/10.32388/UFK906 14/28



        To evaluate the relationship between key CmPn players within the CmPn signaling network, we utilized publicly

available microarray data from 14 HCC patients to generate an oncogrid (Fig. 6A). Each column contains copy number

variation (CNV) information, mutation type for each CmPn gene, as well as clinical information. Our analysis identified key

CmPn mutations seen in HCC patients, but also solidified the existence of crosstalk interactions among key members of

the CmPn network during liver tumorigenesis. We observed not only missense (GOF or LOF), frameshift and nonsense

(LOF) CmPn gene mutations, but also observed compound mutations (one GOF and one LOF) co-exist among CmPn

genes (Fig. 6A). Both CCM1 and PAQR6 were the two members impacted with gain of function (GOF) alterations,

while nPRs was the only member frequently impacted with a loss of function (LOF) alteration (Fig. 6A). Next we wanted to

assess clinical impacts of altered expression levels of key CmPn members.

Differential expression patterns of mPR and CCM genes across clinical tumors and their associated survival

effects

        Utilizing publicly available microarray data from HCC patients (not enough data available for CCAs), we incorporated

gene expression and clinical data simultaneously to generate Kaplan-Meier (KM) survival curves to understand the impact

of the CmPn network on overall survival (OS) in liver cancer patients (Fig. 6B). In each panel, the left KM curve was

generated using kmplotter [36], while the right KM curve in each panel was generated using TCGA data to validate our

kmplotter analysis. Our analysis revealed that increased expression of CCM3 (Fig. 6B-1) and PAQR5/7/9 (Fig. 6B-3),

while decreased expression of PGRMC1/2 (Fig. 6B-2) demonstrated significantly worse prognostic outcomes in HCC

patients. Of these six key CmPn players, we were able to validate all survival curves, except PAQR5, utilizing TCGA data.

These results further substantiate the involvement of the CmPn signaling network in liver cancer tumorigenesis and

further solidify their potential prognostic application in HCCs.

Discussion

        The importance of the CmPn signaling network in the tumorigenesis of multiple cancers has been well documented

recently [16][17][20], demonstrating not only equal importance of both mPRs and nPRs in PRG signaling, but also

demonstrating that organs which utilize/metabolize PRG are susceptible to changes in CmPn members’ expression during

tumorigenesis [12]. In our foundational studies, we defined the novel CmP signaling network (absence of nPRs) in African

American Women-derived triple negative breast cancer (TNBC) cells [16], which overlapped with our observations of

altered CSC and mPRs expression changes in nPRs(+) breast cancer cells [21]. Furthermore, using Caucasian American

Women-derived TNBC cells, we demonstrated that all three breast cancer subtypes shared alterations to

key tumorigenesis pathways including cytokine-mediated responses, Wnt, Integrin, Gonadotropin Releasing Hormone,

and angiogenesis signaling pathways under mPR-specific PRG actions (PRG actions through mPRs only) [16][17][21]. In

regards to liver tumorigenesis, our previous pilot study demonstrated the largest differential expression of CmPn members

was observed in liver tumor tissues, proceeded by endometrial and breast tumor tissues [20]. In this study, utilizing

RNAseq data and IF approaches, we were able to further solidify the importance of the CmPn signaling network during
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liver cancer tumorigenesis by examining expression profiling for key CmPn members across multiple liver cancer

subtypes, at both the transcriptional and translational levels. We observed that several members of the CmPn network

(including CCM1/3 and PAQR7/8) were altered at both the transcriptional (Figs 2-3) and translational levels (Figs. 4-5),

between both normal and tumor tissues, as well as between liver cancer subtypes, which was also demonstrated for

PGRMC1 (Fig. 4D). Additionally, we also observed altered expression of nPRs (Suppl. Fig. 5B) in all liver cancer

subtypes, compared to normal healthy liver tissues, as well as between HCC and all other subtypes (Suppl. Fig. 5B).

Interestingly, we were able to prove specificity of AFP as a potential biomarker among CCA tissues, of which we observed

decreased expression at both the transcriptional (Fig. 2D-1) and translational levels (Suppl. Fig. 5A), when compared to

normal tissues, which is opposite to the well-documented trends observed in HCC. 

        Using systems biology approaches to compare CCAs and HCCs with normal healthy tissues, we observed similar

alterations to key tumorigenesis pathways, observed in our breast cancer omics analysis [16][17][20][21] , including altered

Wnt signaling, Progesterone-mediated oocyte maturation, oocyte meiosis, cholesterol metabolism, cell cycle phase

transition, and altered regulation of cell proliferation (Figs. 2C-D). Interestingly, our analysis with liver tissues also revealed

disruption of common cancer signaling pathways, when comparing CCAs and HCCs with normal healthy tissues, which

are known to influence liver tumorigenesis including sterol/cholesterol homeostasis [50], bile secretion [51][52], ABC

transporters [53], PPAR signaling [54], and frizzled binding [55] (Fig. 2C-D). When we repeated our analysis, comparing

CCAs with HCCs, we noticed opposite regulation between the two common liver cancer subtypes in which

cholesterol/triglyceride/lipid homeostasis, cholesterol transport, PPAR signaling, bile secretion, as well as ABC

transporters, were down regulated in CCAs compared to HCCs (Fig. 2E). Similarly, frizzled binding, MAPKKK signaling,

and protein kinase binding were up regulated in CCAs compared to HCCs (Fig. 2E). These results solidify the importance

of these common signaling cascades that are oppositely regulated among these subtypes and demonstrate the

importance of evaluating altered gene expression of key CmPn members involved in these signaling

cascades [16][17][19][20][21]. 

Potential prognostic biomarkers for hepatic cancers

        Biomarkers, identified through genetics/epigenetics, genomics/proteomics etc., are essential prognostic tools needed

for liver cancer patients to help with not only early detection but to also predict patient response to therapy as well as

future course of the disease [56][57]. As previously mentioned, 5-year survival rates for patients with liver cancer, in

general, is 5-30% [3], more specifically, about 15% for HCC and 5-15% for CCA patients [4]. Patients with HCC who

receive treatment earlier are more likely to have longer recurrence-free periods and better overall survival rates [5].

However, the prognosis of HCC is poor, as HCC has been referred to as a “chemoresistant” tumor [6]. 

        Currently, there are limited biomarkers approved for diagnosing hepatic cancers, with AFP being the sole gold

standard [58][59], despite its known limitations due to lack of sensitivity and specificity in detecting various grades/stages of

HCC, as well as limitations in accurately differentiating between primary liver cancer types [27][60]. The lack of reliable

biomarkers for the diagnosis/prognosis of hepatic cancers emphasizes the urge for identification of new biomarkers for

various subtypes in order to increase early diagnosis of these high-risk cancers to provide patients with better treatment
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options [57]. AFP is often used in conjunction with other biomarkers in the early diagnosis of HCC because of its low

specificity and sensitivity, however, AFP levels are not very high in 80% of HCC patients with small tumor sizes [27][61].

Positive serum AFP levels are only seen in about 19% of CCA cases, making it difficult to be effectively utilized as a

biomarker for liver cancers other than HCC [62]. Unfortunately, rarer liver cancer subtypes have the least available options

for early detection; therefore, identification of new potential biomarkers is of the utmost importance in providing early

screening and better treatment and prognosis options for these liver cancer patients. Together, these limitations shed light

on the importance of our observed findings of differential expression of multiple members of the CmPn network, among

both HCC and CCA clinical tumor samples, at both the transcriptional and translational levels.

        Utilizing RNA-seq and IF approaches, we observed that CCM1 and nPRs were seen to be down regulated, at both

the transcriptional and translational levels, in HCC and CCA tissues when compared to normal tissues, indicating that

these CmPn members could be useful diagnostic biomarkers, but did not support its potential use as a prognostic

biomarkers in differentiating between cancer subtypes. Up regulated levels of PAQR7 in HCC tissues only, at both the

transcriptional (Fig. 2C-1) and translational levels (Fig. 4E), as well as our observation that increased expression

of PAQR7 is associated with decreased survival in HCC patients (Fig. 6B-3), supports its use as a potential prognostic

biomarker to differentiate between HCCs and CCAs. Previous research has associated decreased expression

of PGRMC1 with advanced stages and poorer prognosis, and therefore, has been proposed as a potential prognostic

biomarker for HCC and various other cancers [25][63][64]. We observed down regulation of PGRMC1 in HCCs at the

translational level (Fig. 4D) but observed that mRNA levels of PGRMC1 are actually slightly increased compared to

normal healthy tissues (Figs. 2A-1 and 2C-1). Interestingly, we observed more dramatic down regulation

of PGRMC1, occurring at both the transcriptional (Figs. 2A-2 and 2D-1) and translational levels (Fig. 4D), in CCAs, further

suggesting its potential use as a prognostic biomarker for CCAs. These findings are extremely significant since CCAs

have less available validated biomarkers for early detection [62]. Interestingly, in addition to analyzing expression levels of

key CmPn members, we assessed AFP expression levels in CCA tissues, and saw synchronous down-regulation at both

the transcriptional (Figs. 2A-1 and 2D-1) and translational levels (Suppl. Fig. 5A), which corroborates with previous

findings that AFP levels are typically lower in CCAs than normal tissues, contrary to increased expression observed in

HCCs [27].

Pathways functional enrichment analysis using DEGs for HCCs and CCAs demonstrate perturbation in key

tumorigenic signaling cascades

        Pathways functional enrichment results obtained from significantly altered genes in HCC clinical samples

demonstrated perturbation to key cancer signaling pathways including cell cycle, DNA replication,

spliceosomes/lysosomes, pancreatic cancer signaling pathways, and pancreatic secretion pathways (Fig. 2C-2).

Interestingly, we also observed dysregulation in hormone signaling pathways including Oocyte meiosis and PRG-

mediated oocyte maturation (Fig. 2C-2), which were also altered pathways observed in all of our breast cancer

studies [16][17][21]. Functional enrichment results obtained from significantly altered genes in CCA clinical samples
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demonstrated perturbation to key cancer signaling pathways including cell population proliferation/differentiation, cell

junction assembly, Wnt signaling, PI3K-Akt, and Notch signaling (Fig. 2D-2), which were also observed to be

dysregulated in all of our breast cancer studies [16][17][21]. We also observed newly dysregulated pathways, not observed

in our breast cancer studies, including disruption of ECM-receptor interactions, complement/coagulation cascades, PPAR

pathways, bile secretion, peroxisomes, sterol/cholesterol homeostasis and ABC transporters (Fig. 2D-2), which are known

to influence liver tumorigenesis. Interestingly, when we repeated our analysis to compare CCAs with HCCs, we noticed

opposite regulation between the two common liver cancer subtypes including down regulation of

Cholesterol/triglyceride/lipid homeostasis, cholesterol transport, PPAR signaling, bile secretion as well as ABC

transporters in CCAs compared to HCCs (Fig. 2E-2). Similarly, frizzled binding, MAPKKK signaling, and protein kinase

binding were observed to be up regulated in CCAs compared to HCCs (Fig. 2E-2), solidifying the importance of these

common signaling cascades in distinguishing HCCs from CCAs.

Pathways functional enrichment analysis using DEGs in the immune landscape of hepatic cancers

        Given the importance of tumor microenvironments for both tumorigenesis and immunogenicity in hepatic cancers [46],

one of our main tasks was also to assess differential expression of CmPn network genes, along with AFP, among immune

subtypes for both HCCs and CCAs.

Wound healing (C1) subtype compared to IFN-γ dominant (C2) subtype

        C1 (wound healing) immune subtypes are characterized by elevated expression of angiogenic genes, while C2 (IFN-

γ dominant) subtypes have high M1/M2 macrophage polarization [47]. Cirrhosis is a form of recurrent wound healing and,

when seen in liver cancer patients, can decrease life expectancy [65]. An M2 to M1 phenotypic shift occurs during HCC

tumor progression, which promotes cancer cell proliferation [66]. Intriguingly, we noted during our comparisons that there

were very few significant up regulated pathways in HCCs, while CCAs demonstrated significance for both up and down

regulated pathways (Suppl. Figs. 1A and 2A). When comparing the two immune subtypes, we observed shared down

regulated pathways in C1 subtype, for both HCCs and CCAs, including chemokine/cytokine receptor activity, MHC protein

complex binding, Th1/2/17 cell differentiation, and CAMs pathways (Suppl. Figs. 1A and 2A). Interestingly, down

regulation of TNF-activated receptor activity and NF-kappa B signaling were only observed in CCAs (Suppl. Fig. 2A), both

of which are associated with aggressive CCA development and poor prognosis [67][68].

Wound healing (C1) subtype compared to inflammatory (C3) subtype

        We next compared C1 immune subtype with the C3 (inflammatory) immune subtype, characterized by elevated Th1

and Th17 genes and low to moderate tumor cell proliferation [47]. High levels of Th1 and Th17 are associated with HCC

invasiveness and can be indicative of increased tumor progression [69]. Interestingly, among the top altered pathways in

C1 subtype, we did not observe any shared up-regulated pathways between HCCs and CCAs (Suppl. Figs. 1B and 2B).

Interestingly, shared down-regulated pathways in C1 subtype, for both HCCs and CCAs, included peroxisomes,

glycine/serine/threonine metabolism, and PPAR signaling pathways (Suppl. Figs. 1B and 2B), of which PPARγ has been
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demonstrated to display inhibitory effects on HCC metastasis [70][71].

Wound healing (C1) subtype compared to lymphocyte depleted (C4) subtype

        Similarly, we compared C1 subtype to the C4 (lymphocyte depleted) subtype, which is classified as having

suppressed Th1 levels and a high M2 response [47]. An elevated M2 response in HCC has been associated with tumor

resistance to sorafenib, which is currently utilized as a standard treatment for liver cancers [72]. We observed shared up

regulated pathways in C1 subtype, for both HCCs and CCAs, including AGE-RAGE signaling, ECM organization, and

proteoglycans in cancer (Suppl. Figs. 1C and 2C). Interestingly, previous studies have shown that AGE-RAGE signaling is

upregulated in liver fibrosis, while RAGE silencing reduces liver tumor growth [73]. Shared down regulated pathways in C1

subtype, for both HCCs and CCAs, included fatty acid degradation and lipid/lipoprotein metabolism (Suppl. Figs. 1C and

2C). To our surprise, Wnt signaling was observed to be up regulated only in HCCs (Suppl. Figs. 1C), which was also a

main altered pathway observed in our previous breast cancer studies investigating effects of altered CmPn

expression [16][17][21].

IFN-γ dominant (C2) subtype compared to inflammatory (C3) subtype

        In our analysis, we observed several shared up regulated pathways in C2 subtype, for both HCCs and CCAs,

including cytokine-mediated signaling, CAMs, and Th17 cell differentiation pathways (Suppl. Figs. 1D and 2D). Previous

studies have demonstrated that the production of IL-17 by Th17 cells induces liver inflammation by stimulating multiple

types of liver nonparenchymal cells that secrete cytokines and chemokines [74]. Interestingly, shared down regulated

pathways in C2 subtype, for both HCCs and CCAs, included Rap1 signaling, cadherin binding, and adherens junction

pathways (Suppl. Figs. 1D and 2D). Previous studies have shown that Rap1 suppresses tumorigenesis and is up

regulated in HBV-related HCC pathogenesis [75]. Intriguingly, down regulation of FoxO signaling pathways in C2 subtype

was only observed for HCCs (Suppl. Figs. 1D), which have been associated with poor prognosis in liver cancer patients,

as they develop resistance to chemotherapy treatment [76].

IFN-γ dominant (C2) subtype compared to lymphocyte depleted (C4) subtype

        Based on our analysis, we observed shared up regulated pathways in C2 subtype, for both HCCs and CCAs,

including cytokine/chemokine receptor activity, CCR chemokine receptor binding, and hematopoietic cell lineage pathways

(Suppl. Figs. 1E and 2E). Interestingly, recent studies have shown that overexpression of certain CCRs in HCC tissues

correlates with vascular invasion [77]. Shared down regulated pathways in C2 subtype, for both HCCs and CCAs, included

fatty acid degradation, valine/leucine/isoleucine degradation, and pyruvate metabolism (Suppl. Figs. 1E and 2E).

Interestingly, down regulation of SIRT1 negative regulation of rRNA expression was only observed for C2 subtype in

HCCs (Suppl. Figs. 1E), which has been found to be an independent prognostic factor for HCCs, as SIRT1 promotes liver

tumor cell survival [78].

Inflammatory (C3) subtype compared to lymphocyte depleted (C4) subtype
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        For our final comparison, we observed shared up regulated pathways in C3 subtype, for both HCCs and CCAs,

including integrin binding, general pathways in cancer, as well as AGE-RAGE signaling pathways (Suppl. Figs. 1F and

2F). We also observed shared down regulated pathways in C3 subtype, for both HCCs and CCAs, including proteasomes,

oxidative phosphorylation, and translation initiation factor activity pathways (Suppl. Figs. 1F and 2F). Finally, similar to our

previous study analyzing altered CmP expression levels and resulting effects on signaling pathways in African American

Women-derived TNBCs [16], we again observed altered PI3K-Akt, MAPK, and angiogenesis pathways for C3 subtype, but

only in HCCs (Suppl. Figs. 1F).

Further validation of the CmPn signaling network in liver cancer

        As previously mentioned, differential expression of key CmPn members has been shown to be involved in the

progression of multiple types of cancers, as well as leading to worse prognostic outcomes [22][23][25][63]. The role of mPRs

in tumorigenesis has been increasingly studied, more recently in liver cancer given that the liver is a primary target and

metabolic organ of PRG [12]. Previous research has demonstrated that PAQR8 and PAQR9 are independent prognostic

factors for HCC [79], which was supported in our RNA-seq analysis, as well as our generated KM survival curves

for PAQR9, which demonstrated increased expression resulted in decreased overall survival (Fig. 6B-3). Finally, CNV

analysis of HCC patients with confirmed CmPn genomic (either GOF or LOF) mutations could lead to perturbation of the

CmPn signaling network in hepatic cancers. These results solidify the existence of crosstalk interactions among key

members of the CmPn network during liver cancer tumorigenesis. 

Conclusion

        In our previous studies, we defined the novel CmP(n) signaling network in breast cancers [16][17][21], which

overlapped with our foundational study on the CSCs involvement in tumorigenesis signaling cascades [20], and observed

that differential expression patterns of key CmPn members could be used as potential prognostic biomarkers for several

cancers [16][17][21]. In this study, we were able to demonstrate alterations to key CmPn members as well as disruption of

key tumorigenic signaling pathways between HCCs and CCAs, along with CmPn alterations among various

immunological subtypes of hepatic cancers. We were also able to demonstrate that there were significant differential

expression patterns for key CmPn members between HCCs and CCAs, at both the transcriptional and translational levels,

as well as between rarer hepatic cancer subtypes. These results provide a new set of potential prognostic biomarkers for

multiple subtypes of hepatic cancers, which may revolutionize molecular mechanisms and currently known concepts of

liver cancer tumorigenesis and treatment options, leading to hopeful new therapeutic strategies.

 

Data availability

Readers can access the data supporting the conclusions of the study through supplemental materials and some omics
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Figure legends

Figure 1: Clinical profiling for hepatic cancers utilizing NCI-GDC data. Utilizing the Genomic Data Commons (GDC)

data portal from the National Cancer Institute (NCI), we assessed all available clinical data for patients diagnosed with

hepatic cancers without any gene filters (general clinical observations, panels A1-4 & B1-5) or filtered to only analyze

patient samples with differential expression for any of the key CmPn players (CmPn network associated clinical

observations, panels A5-8 & B6-9) A-1) Survival data (n=420, left panel) and age at diagnosis (n=829, right panel). A-

2) Year of diagnosis (automatically divided into 5 categories; n=423). A-3) Tissue of origin (n=1606). A-4) Year of death

(automatically divided into 5 categories; n=106). A-5) Survival data (n=219, left panel) and age at diagnosis (n=220, right

panel). A-6) Year of diagnosis (n=221). A-7) Tissue of origin analysis (n=223). A-8) Year of death analysis (n=60

total). Socioeconomic status (SES) and diagnostic profiling for hepatic cancers utilizing clinical data from the NCI-GDC

data portal. B-1) Ethnic (n=1022, left panel) and primary racial categories (n=1047, right panel). B-2) Gender analysis

(n=1606). B-3) Prior malignancy status (for available data; n= 419). B-4) Primary diagnosis (liver vs. intrahepatic bile
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ducts; n= 1582). B-5) Tumor classification (n= 397 total). B-6) Ethnic (n=214, left panel) and primary racial category

analysis (n=217, right panel). B-7) Gender analysis (n=223). B-8) Prior malignancy analysis (n=223). B-9) Primary

diagnosis analysis (n=223 total). For all graphs, the comparisons were performed automatically by the NCI-GDC software,

for all publicly available clinical data, utilizing 14 projects (for general clinical observations) or 2 projects (for CmPn network

associated clinical observations) for patients diagnosed with hepatic cancers (See suppl. Table

1). Abbreviations: cholangiocellular carcinoma (CCA), hepatocellular carcinoma (HCC), combined HCC+CCA (cHCC-

CCA), clear cell carcinoma (CCC).

Figure 2. RNAseq expression profiling for key CmPn players utilizing multiple TCGA databases for hepatic

cancers. We performed expression profiling for key CSC, mPR and nPR players, along with established liver cancer

biomarker AFP, using two types of 'normal' tissues utilizing the TCGA-TARGET-GTEX and TCGA-PANCAN databases;

solid tissue “normal” which are taken from “normal” tissue, near the tumor site, and normal healthy tissue from individuals

without cancer. A1-2) Differentially expressed genes (DEGs) of key CmPn players (along with AFP) for HCCs (n=531) and

CCAs (n=205), based on tissue type using the TCGA-TARGET-GTEX database. B1-2) Differential expression of key

CmPn players (along with AFP) for HCCs (n=412) and CCAs (n=45), based on tissue type using the TCGA-PANCAN

database. C-1) Significant DEGs were profiled in a pair-wise fashion between normal healthy liver tissue (n=110) and

HCC primary tumors (n=369). C-2) Pathway functional enrichment comparisons were performed using Enrichr assessing

biological processes (upper panel) molecular functions (middle panel), and KEGG signaling pathways (lower panel). D-

1) Significant DEGs were profiled in a pair-wise fashion between normal healthy liver tissue (n=110) and CCA primary

tumors (n=36). D-2) Pathway functional enrichment comparisons were performed assessing biological processes (upper

panel) molecular functions (middle panel), and KEGG signaling pathways (lower panel). E-1) Significant DEGs were

profiled from a separate TCGA database, with increased sample sizes, between HCC (n=438) and CCA (n=45) tumors E-

2) Pathway functional enrichment comparisons were compiled using biological processes (upper panel) molecular

functions (middle panel), and KEGG signaling pathway data (lower panel). For all boxplots, X-axis details genes profiled,

while Y-axis details normalized RNAseq expression data; significantly altered genes were identified using One-way

ANOVA analysis and are color-coded red. For Panels C-E, red colored genes were up-regulated while blue colored genes

are down regulated; for pathways analysis, the top 15 pathways are provided and color-coded (red-up/blue-down) and

pathways with p-values <0.05 and FDR<0.1 are bolded. All graphs were produced using the Xena platform. 

Figure 3. RNAseq expression profiling for key CmPn players for HCC and CCA histological/immunological

subtypes integrating SES and follow-up clinical data. We investigated key CSC, mPR and nPR players expression

analysis, along with AFP, between histological/immunological subtypes (panels A, C1 and C2) and assessed stemness

scores (panel B) between major HCC and CCA subtypes. Additionally, we performed expression profiling using

demographic and follow-up data to assess differential expression across major races and evaluate impact on tumor

recurrence (panels D-I). A) Significant DEG profiling between the three major subtypes of CCA compared to HCC and

cHCC-CCA clinical tumors (n=465). B) Stem cell-associated molecular scores between the three major subtypes of CCAs

compared to HCC and cHCC-CCA clinical tumors (n=462). C-1) Significant DEG profiling between standard immune

subtype classifications for HCCs (n=355). C-2) Significant DEG profiling between standard immune subtypes for CCAs
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(n=35). D) Significant DEG profiling among the 4 most prevalent races diagnosed with HCC (n=399). E) Significant DEG

profiling for patients diagnosed with HCC and with documented family cancer history (n=358). F) Significant DEG

profiling for HCC patients presenting with either micro/macro or no vascular invasion (n=412). G) Significant DEG

profiling for HCC patients presenting with a new primary tumor, locoregional [cancer cells at the same site as the original

(primary) tumor], intrahepatic (recurrence in liver after hepatic resection), or extrahepatic recurrence (most commonly in

the lungs, lymph nodes and bones, n=174). H) Significant DEG profiling for HCC patients among the 5 major locations for

tumor recurrence (n=150). I) Significant DEG profiling for HCC patients based on vital status (n=412). For all boxplots

(panels A, C, and D-I), X-axis details genes profiled, while Y-axis details Log2 normalized RNAseq expression data. For

Panel B, X-axis details HCC and CCA subtypes profiled, while Y-axis details RNAss-stemness signature scores (RNA

based). All graphs were produced using the Xena platform.

Figure 4. Significantly altered CmPn protein expression among hepatic cancer subtypes. Comparative CmPn

protein expression patterns were measured with immunofluorescence-labeled antibodies, normalized against nuclear

staining (DAPI), and quantified using Nikon Elements Analysis software. A-1) Representative IF images of CCM1 protein

expression among different liver cancer types and NORM tissues. A-2) Normalized quantification for all images. B-

1) Representative IF images of CCM3 protein expression among different liver cancer types and NORM tissues. B-

2) Normalized quantification for all images. C-1) Representative IF images of PAQR8 protein expression among different

liver cancer types and NORM tissues. C-2) Normalized quantification for all images. D-1) Representative IF images of

PGRMC1 protein expression among different liver cancer types and NORM tissues. D-2) Normalized quantification for all

images. E-1) Representative IF images of PAQR7 protein expression among different liver cancer types and NORM

tissues. E-2) Normalized quantification for all images. For all graphs, asterisks above each cancer type indicate

significance of differential expression between specific cancer type and NORM tissues. Cancer subtype comparisons

chart above each graph summarizes the relationships within cancer subtypes. Sample sizes provided beneath liver tissue

type. In all bar plots and charts, ***, **, * indicates P≤0.001, ≤0.01 and ≤0.05, respectively, using one-way ANOVA.

Figure 5. Relative abundance of CCM3 and PAQR7 between HCC and cHCC-CCA subtype. CCM3 and PAQR7

protein expression patterns were measured with immunofluorescence-labeled antibodies, normalized against nuclear

staining (DAPI), and quantified using Nikon Elements Analysis software. IF imaging was conducted at 20x (left panels)

and 60x magnification (right panels) on NORM, HCC and cHCC-CCA tissues. A-1) Representative IF images of CCM3

and PAQR7 protein expression for NORM, HCC and cHCC-CCA tissues captured at 20x magnification. A-2) Normalized

quantification of CCM3 and PAQR7 for NORM, HCC and cHCC-CCA tissues. B) Representative 60x IF imaging of areas

from panel A to further examine clustering patterns of key CmPn proteins in liver tissues. Sample sizes provided above

bar graphs. In all bar plots, ***, **, * indicates P≤0.001, ≤0.01, and ≤0.05, respectively, using two-way ANOVA.

Figure 6. Oncogrid with copy number variations (CNV) and prognostic effects for key CmPn players utilizing

microarray data for HCC patients. Utilizing the Genomic Data Commons (GDC) data portal from the National Cancer

Institute (NCI), we assessed all available clinical and CNV data for patients diagnosed with hepatic cancers with

differential expression for any of the key CmPn players. Additionally, publicly available microarray data from HCC patients

was analyzed using either KMplotter or Xena browser (TCGA database) to integrate gene expression and clinical data
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simultaneously to generate Kaplan-Meier (KM) survival curves. A) CNV analysis for HCC patients with CmPn

mutations. The clinical data legend is provided beneath the oncogrid as well as coloring scheme for mutation outcomes

and CNV impacts. B-1) Prognostic effects for CCM3 in both KMplotter (left panel) and TCGA databases (right panel). B-

2) Prognostic effects for PGRMC1/2 in both KMplotter (left panels) and TCGA databases (right panels). B-3) Prognostic

effects for PAQR5/7/9 in KMplotter (left panels) and TCGA databases (right panels). For panels B1-3, Logrank P-values

were automatically calculated and displayed for KMplotter analysis as well as hazard ratios (and 95% confidence

intervals). Alternatively, P-values and logrank test statistics were automatically calculated and displayed for TCGA

analysis. Red line demonstrates high gene expression (all panels), while black line (TCGA analysis) or blue line

(KMplotter analysis) demonstrates low gene expression.

_____

Received: November 13, 2022
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