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Abstract

The Sagnac effect is an interferometric phenomenon produced by
rotation. It has a rich history and presently has numerous technolog-
ical applications. Despite some persistent claims to the contrary, we
explain why the Sagnac effect does not prove relativity either incor-
rect or inconsistent. Analyzing such misunderstandings has didactic
value because it allows us to review some subtle relativity concepts. It
also reveals the importance of basing scientific reasoning on rigorous
logical thinking to avoid confusion derived from prejudices based on
our limited everyday human experience.

1 Introduction

George Sagnac (1869-1928) was a French physicist who strongly opposed
Einstein’s theory of relativity. In the early years following Einstein’s 1905
groundbreaking article, the theory was still controversial among scientists.
In 1910, Sagnac conceived a rotating interferometer that now bears his name
to prove the existence of the luminiferous ether. By 1913, he published the
results of the experiment confirming his ideas about the ether [1].
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The first relativistic proofs of the effect were presented by von Laue in
1920 and with a different approach by Paul Langevin in 1921. Presumably,
it took so long to find relativistic explanations because, at the time, the
experiment was not widely known [2].

Today, the relativistic nature of the Sagnac effect is, of course, out of the
question. There exists a vast literature with an exhaustive analysis of the
phenomenon [3, 4, 5]. Its applications range from GPS, fiber optic and ring
laser gyroscopes, navigation systems to geodesic and seismology [6].

However, now and then, claims contesting the correctness and consistency
of relativity still appear in the scientific literature [7, 8, 9, 10, 11, 12, 13,
14]. So far, such claims proved untenable. They result from an incomplete
understanding of the relativity principles and the attachment to hard-to-
overcome Newtonian ideas.

Figure 1: Sagnac Interferometer

The recent resurgence of such questioning [12, 13, 14, 15] gives an excellent
opportunity to rehearse from a didactic viewpoint concepts necessary for the
correct relativistic description of noninertial systems. The analysis could
prove helpful to undergraduate as well as graduate students specializing in
relativity.

In section 2, we describe the simplest version of the Sagnac interferometer.
That will be enough for our purposes. In section 3, we briefly mention the
two possible interpretations. Section 4 reviews the concepts necessary for a
proper relativistic analysis of the alleged difficulties. Then, in section 5 , we
analyze two recurrent claims that presumably reveal relativity’s incorrectness
and inconsistency.
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2 The Sagnac Interferometer

One configuration of the Sagnac interferometer is the ring interferometer
(Fig. 1). A beam of light is split at the source S and the two beams follow
the same path but in opposite directions. Then, the two beams are detected
at D. The whole platform is rotated in the counter-clockwise direction. Owed
to rotation, the two beams follow asymmetric light paths producing a dis-
placement of the interference fringes with respect to their position when the
interferometer was stationary.

For the configuration shown in Fig. 1, the calculation of the fringe dis-
placement is pretty straightforward. Let L be the circumference and ∆L
the distance traveled by the Source/Detector along the circumference, then
the time t+ it takes the counterclockwise beam to reach the detection point
verifies,

t+ =
L+∆L

c
(1)

∆L+ = ωRt+ (2)

Eliminating ∆L+ and putting L = 2πR,

t+ =
2πR

c−Rω
(3)

Analogously, for the clockwise beam we have,

t− =
2πR

c+Rω
(4)

The phase difference is determined by the time difference,

t+ − t− =
4ωπR 2

c2(1− (Rω
c
)2)

(5)

(5) is the “Newtonian” prediction. The relativistic result is obtained intro-
ducing the factor

√
1− (Rω)2 corresponding the time dilation effect. To

first order in Rω/c both results coincide. Putting A = πR 2, to first order we
have,

∆t =
4ωA

c2
(6)
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The phase shift is given by,

∆ϕ =
2πc∆t

λ
(7)

=
8πωA

λc
(8)

It is possible to prove the result remains valid for any closed path with a
vector area A⃗, angular velocity ω⃗, and an arbitrary center of rotation,

∆ϕ =
8π ω⃗ · A⃗

λc
(9)

3 Interpretation of the Result

According to the ether hypothesis, light is a disturbance similar to sound. It
takes place in a substance called luminiferous ether. When we assume the
interferometer is placed in an inertial system that is stationary with respect
to the ether, then the result given by (8) is correct if the rotating platform
does not drag the ether along with its motion.

On the other hand, it was already noticed by von Laue in 1911 [16] that
relativity predicts, to first order approximation, the same result as an ether
theory for a Sagnac type experiment.

Since the Sagnac effect is compatible either with relativity or the ether
hypothesis, the conclusion is that the phenomenon cannot discriminate be-
tween the two theories.

However, the famous 1887 Michelson-Morley experiment can be explained
only if the ether is fully dragged with the earth’s motion. On the other hand,
in 1925, Michelson and Gale confirmed the Sagnac effect using the earth as
a rotating platform. This experiment can only be explained if the ether is
not dragged with the earth’s rotation.

Thus, neither the Micelson-Morley nor the Michelson-Gale experiments,
taken separately, are evidence against the ether. However, when considered
jointly, they are incompatible with the existence of the luminiferous ether
since it cannot be consistently assumed the ether is fully dragged with the
earth translation and, at the same time, remains unperturbed by its rotation.
Nonetheless, both experiments can be explained by relativity.
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4 Relativity in Noninertial Frames

Recurrent claims advocating the Sagnac effect disproves relativity are made
from the viewpoint of observers within the platform. Unfortunately, the
correct relativistic description of phenomena within noninertial frames is a
bit complicated, as was recognized by Einstein [17],

All this happened in 1908. Why were another seven years required
for the construction of the general theory of relativity? The main
reason lies in the fact that it is not so easy to free oneself from
the idea that coordinates must have a direct metric significance.

This brings us to another conceptual issue. Do we need general relativity
(GR) for the relativistic description of accelerated reference frames?

If by GR we mean Einstein’s theory of gravitation, then we do not need
GR to describe noninertial frames. But if by GR we mean the extension of
special relativity to accelerated systems, the answer is yes. We accomplish
such an extension by locally applying special relativity through the use of
“comoving frames” or “rest frames” irrespective of gravitation [18].

So, the belief that we need GR to describe accelerated frames is incorrect
when by GR we mean Einstein’s gravitation theory.1 As recently pointed
out by Pepino and Mabile [19], the last point is a widespread misconception.
The occasional claim that we need gravitation to analyze rotating systems
has raised justified doubts [14, 20, 21].

Next, we introduce the basic formalism we need to correctly analyze the
physics of the Sagnac effect from within the rotating platform. Note that we
need neither gravitation nor the equivalence principle.

However, it is also true that the basic formalism can be considered a
particular case of gravitation theory. When the Riemann or curvature tensor
vanishes, we are in flat spacetime. In this case, when the metric tensor gµν
differs from the Minkowski metric ηµν , it may be the case that we are in a
noninertial frame without gravitation. So, in a sense, we need GR to describe
noninertial frames because we are borrowing the general formalism necessary
to describe gravitation only this time without gravitation!

1There is a caveat; we explain it in the last paragraph of the section.
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4.1 The metric tensor

Let xµ, µ ∈ {0, 1, 2, 3} be the spacetime coordinates with x0 = ct the time
coordinate and xi, i ∈ {1, 2, 3} the spatial coordinates. We shall use Greek
indices for spacetime coordinates and Latin indices for spatial coordinates.
As usual, Einstein’s summation convention is used throughout. In inertial
frames we have that the interval is,

ds 2 = (dx0)2 − (x1)2 − (x2)2 − (x3)2 (10)

= ηµνdx
µdxν (11)

The metric tensor ηµν = diag{1,−1,−1,−1} remains invariant after a coor-
dinate (Lorentz) transformation between inertial frames,

y µ = Λµ .
. ν x

ν (12)

ηµνdy
µdyν = ηµνdx

µdxν (13)

If we allow noninertial systems, we must replace the linear transformation
(12) by a general one, y µ = y µ(x0, x1, x2, x3). The invariant interval now is,

ds 2 = gµνdy
µdyν (14)

gµν =
∂yα

∂xµ

∂yβ

∂xν
ηαβ (15)

The metric tensor components become functions of the spacetime coordinates
and gµν(y

0, y1, y2, y3) ̸= ηµν .

4.2 Interpretation of the spacetime coordinates

This is the delicate part that Einstein complained about, as mentioned before.
Fortunately, by now, this is well understood. We do not have to figure it out
ourselves like he had to.

Without a correct interpretation of the spacetime coordinates with re-
spect to noninertial frames, we will not be able to analyze and understand
the Sagnac effect from the relativistic perspective of observers moving with
the platform.

Here we merely describe the necessary formalism for our purposes and do
not present any derivations. We refer the interested reader to the standard
literature on GR, for instance, [22, 23].
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4.2.1 Time intervals and clock synchronization

In an inertial frame, the time coordinate x0 = ct is directly related to the time
t of the system of reference, i.e., t is the time read in a net of synchronized
clocks stationary in that reference frame. Similarly, the spatial coordinates
have an immediate metrical meaning, the spatial distance d between points
xi = ai and xi = bi is

d =
√

(b1 − a1)2 + (b2 − a2)2 + (b3 − a3)2 (16)

Luckily, the earth can be considered very close to an inertial system for all
practical purposes of our daily endeavors. Our clocks remain synchronized
for most practical uses, and we can safely employ the Pythagorean theorem
for calculating finite distances.

In a noninertial frame, the measuring properties of space and time are
encoded in the metric tensor gµν . The coordinates are mere labels that
univocally determine spacetime events. While x0 is associated with time,
its value is not equal to the reading of an actual clock. Analogously for the
spatial coordinates xi.

Global synchronization of clocks, like in inertial frames, is generally im-
possible. We cannot arbitrarily assume we have a variable that can be iden-
tified with the readings of a net of synchronized clocks inside the noninertial
frame. The time interval marked by a clock fixed at P ≡ (x1, x2, x3) in our
reference frame is given by

dτ =

√
g00

c
dx0 (17)

τB − τA =

∫ x0
B

x0
A

√
g00

c
dx0 (18)

In a noninertial frame, even clocks in the same reference frame have different
rates since g00 can be a function of the coordinates.

Although clock synchronization is generally impossible, we can calculate
the time coordinates of infinitesimally close clocks that correspond to the
simultaneous reading of our clock. This process is sometimes also called
“synchronization”. However, it does not mean that clock readings are simul-
taneously equal. Let x0

1 be the coordinate time at P1 ≡ xi
1. Then, the value

of the coordinate time (x0
1)2 at P2 ≡ xi

2 = xi
1 + dxi that is simultaneous with

7



x0
1 is,

(x0
1)2 = x0

1 + gidx
i (19)

gi = − g0i
g00

(20)

Thus, in general, simultaneous events at P1 and P2 do not have the same value
of the time coordinate (x0

1)2 − x0
1 = gidx

i ̸= 0. Although we can integrate
gidx

i along a given worldline, in GR, the simultaneity of distant events, hence
synchronization of distant clocks, does not make sense in general. We shall
further elaborate on this in section 5.2.

4.2.2 Spatial distances

The spatial distance between P1 and P2 is defined along a given path xµ(α)

dl =
√

γikdxidxk , l12 =

∫ α2

α1

√
γikdxidxk (21)

where P1 ≡ xµ(α1), P2 ≡ xµ(α2), and γik is the metric tensor of space given
by

γik = −gik +
g0ig0k
g00

(22)

4.3 Spacetime in a rotating reference frame

Let us refer the rotating platform to an inertial frame with origin in its center
and with the platform lying in the x′ − y′ plane (Fig. 2). The spacetime
coordinates for this inertial frame in cylindrical coordinates are (ct′, r′, ϕ′, z′).
We now perform a rotational transformation passing to a frame rotating with
the platform

t = t′, r = r′, ϕ = ϕ′ − ωt, z = z′ (23)

The interval expressed in the primed inertial system is,

ds2 = c2dt′2 − dr′2 − r′2dϕ′2 − dz′2 (24)

After the transformation, according to (23) and putting β = ωr/c

ds2 =
(
1− β2

)
c2dt2 − dr2 − r2dϕ2 − dz2 − 2βrc dt dϕ (25)
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In this case the metric tensor does not depend on time and is called station-
ary. According to (20), (22), and (25), we have

gi ≡ (0,
βr

1− β2)
, 0) (26)

{gik} =

 −1 0 0
0 −r2 0
0 0 −1

 ,

{
g0ig0k
g00

}
=

1

1− β2

 0 0 0
0 β2r2 0
0 0 0

 (27)

{γik} =

 1 0 0

0 r2

1−β2 0

0 0 1

 (28)

We also need to find the path of light rays in our rotating platform, i.e., null
geodesics. Again, to avoid misunderstandings, we remark that this is a flat
spacetime concept, so we are not using Einstein’s theory of gravitation. We
shall be concerned only with light rays traveling on the rim of the disc, so
our initial conditions are r=const., z=0. From (25), setting dr = dz = 0,
ds2 = 0, and discarding the solution dt < 0

dt+ =
rdϕ+

c(1− β)
, dϕ+ > 0 (29)

dt− = − rdϕ−

c(1 + β)
, dϕ− < 0 (30)

5 Presumed Disproves of Relativity

The formalism presented in the former section allows us to perform the cor-
rect analysis of the following two recurrent claims [10, 11, 12, 13, 14]:

• The Sagnac effect proves that light speed is anisotropic and different
from c.

• The Sagnac effect proves that relativity leads to contradictory results
regarding clocks synchronization and the existence of unphysical “time
gaps.”
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5.1 Anisotropy of the speed of light

Setting r=R and ωR = v, according to (29) and (30),

R
dϕ+

dt+
= c− v (31)

R
dϕ−

dt−
= −(c+ v) (32)

(31) and (32) determine the propagation of the counterclockwise and clock-
wise beams, respectively. They seem to have different speeds relative to the
rotating platform. By integration we again find the classical formulas (3)
and (4) for t+ and t−.

One could think the apparent speeds distinct from c happen because we
disregarded length contraction and proper time dilation. However, if ds is
the differential distance as seen by the inertial observer and dsp the one
corresponding to the local observer fixed to the platform, we have dsp = γds
and dt±p = dt±/γ. The observer fixed to platform at p would find

dsp
dt+p

= γ2 ds

dt+
= γ2(c− v) (33)

dsp
dt−p

= γ2 ds

dt−
= −γ2(c+ v) (34)

So, the argument goes, even considering the known relativistic effects, we
still have light speed ̸= c inside the platform. Next, we turn to the correct
relativistic approach.

5.1.1 The correct approach

The first hint at the incorrectness of the previous argument is that it contra-
dicts the relativist addition formula of velocities (35).

Indeed, if the inertial observer in the primed system (Fig. 2) measures a
light ray velocity c, since the rotating observer at p sees the primed systems
moving at v′, according to the relativistic addition of velocities,

cp =
v′ + c

1 + v′c
c2

= c (35)

But what can be wrong with (33) and (34)? Although the usual argument
is straightforward, it hides a subtle mistake. Inside the rotating platform,
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the time coordinate x0 = ct is a mere label for the “physical time” that a
given observer fixed to the platform experiences.

Figure 2: Rotating Platform

The relation between x0 and actual time in the platform is given by (17)
with g00 given by (25),

dτ ± =
√

1− β2 dt =
dt ±

γ
(36)

The differential distance dl traveled by light for an observer inside the plat-
form is given by (21), (25), (31), and (32)

dl+ =
R√
1− β2

c− v

R
dt+ = γ(c− v)dt+ (37)

dl− =
R√
1− β2

c+ v

R
dt− = γ(c+ v)dt− (38)

But then again dl±/dτ± give us (33) and (34)! The usual argument of di-
viding (37) and (38) by (36) to obtain the speed is indeed incorrect (see,
for instance, [22]). To see why, let us recall how speed should be correctly
calculated.

The speed of a moving particle at P2 is obtained dividing the distance dl
between to successive points P1 ≡ xi and P2 ≡ xi + dxi along its trajectory
by the time dt it took to traverse dl. If the reading of the clock at P1 is t = t1
and the reading of the clock at P2 is t = t2, the time it took the particle to
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travel the distance dl is obtained by the difference of the readings of two
clocks placed at different positions in space. In an inertial frame there is no
problem with taking dt = t2 − t1 because we can synchronize all the clocks
within a given reference frame.

The subtle mistake with the usual argument is that it overlooks the fact
that clocks at P1 and P2 are not synchronized. The correct evaluation of the
time it took the particle to go from P1 to P2 cannot be obtained by the mere
difference of the readings of two clocks that are not synchronized.

The necessary correction is introduced with use of (19) as we explain
in section 4.2.1. We cannot use the formula dτ =

√
g00 dx

0, as we did in
(36), when dx0 = x0

2 − x0
1 is the time coordinate difference corresponding to

different points in space. The corrected time coordinate difference is,

x0
2 − (x0

1)2 = δx0 (39)

x0
2 − (x0

1 + gi dx
i) = δx0 (40)

x0
2 − x0

1 − gi dx
i) = δx0 (41)

dx0 − gi dx
i = δx0 (42)

Now that we have corrected for the lack of synchronization, we evaluate the
correct elapsed time with the clock at P2 using (17), and (42),

δτ =

√
g00

c
δx0 (43)

δτ =

√
g00

c
(dx0 − gi dx

i) (44)

As an example let us calculate the speed of the forward light ray with respect
to the platform. According to (25),(26), (31), (44), considering that in our
case x0 = ct,

dl+

δτ+
=

γ(c− v)dt+√
1− β2(dt+ − βR

c(1−β2)
dϕ+)

(45)

=
γ2(c− v)

1− β
c(1−β2)

Rdϕ+

dt+

(46)

=
γ2c(1− β)

1− β
1+β

(47)

= γ2c(1− β2) (48)

= c (49)
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Thus, a local observer inside the platform actually measures with his clocks
and rulers a speed of light equal to “c” in agreement with the result obtained
through the relativistic addition of velocities (35). Similarly, we can prove
that dl−/δτ− = c, confirming the consistency of the relativity principles.

5.2 Inconsistent self-synchronization

Another recurrent claim of relativity’s inconsistency purportedly revealed
by the Sagnac effect is an hypothetical failure of synchronizing a rotating
clock with itself. This effect is usually referred to as the “time gap” or
“synchronization gap” [12, 13, 14, 20].

Unfortunately, the meaning of the word synchronization in this context
is ambiguous. This contributes to the existing confusion. In an inertial
reference frame, when we say that clocks are synchronized, we mean that
those clocks show the same readings “simultaneously”. As we noted before,
in a noninertial frame, that is generally not possible. Simultaneity only makes
sense between infinitesimally closed points in space.

Even when we say that we synchronize infinitesimally closed clocks, we
do not mean that we make them show the same readings simultaneously.
As we have seen in sections 4.2.1 and 5.1.1, synchronizing infinitesimally
closed clocks signifies finding the value of the time coordinate (x0

1)2 at P2

that corresponds to the simultaneous instant given by x0
1 at P1. In other

words, the instant x0
1 at P1 is simultaneous with x0

2 at P2, not when x0
2 = x0

1,
but when x0

2 = x0
1 + gi dx

i with xi
2 = xi

1 + dxi.
Up to this point everything should be uncontroversial. The confusion

appears when we extent this concept of synchronization to finite distances
by integration of (19),

x0(P2) = x0(P1) +

∫ P2

P1

gi dx
i (50)

There are three reasons revealing that (50) is inconsistent as a definition of
distant simultaneity:

1. The coordinate time x0(P2) simultaneous with x0(P1) can depend on
the path.

2. In noninertial frames, simultaneity is not a transitive property.
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3. If we follow a closed path, upon returning to the same point, we would
find a different value of x0(P1), usually referred to as the “time gap”.

The “time gap” interpreted as the failure to synchronize a clock with itself
only arises if we accept (50) as a valid definition of distant simultaneity. To
avoid this problem, some authors define simultaneity only over open paths.
However, this is misleading and, in fact, contradictory.

The main reason (50) cannot, in general, be a consistent definition of
simultaneity of distant events is the lack of transitivity mentioned in point
2 above. Indeed, to reach P2 from P1 we have to successively pass through
an infinite sequence of intermediate points P1, P1′ . . . , Pn′ , P2 conserving, in
each step, the simultaneity with the previous one.

Transitivity of simultaneity holds in inertial frames, as explicitly stated
by Einstein in 1905 [24]. However, it is easy to qualitatively understand why
transitivity does not hold in general and in particular in our rotating plat-
form. Let us take three points A, B, and C on the rim of our platform (Fig.
1). Consider three comoving inertial systems SA, SB, and SC . Assuming
EA = (x0

A, 0, 0, 0) in SA simultaneous with EB = (x0
B, 0, 0, 0) in SB and EB

simultaneous with EC = (x0
C , 0, 0, 0) in SC , since V⃗BA ̸= 0 the simultaneous

events EB and EC in SB are not simultaneous in SA. Therefore, although we
follow a path of successive simultaneity,

EA
simult.−−−−→ EB

simult.−−−−→ EC
not simult.−−−−−−→ EA (51)

upon returning to the initial point, we have lost simultaneity. So, the “time
gap” is a natural consequence of the relative character of simultaneity be-
tween systems in relative motion, notwithstanding that A, B, and C are fixed
in the platform frame.

6 Conclusions

The correct application of relativity to noninertial frames proves light speed is
invariant, so the Sagnac effect neither constitutes empirical evidence against
relativity nor discloses any internal inconsistencies. The proof also applies
to the so-called Selleri’s paradox [10].

We explained that the presumed “unphysical” time discontinuity or time
gap is a natural consequence of the relativity of simultaneity and has nothing
to do with synchronizing a clock with itself or with time being discontinuous.
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Unlike later claims based on his experiment, it is appropriate to recognize
that Sagnac held a coherent position since he intended to prove the existence
of the luminiferous ether, which had to be finally discarded only on empirical
evidence.

So far, the alleged inconsistencies, paradoxes, and incorrectness presum-
ably affecting relativity theory ultimately reduce to the persistent illusion
claiming the simultaneity of distant events ought to be absolute.

Regarding the last point, the great French physicist, mathematician and
philosopher Henri Poincaré said [25]:

We have not a direct intuition of simultaneity, nor of the equality
of two durations. If we think we have this intuition, this is an
illusion. We replace it by the aid of certain rules which we apply
almost always without taking count of them.

Soon afterward Einstein took count of them revolutionizing our concepts
about space and time.
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