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In many real-world machine learning (ML) scenarios, obtaining accurate true targets (ATTs) for

evaluation and learning is difficult, expensive, or fundamentally infeasible. This article proposes a

unified scientific paradigm—evaluation and learning with multiple inaccurate true targets (MIATTs)

—that addresses this challenge by integrating the fundamental principles of two recently proposed

frameworks: Logical Assessment Formula (LAF) and Undefinable True Target Learning (UTTL). Both

LAF and UTTL operate under a relaxed but shared assumption that the true target for a given ML task

is not assumed to exist as a well-defined object in the real world, which motivates us to define MIATTs

as a collection of weak yet partially informative targets, each capturing a different aspect of the

underlying true target. Building on this foundation, we present a comprehensive theoretical

framework, which encompasses MIATTs generation, model construction, metric formulation, and

model optimization, for formalizing the evaluation and learning of predictive models with MIATTs.

The article offers a principled and practical alternative for ML scenarios marked by true target

ambiguity, providing a viable path where conventional ATT-based methods prove inadequate or

inapplicable.

Corresponding author: Yongquan Yang, remy_yang@foxmail.com

1. Introduction

Advances in machine learning (ML) techniques—particularly deep learning (DL) based on deep neural

networks [1]—have driven the rapid development of artificial intelligence (AI) technologies over the past

decade, enabled by the availability of large-scale data and increasingly powerful computing resources.

Today, large-scale models such as ChatGPT  [2]  represent the forefront of modern AI, fundamentally

transforming knowledge acquisition, expanding the boundaries of productivity, and redefining
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paradigms of human–machine collaboration. A typical ML pipeline for a specific prediction task

generally involves three key stages: (1) collecting task-relevant data; (2) designing or selecting an

appropriate ML algorithm; and (3) optimizing the ML algorithm using the collected data and available

computing resources to obtain a predictive model that can be deployed for the target task.

For a given ML task, the data typically consist of three fundamental components: instance, label, and

target. An instance refers to an event or entity to be analyzed—such as a numerical vector or an image

matrix—depending on the nature of the task. A label is commonly assigned to an instance and encodes

semantic information relevant to the specific prediction objective. A target is usually a computationally

equivalent transformation derived from a label, designed to facilitate computational procedures in ML,

such as validation and learning. In practice, given available computational resources, a predictive model

is typically obtained by optimizing a suitable ML algorithm using processed data consisting of paired

instances and targets (rather than raw labels)  [3]. Within this optimization process, evaluation and

learning represent two essential computational procedures. Evaluation validates the model’s ability to

generalize by measuring the discrepancy between the model’s predicted target for an instance and the

true target associated with that instance, while learning focuses on producing a predictive model that

maps each instance to its corresponding true target. Further explanations and interrelations among the

terminologies of instance, label, target, evaluation, and learning in ML are provided in Section 2.

In the current ML literature, approaches for the evaluation of predictive models can be categorized into

three types based on the accuracy of the true targets associated with the evaluation data: (1) conventional

evaluation with accurate true targets (ATTs)  [4][5][6], (2) conventional evaluation with inaccurate true

targets (IATTs) [7][8], and (3) logical assessment formula (LAF)-based evaluation, which can operate with

multiple inaccurate true targets (MIATTs)  [9][10]. Conventional evaluation methods based on ATTs or

IATTs typically assume that ATTs are reliably embedded within the provided true targets associated with

the evaluation instances, even when the overall set of provided true targets may contain inaccuracies—

that is, when the set constitutes IATTs. In contrast, the recently proposed LAF framework relaxes this

assumption by allowing that ATTs may or may not be present among the given true targets  [9]. In the

absence of a strict requirement for ATTs, LAF offers a more adaptable and realistic framework for

evaluation, particularly suited to scenarios with uncertain or noisy supervision. Following a similar

perspective, approaches for the learning of predictive models in the current ML literature can likewise be

categorized into three main types based on the accuracy of the true targets associated with the learning

data: (1) conventional learning with ATTs [3][11][12][13][14][15], (2) conventional learning with IATTs [16][17]
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[18][19][20], and (3) undefinable true target learning (UTTL), which can operate with MIATTs [21][22][23][24].

Conventional learning approaches based on ATTs or IATTs generally assume that the true target exists as

a well-defined object in the real world. In contrast, the recently introduced UTTL paradigm relaxes this

assumption by positing that the true target does not exist as a precisely defined object in the real

world  [24]. Accordingly, UTTL eliminates the need for ATTs during learning, making it well-suited for

scenarios in which the true target is ill-defined or inherently ambiguous. A more detailed discussion of

these validation and learning approaches, along with a comparison of their underlying assumptions, is

provided in Section 3.

Respectively, LAF and UTTL offer distinct frameworks for evaluation with MIATTs and learning with

MIATTs, without relying on ATTs. These approaches are particularly well-suited to addressing the

challenge that, in many real-world ML scenarios, acquiring ATTs is difficult, expensive, or fundamentally

infeasible. However, treating LAF and UTTL in isolation may hinder their broader applicability and

practical deployment. To provide a more unified and effective solution, this article proposes a cohesive

scientific paradigm—evaluation and learning with MIATTs—which integrates the foundational

principles of both LAF and UTTL into a single framework.

Specifically, drawing on prior studies  [9][10][21][22][23][24][25], we establish the scientific foundation for

proposing the unified paradigm of evaluation and learning with MIATTs. The respective principles of the

LAF and UTTL have independently demonstrated the feasibility of evaluation and learning in the absence

of ATTs. From these principles, we derive a shared foundational assumption: the true target for a given

ML task is not assumed to exist as a well-defined object in the real world. This assumption motivates the

formal definition of MIATTs, conceptualized as collections of weak yet partially informative targets that

each reflect certain aspects of the underlying true target. The logical progression connecting these

elements—assumption, definition, and principles—collectively establishes the scientific foundation for

proposing the unified paradigm. Further details on this foundation are presented in Section 4.

Building upon this foundation, we then present a comprehensive theoretical framework for formalizing

the evaluation and learning of predictive models using MIATTs. This framework systematically outlines

the procedures for MIATTs generation, predictive model construction, metric formulation, and model

optimization. By operationalizing this paradigm, it provides principled guidance for applying MIATTs-

based evaluation and learning of predictive models. The full framework is detailed in Section 5.

Overall, the unified scientific paradigm of evaluation and learning with MIATTs proposed in this article

provides a novel and flexible framework for addressing ML tasks in domains where ATTs are difficult,
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costly, or fundamentally infeasible to obtain. The key contributions of this work are as follows:

It integrates the foundational principles of both LAF and UTTL into a unified scientific paradigm of

evaluation and learning with MIATTs

It clarifies the concepts and interrelationships among core ML terminologies, including instance,

label, target, evaluation, and learning

It provides a concise review of existing evaluation and learning approaches, along with a comparative

analysis of their underlying assumptions

Drawing on prior studies, it establishes the scientific foundation for a unified paradigm of evaluation

and learning with MIATTs by integrating the principles of LAF and UTTL

It presents a comprehensive theoretical framework that systematically guides the processes of

MIATTs generation, predictive model construction, metric formulation, and model optimization,

which formalize the evaluation and learning of predictive models with MIATTs.

The remainder of this article is organized as follows. Section 2 introduces fundamental terminologies in

ML and clarifies their interrelations. Section 3 reviews related work on evaluation and learning

approaches, categorizing them based on assumptions regarding the availability of true targets. Section 4

establishes the scientific foundation for the proposed unified paradigm of evaluation and learning with

MIATTs, building on prior studies and theoretical reasoning. Section 5 presents a theoretical framework

for formalizing the evaluation and learning of predictive models with MIATTs, which cover the

generation of MIATTs, construction of predictive models, formulation of evaluation metrics, and

optimization procedures. Finally, Section 6 concludes the article and discusses open challenges and

potential directions for future research.

2. Fundamental terminologies and their relations in ML

Generally speaking, the objective of ML is to construct a predictive model with data collected for a

specific prediction task based on efficient computing resources. Instance, label, and target constitute the

fundamental components of the data associated with a particular ML task. Section 2.1 provides detailed

explanations of these three terms in the context of ML data. To achieve the goal of ML in practical

applications, learning and validation are two essential concepts, representing the core computational

procedures required to develop an appropriate predictive model for the given task. These two

terminologies, pertaining to the implementation of ML solutions, are discussed in Section 2.2.
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Collectively, these five fundamental terms—related to both data collection and solution implementation

—establish the conceptual foundation of ML. Section 2.3 illustrates the interrelationships among these

five core elements.

2.1. Instance, label, and target

An instance in ML is usually regarded as an event or entity, which, for example, can be a number vector or

an image matrix for a specific ML task. A label in ML is commonly assigned to an instance. When we

refer to a label in ML, we can also implicitly refer to the instance associated with the label. When a

number of labels and their corresponding instances are provided, there is some collected data for ML. A

label assigned to an instance usually contains some semantic facts that mostly cannot be directly used in

ML, since the semantic facts contained in the label can be too complex or simple and unstructured to be

easily used for computation in ML [3]. To address this issue, ML practitioners must build a transformation

that can transform a label into a target that can be conveniently used for computation [3]. Regarding the

transformation from its associated label, a target can also be re-transformed into a label that contains

some semantic facts  [3]. As a result, a target is essentially a somewhat equivalent formation

corresponding to a particular label, which can be conveniently used for computation in ML. Identical to

the reference to a label in ML, when we refer to a target in ML, we can also implicitly refer to the instance

associated with the label from which the target is transformed.

Beyond the general terminologies of label and target, some attributive words can be added to form new

terminologies for a definitive label or target that has a more specific meaning. For example, we can add

attributive words like ground-truth, accurate, or inaccurate to label or target to form new definitive

terminologies. Some examples of definitive labels or targets and their meanings are provided in Table 1.

2.2. Evaluation and Learning

As we discussed in the previous section, a label assigned to an instance in the collected data commonly

cannot be directly used for computation in ML. The two computational procedures for evaluation and

learning of a predictive model for a specific ML task are usually implemented based on a number of

targets and corresponding instances, which constitute data processed from the collected data with

provided labels.

Based on the processed data that consists of a number of targets and corresponding instances, the

evaluation procedure in ML aims to estimate the error between the predicted target of a predictive model
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regarding an instance and the target associated with the instance, while the learning procedure in ML

aims to produce a predictive model that can map an instance to its corresponding target. Specifically, the

evaluation procedure in ML is carried out by referring to some metrics to compute the error between the

predicted target of a predictive model for an instance and the target associated with the instance [9][10],

while the learning procedure in ML is carried out by optimizing a predefined objective function  [26]

[27] based on a certain learning algorithm, such as deep neural networks [28][29], for a predictive model to

implement the mapping from an instance to its corresponding target. Particularly, the evaluation

procedure is usually an essential part of the learning procedure, as a specific strategy for the evaluation

procedure can generally be used in the optimization of a predefined objective in the learning

procedure [24].

Terminology Meaning Terminology Meaning

Label
Semantic facts assigned to an

instance
Target

A somewhat equivalent formation

corresponding to a label for convenient

computation in ML

Ground-truth label
Semantic facts that possess the

intended information
True target

Formation corresponding to a ground-

truth label

Accurate ground-

truth label

Semantic facts that accurately

possess the intended

information

Accurate true

target

Formation corresponding to an accurate

ground-truth label

Inaccurate

ground-truth label

Semantic facts that

inaccurately possess the

intended information

Inaccurate true

target

Formation corresponding to an inaccurate

ground-truth label

Table 1. Definitive label or target and their meanings

For a specific ML task, the two computational procedures of evaluation and learning will eventually

produce an appropriate predictive model that can map an unseen instance to a predicted target, which

can also be re-transformed into a predicted label for the unseen instance.
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2.3. Relations

The relations of the illustrated five fundamental terminologies in ML are shown in Fig. 1, in which a

single data point is displayed for simplicity.

The collected data for a specific ML task consist of an instance and its assigned label. As the label for the

collected data usually contains some semantic facts that mostly cannot be directly used for computation

in ML, the label for the instance is transformed into a target, which can also be re-transformed into the

label. With the collected data and the transformation from a label to a target, we can obtain the processed

data for evaluation and learning of a predictive model for the specific ML task.

On the basis of the processed data, the instance and its corresponding target transformed from the label

are respectively used for computation in the evaluation and learning of a predictive model. While

implementing the two computational procedures of evaluation and learning, the evaluation procedure

provides a supportive foundation for the learning procedure for a predictive model for the specific ML

task.

Finally, for the specific ML task, the two computational procedures of evaluation and learning of a

predictive model cooperatively produce an appropriate predictive model, which can take an unseen

instance as an input and output a predicted target for the unseen instance. The output predicted target of

the produced predictive model regarding the input unseen instance can also be re-transformed into a

predicted label that can be associated with the unseen instance.

qeios.com doi.org/10.32388/UMHEFG.3 7

https://www.qeios.com/
https://doi.org/10.32388/UMHEFG.3


Figure 1. Outline for the relations of instance, label, target, evaluation and learning in ML.

3. Related work

The evaluation and learning of predictive models are fundamental to the formulation of the new ML

paradigm—evaluation and learning with MIATTs—proposed in this article. In this section, we provide a

brief review of existing evaluation and learning approaches for predictive models, along with their

underlying assumptions, as discussed in the current ML literature.
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3.1. Evaluation of predictive models

With respect to the accuracy of true targets associated with evaluation data, we broadly categorize the

evaluation approaches for predictive models in the current ML literature into three types: conventional

evaluation using accurate true targets (ATTs), conventional evaluation using inaccurate true targets

(IATTs), and logical assessment formula (LAF) for evaluation based on multiple inaccurate true targets

(MIATTs).

3.1.1. Conventional evaluation with ATTs

To evaluate predictive models with ATTs, standard metrics such as true positive (TP), false positive (FP),

true negative (TN), and false negative (FN) are defined based on the comparison between predictions and

AGTLs. Derived from these, metrics like precision, recall, F-measure, accuracy, and intersection over

union are commonly used for classification [6] and image segmentation tasks [4][5].

To reduce the labor-intensive effort required for labeling a large number of ATTs, several evaluation

approaches utilizing limited AGTLs have been proposed. For example, Jung et al. [8] proposed using pre-

trained classifiers, a small set of true labels, and multiple pseudo-ground-truth label sets. Predictions

from the classifiers are ranked against both true and pseudo-label sets, and the pseudo set most

correlated with the true set is selected for evaluation without expert annotations. For another example,

Deng et al.  [7]  introduced a regression-based approach: after training a classifier  on labeled data 

, its performance on a test set    is assessed via ATT-based metrics. Then, using data

augmentation to generate multiple variants of test sets, their performance statistics are extracted and

used to train a regression model that predicts the classifier's performance based on feature statistics.

3.1.2. Conventional evaluation with IATTs

To enable evaluation with IATTs, Warfield et al.  [30]  proposed the STAPLE method, which uses the

expectation-maximization (EM) algorithm [31] and related approaches [32][33] to estimate the probability

that each target in the IATTs represents a true target. These probabilistic targets—derived from human

raters or predictive models—can then be used to evaluate unseen test results without requiring ATTs [34]

[35]. Joyce et al. [36] introduced approximate ground truth refinement (AGTR), which clusters data points

assumed to share the same true label. AGTR relies on expert knowledge to group similar instances and

requires an estimated error rate, enabling the derivation of performance bounds for model evaluation.

f(θ)

(x, y) ( , )xt yt
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3.1.3. LAF for evaluation with MIATTs

Conventional evaluation methods based on ATTs or IATTs typically assume that ATTs are reliably

embedded within the provided true targets associated with the evaluation instances. In contrast, the

recently proposed LAF, which can operate with MIATTs, relaxes this assumption by allowing that ATTs

may or may not be present among the given true targets [9]. Rather than strictly requiring the presence of

ATTs, this relaxed assumption for LAF simplifies the preparation of MIATTs for evaluation in real-world

applications.

3.2. Learning of predictive models

In line with the categorization of evaluation approaches in Section 3.1, learning approaches for predictive

models in the current ML literature can similarly be classified into three main types based on the

accuracy of true targets associated with the learning data: conventional learning using ATTs,

conventional learning with IATTs and undefinable true target learning (UTTL) for learning with MIATTs.

3.2.1. Conventional learning with ATTs

Learning predictive models with ATTs includes both supervised learning (SL) [14][15] and semi-supervised

learning (SSL)  [11][12][13]. SL is typically performed using large-scale labeled datasets with ATTs. Recent

studies further refine SL into subtypes based on the nature of the transformation from labels to targets in

the learning data  [3]. In contrast, SSL leverages a small amount of labeled data with ATTs alongside a

large amount of unlabeled data. Due to the incompleteness of true target information in the learning set,

SSL is often considered a form of weakly supervised learning (WSL) [37].

3.2.2. Conventional learning with IATTs

Learning predictive models with IATTs encompasses both multi-instance learning (MIL)  [18][19][20]  and

label noise learning (LNL)  [16][17]. MIL is conducted on datasets where multiple instances are grouped

under a single true target, with the assumption that at least one instance in each group is correctly

labeled, while the others may be mislabeled. LNL, on the other hand, involves learning on data where

individual instances are directly assigned potentially inaccurate labels. Due to the inherent inexactness

and noise in the true target information, both MIL and LNL are also commonly regarded as forms of WSL.
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3.2.3. UTTL for learning with MIATTs

Conventional learning approaches based on ATTs or IATTs typically assume that the true target exists as

a well-defined object in the real world and that ATTs can, in principle, be provided for the learning data.

In contrast, the recently proposed UTTL, which operates with MIATTs, relaxes this assumption by

positing that the true target does not exist as a well-defined object in the real world  [24]. Accordingly,

UTTL does not require ATTs for learning and instead relies solely on MIATTs.

3.3. Comparative analysis of assumptions

A comparative summary of the assumptions underlying different evaluation and learning approaches is

presented in Table 2.

Assumption Evaluation Approach Assumption Learning Approach

ATTs are reliably embedded

within the provided true

targets

Conventional

evaluation with ATTs

or IATTs

The true target exists as a well-

defined object in the real world

Conventional learning

with ATTs and IATTs

ATTs may or may not be

present among the given

true targets

LAF for evaluation with

MIATTs

The true target does not exist as

a well-defined object in the real

world

UTTL for learning with

MIATTs

Table 2. Comparative summary of assumptions underlying different evaluation and learning approaches

In this article, we propose a unified scientific paradigm that is grounded in the shared assumption

underlying both LAF and UTTL.

4. Scientific foundation for evaluation and learning with MIATTs

This section establishes the scientific foundation for proposing the unified scientific paradigm of

evaluation and learning with MIATTs. Drawing on prior research, Section 4.1 summarizes the

fundamental principles of LAF and UTTL. These principles lead to the formulation of their shared

assumption in Section 4.2, which in turn motivates the formal definition of MIATTs in Section 4.3. The
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essence of MIATTs is discussed in Section 4.4. Finally, Section 4.5 outlines the logical progression that

connects these elements, establishing the scientific foundation for the proposed unified paradigm.

4.1. Fundamental principles of LAF and UTTL

Prior research has validated the core principles that support the practical viability of LAF and UTTL

across both theoretical analyses and real-world applications [9][10][21][22][23][24][25].

4.1.1. Fundamental principle of LAF

Under the assumption that ATTs may or may not be present among the given true targets (see Table 2),

the foundational principle of LAF for evaluation with MIATTs was derived through deductive reasoning,

demonstrating that, based on MIATTs, LAF can approximate conventional ATT-based evaluation

reasonably well in complex tasks, while potentially exhibiting greater deviations in simpler ones [9][25].

Building on this principle, a series of logical assessment metrics was developed specifically for image

segmentation, and the application of these LAF-based metrics in real-world scenarios has demonstrated

their effectiveness [10]. Thus, we have the following Principle 1 for the practicability of LAF.

Principle 1 (Practicability of LAF). Based on MIATTs, LAF can approximate conventional ATT-based

evaluation reasonably well in complex tasks, while potentially exhibiting greater deviations in simpler ones.

4.1.2. Fundamental principle of UTTL

Under the assumption that the true target does not exist as a well-defined object in the real world (see

Table 2), a class of learning methods has been developed based on abductive reasoning, demonstrating

that, based on MIATTs, UTTL can be effectively implemented within a multi-target learning

framework  [24][25]. These methods have been successfully applied to various medical image

segmentation tasks, demonstrating notable effectiveness in practice  [21][22][23]. Thus, we have the

following Principle 2 for the practicability of UTTL.

Principle 2 (Practicability of UTTL). Based on MIATTs, UTTL can be effectively implemented within a multi-

target learning framework.

4.2. Shared assumption of LAF and UTTL

From Principle 1 and Principle 2, it can be observed that the practicality of both LAF and UTTL relies on

the usage of MIATTs, despite differences in their original formulations. This observation suggests the
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existence of a shared foundation within the respective assumptions for LAF and UTTL. In fact, the

assumption underlying LAF implicitly encompasses that of UTTL, as the assumption for LAF allows for

the possibility that the true target either exists or does not exist in the real world. Consequently, the

shared assumption between LAF and UTTL can be distilled as follows: the true target is not necessary to

exist as a well-defined object in the real world. Based on this understanding, we formulate the following

Assumption 1, which represents the common foundation of both LAF and UTTL.

Assumption 1 (Shared Assumption of LAF and UTTL): The true target for a given ML task is not assumed to

exist as a well-defined object in the real world.

4.3. Definition of MIATTs

Assumption 1 motivates the need to formally define MIATTs. By definition, a MIATTs set contains two or

more individual inaccurate true targets, all associated with the same underlying true target. While each

individual inaccurate target in the MIATTs set may be insufficient on its own to represent the true target

comprehensively, it is assumed to capture a specific and meaningful aspect of it.

Consequently, the set of semantic facts (SFs) encoded in each individual inaccurate target within the

MIATTs is considered a subset of the complete set of SFs that would fully characterize the underlying true

target. Furthermore, the union of SFs across the entire MIATTs set either belongs to or may approximate

the complete SF set of the true target.

To characterize these properties formally, we introduce the following Definition 1 for MIATTs.

Definition 1 (Multiple Inaccurate True Targets, MIATTs). Let denote the (possibly undefinable)

underlying true target for a given ML task, and let be the set of all semantic facts that precisely

characterize . A MIATTs set associated with is a finite collection

where each ​ is an inaccurate true target satisfying:

1) Partial representation:

i.e, each encodes only a subset of the true target’s semantic facts.

2) Collective coverage:

t∗

SF ( )t∗

t∗ MIAT T s t∗

MIAT T s = { |n ∈ {1, ⋯ , N}} ,  N ≥ 2tn
∗

tn
∗

SF ( ) ⊂ SF ( ) ,tn
∗ t∗

tn
∗
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with the possibility that .

In other words, no single ​ fully specifies , but together the capture one or more of its essential aspects.

4.4. Essence behind MIATTs

Since each   is weak but partially informative with respect to the underlying true target  , a collection

of such targets—constituting the MIATTs—can collectively capture diverse aspects of  . The core

essence behind MIATTs is that they represent a distribution over the partial properties of  , rather than

a complete specification. Consequently, evaluation and learning procedures based on MIATTs aim to

approximate   through this distribution of partial information, rather than by identifying a single fully

defined target.

4.5. Logical progression toward a unified paradigm

Assumption 1 regarding the true target, Definition 1 formalizing MIATTs, the essence behind MIATTs,

and the validated Principle 1 and Principle 2 supporting the practicability of LAF and UTTL collectively

establish the scientific foundation for the unified paradigm of evaluation and learning with MIATTs.

The logical progression underlying the proposed framework is summarized in Table 3. As shown,

Assumption 1 concerning the nature of the true target motivates Definition 1, which formally introduces

MIATTs and analytically reveals the essence behind MIATTs. This definition and the behind essence, in

turn, supports the development of Principle 1 and Principle 2, demonstrating the practicability of LAF

and UTTL. Together, these foundations lead to the proposal for a unified scientific paradigm of

evaluation and learning.

SF ( ) ⊆ SF( ),⋃
n=1

N

tn
∗ t∗

SF ( ) = SF( )⋃N
n=1 tn

∗ t∗

tn
∗ t∗ tn

∗

tn
∗ t∗

t∗

t∗

t∗
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Scientific foundation

Proposal

Assumption

MIATTs

Principles

Definition Essence

Assumption 1 Definition 1
A distribution over the partial properties of

the underlying true target

Principle 1 Evaluation and learning

with MIATTsPrinciple 2

Table 3. Logical foundations underlying the unified paradigm of evaluation and learning with MIATTs

Note: This table summarizes the logical progression of the proposed paradigm. Assumption 1 establishes the

ontological premise that the true target may not exist as a well-defined object in the real world. Based on this,

Definition 1 formalizes the concept of MIATTs, the essence behind which is a distribution of partial properties for

the underly true target. This formalization enables the development of Principle 1 and Principle 2, which validate

the practicability of LAF and UTTL. These components collectively support the formulation of the unified

paradigm for evaluation and learning with MIATTs presented in this work.

5. Evaluation and learning of a predictive model with MIATTs

Building upon the scientific foundation established in Section 4, this section presents a systematic

framework for formalizing the evaluation and learning processes of predictive models utilizing MIATTs.

Section 5.1 introduces the procedure for generating MIATTs for a given instance, grounded in the formal

definition provided earlier. Section 5.2 describes the construction of a predictive model that maps an

instance to a predicted true target for a specific ML task in the context of MIATTs. Section 5.3 formulates

metrics to quantify the discrepancy between the predicted true target and the corresponding MIATTs of

an instance. Based on these metrics, Section 5.4 develops evaluation and learning procedures aimed at

optimizing the predictive model to accurately approximate the desired true target. Finally, Section 5.5

offers a visual and conceptual synthesis of the entire evaluation and learning process in the context of

MIATTs. Section 5.6 outlines recommendations for configuring the critical hyperparameters involved in

the framework’s formulation, leveraging the fundamental principles of LAF and UTTL to facilitate its

practical application.

qeios.com doi.org/10.32388/UMHEFG.3 15

https://www.qeios.com/
https://doi.org/10.32388/UMHEFG.3


5.1. Generation of MIATTs

MIATTs can be generated from the provided instance ( ) and its corresponding label ( ). Regarding

Definition 1, generating the MIATTs (GM) for   can be formally expressed as

Here,   denotes the hyperparameters for implementing the function of  . For example,   can be

the organization of a series of procedures involving humans and machines, which can be executed to

generate the    that can be subject to the condition 

 for the  .

Note that the   corresponding to the   is not necessary to provide in formula (1), but it can be provided to

simplify the implementation of the function of   as it can provide some prior knowledge about the 

 for  .

5.2. Predictive model in context of MIATTs

In ML, a predictive model (PM) is usually regarded as a parameterized function that can map an input

instance ( ) into a predicted true target ( ), which can be formally expressed as

Here,   denotes the parameters for constructing the function of  .

Regarding formula (2), for a particular ML task, the essence is to find the optimized parameters ( ) for

the function of  . The found   can enable the function of   to output the desired   that has the

minimum difference from the true target ( ) associated with  . As a result, suitable metrics for

measuring the difference between   and   regarding   should be essentially established for finding the 

  for the function of  . Usually, on the basis of established suitable metrics, computational

procedures for the evaluation and learning of the function of   are implemented for finding  . In

summary, based on the data of   and its corresponding   for a particular ML task, the construction of an

appropriate function of    for mapping    to the desired    can be described as: establishing suitable

metrics for the difference between   and   regarding   to implement the computational procedures for

the evaluation and learning of the function of    to find   that can enable the function of    to

output the desired   that has the minimum difference from the   associated with  .

i l

i
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In the context of MIATTs, for a particular ML task, the function of   for mapping the   into the   can

still be formally expressed in the same way as formula (2). However, the construction of an appropriate

function of   for mapping the   into the desired   will be different, as the data basis here is changed to

the new form of the    and its corresponding    instead of the traditional form of the    and its

corresponding  . As a result, for the construction of an appropriate function of    for mapping the 

  into the desired    in the context of MIATTs, we need to establish new metrics for measuring the

difference between    and the    regarding the  . Further, on the basis of the established new

metrics, we also need to implement new computational procedures for the evaluation and learning of the

function of   for finding the   that can enable the function of   to output the desired   that has

the minimum difference from the   associated with the  .

5.3. Metrics for the difference between the predicted true target and MIATTs

The metrics (Ms) for the difference between the    and    for the    should be a series of

computable equations that can quantitatively measure the discrepancies of the   from the   in

various aspects. Establishing the computable equations for the    can be conducted on the basis of

some underlying theoretical results deduced regarding the    and the  . As a result, the

establishment of the Ms has two key components: 1) Deducing (D) underlying theoretical results (UTRs)

regarding the   and the   for the  ; 2) Establishing (E) computable equations for the Ms based on

the  ,   and the deduced UTRs. Formally, the two key components can be expressed as

Here    and    are the hyperparameters for the implementation of the function of    and for the

implementation of the function of  , respectively.

In implementing the function of    in formula (3), we need to theoretically prove that the difference

measured between the   and the   can reflect some aspects of the difference measured between

the   and the underlying   for the  . This theoretical proof is essential, as it can provide specific   to

offer a firm theoretical foundation for implementing formula (4).

In implementing the function of    in formula (4), we need to experimentally validate whether the 

 provided by formula (3) can be realized in practice. This experimental validation is also necessary,

as it can provide computable   regarding a specific application.

P M i t̃
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In summary, the establishment of the metrics for the difference between the predicted true target and the

MIATTs corresponding to an instance requires both theoretical proof and experimental validation, which

eventually specifies the   and   in formulas (3) and (4).

5.4. Procedures for evaluation and learning with MIATTs

The evaluation procedure (EP) of the    with    aims to compute the numerical error (e)

between the   of the   and the   regarding the  . As the finally established   in the context

of MIATTs is a series of computable equations, it can be used to compute the e. Thus, under the condition

of the established   in the context of MIATTs, the EP of the   with   can be expressed as

The learning procedure (LP) of the   with   aims, under a specified learning strategy, to find

the optimized parameters ( ) that can enable the    to predict the    that minimizes the 

 established in formula (5), which can be regarded a specific loss function. Regarding formulas (5) and

(2), the LP of the   with   can be expressed as

Here    is the hyperparameters for implementation of the function of  , such as specifying the

learning strategy.

From formulas (5) and (6), we can note that the   established for measuring the difference between the 

 and   plays the decisive role in implementing the functions of   and   for the   with 

, and the implementation of the function of    also supports the implementation of the

function of  .
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5.5. Summary of the Process Pipeline

Figure 2. Summarized process pipeline for the formalization of the unified scientific paradigm for evaluation

and learning of predictive model with MIATTs.

The overall process pipeline for formalizing the unified scientific paradigm for evaluation and learning of

predictive models with MIATTs can be visually summarized in Figure 2, which comprises four key

components:
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1. MIATTs Generation: Based on the formal definition of MIATTs, generate appropriate MIATTs for

each instance through human annotation and/or machine-assisted methods.

2. Model Construction: Design a parameterized predictive model that maps an instance to a predicted

true target within the context of a specific ML task using MIATTs.

3. Metric Formulation: Establish evaluation metrics—supported by theoretical analysis and empirical

validation—to quantify the discrepancy between the predicted true target and the corresponding

MIATTs for each instance.

4. Model Optimization: Develop procedures for evaluation and learning based on the defined metrics.

These procedures are used to optimize the model parameters, aiming to minimize the discrepancy

between the predicted true targets and the MIATTs, thereby producing an improved predictive

model. In the optimization process, the evaluation procedure provides supports for the learning

procedure.

Accordingly, with the   found via model optimization (formulas (5) and (6)), we can obtain the finally

evolved PM that is able to map the    into the desired true target ( ). This mapping can be formally

expressed as

5.6. Practical implementation leveraging principles of LAF and UTTL

Formulas (1) through (7) constitute the formal foundation of the proposed framework for evaluating and

learning predictive models using MIATTs. To apply this framework in practice, it is essential to specify

the hyperparameters associated with these formulas, particularly those in formulas (3) to (6), which

represent the core components for the evaluation and learning of predictive models within the MIATTs

context.

Grounded in the scientific foundation presented in Section 4, we suggest using LAF as the

hyperparameter for implementing formula (3). In doing so, Principle 1—establishing the practicability of

LAF—serves as the theoretical basis for employing MIATTs in evaluation tasks. Building on this, formula

(4), which involves defining task-specific evaluation metrics (e.g., for image classification or

segmentation), can be instantiated by translating the properties of MIATTs into measurable quantities

tailored to the given ML task. These metrics then directly inform the implementation of the evaluation

procedure in formula (5). Following the formulation of the evaluation procedure, we can further leverage

θ̃
PM

i t¯

= P M (i; ) .t¯ θ̃
PM

(7)
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UTTL as the hyperparameter for implementing formula (6). This draws upon Principle 2, which

establishes the feasibility of learning from MIATTs under UTTL.

Taken together, the integration of LAF and UTTL into formulas (3) through (6) ensures that the

evaluation and learning procedures with MIATTs are both theoretically grounded and practically

executable.

6. Conclusion and Future Work

The unified scientific paradigm of evaluation and learning with multiple inaccurate true targets

(MIATTs) proposed in this article provides a novel and flexible framework for addressing machine

learning (ML) tasks in domains where accurate true targets (ATTs) are difficult, costly, or even impossible

to obtain. By integrating the Logical Assessment Formula (LAF) [9] and Undefinable True Target Learning

(UTTL) [24], this framework relaxes conventional assumptions about true target accuracy and offers an

alternative path forward grounded in the assumption that the true target for a given ML task is not

assumed to exist as a well-defined object in the real world. This epistemological shift allows for a broader

class of problems to be formally addressed, particularly in areas such as medical image analysis, robotics

perception, and AI alignment [25], where data ambiguity and subjective annotations are prevalent.

Prior studies have shown that LAF can approximate conventional evaluation effectively in complex

prediction tasks, while UTTL has been successfully instantiated within multi-target learning

frameworks  [9][24][25]. These developments collectively underpin the core scientific foundation

supporting the practicability of evaluation and learning with MIATTs. While prior empirical validations

of LAF and UTTL provide indirect support for the proposed framework of evaluation and learning with

MIATTs  [10][21][22][23], targeted experimental validation within specific application domains is essential

to more directly assess its robustness and generalizability. To help bridge this gap, an implementation of

the proposed framework for bicycle lane segmentation in street images is provided in [38] for reference.

Moreover, the development of standardized datasets and validation protocols tailored for MIATTs-based

evaluation and learning will be critical for promoting broader adoption and ensuring reproducibility

within the ML community. Future work will focus on addressing these issues to further advance the

applicability of the unified scientific paradigm of evaluation and learning with MIATTs.
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