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EL-MIATTs: Evaluation and Learning
with Multiple Inaccurate True Targets

Yongquan Yang1

1. Institute of Sciences for AI, China

In many real-world machine learning (ML) scenarios, obtaining accurate true targets (ATTs) for
evaluation and learning is difficult, expensive, or fundamentally infeasible. This article proposes a
unified scientific paradigm, evaluation and learning with multiple inaccurate true targets (EL-
MIATTs), that addresses this challenge by integrating the fundamental principles of two recently
proposed frameworks: Logical Assessment Formula (LAF) and Undefinable True Target Learning
(UTTL). Both LAF and UTTL operate under a relaxed but shared assumption that the true target for a
given ML task is not assumed to exist as a well-defined object in the real world, which motivates us to
define MIATTs as a collection of weak yet partially informative targets, each capturing a different
aspect of the underlying true target. Building on this foundation, we present a comprehensive
theoretical framework, which encompasses MIATTs generation, model construction, metric
formulation, and model optimization, for formalizing the evaluation and learning of predictive
models with MIATTs. The article offers a principled and practical alternative for ML scenarios marked
by true target ambiguity, providing a viable path where conventional ATT-based methods prove

inadequate or inapplicable.
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1. Introduction

Advances in machine learning (ML) techniques—particularly deep learning (DL) based on deep neural
networks [l—have driven the rapid development of artificial intelligence (AI) technologies over the past
decade, enabled by the availability of large-scale data and increasingly powerful computing resources.

Today, large-scale models such as ChatGPT [2! represent the forefront of modern Al, fundamentally

transforming knowledge acquisition, expanding the boundaries of productivity, and redefining
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paradigms of human—machine collaboration. A typical ML pipeline for a specific prediction task
generally involves three key stages: (1) collecting task-relevant data; (2) designing or selecting an
appropriate ML algorithm; and (3) optimizing the ML algorithm using the collected data and available

computing resources to obtain a predictive model that can be deployed for the target task.

For a given ML task, the data typically consist of three fundamental components: instance, label, and
target. An instance refers to an event or entity to be analyzed—such as a numerical vector or an image
matrix—depending on the nature of the task. A label is commonly assigned to an instance and encodes
semantic information relevant to the specific prediction objective. A target is usually a computationally
equivalent transformation derived from a label, designed to facilitate computational procedures in ML,
such as validation and learning. In practice, given available computational resources, a predictive model
is typically obtained by optimizing a suitable ML algorithm using processed data consisting of paired
instances and targets (rather than raw labels) Bl Within this optimization process, evaluation and
learning represent two essential computational procedures. Evaluation validates the model’s ability to
generalize by measuring the discrepancy between the model’s predicted target for an instance and the
true target associated with that instance, while learning focuses on producing a predictive model that
maps each instance to its corresponding true target. Further explanations and interrelations among the

terminologies of instance, label, target, evaluation, and learning in ML are provided in Section 2.

In the current ML literature, approaches for the evaluation of predictive models can be categorized into
three types based on the accuracy of the true targets associated with the evaluation data: (1) conventional
evaluation with accurate true targets (ATTSs) [é]lil@lﬂl@l’ (2) conventional evaluation with inaccurate true
targets (IATTSs) Lgl@lm]@, and (3) logical assessment formula (LAF)-based evaluation, which can
operate with multiple inaccurate true targets (EL-MIATTS) 31041 conventional evaluation methods
based on ATTs or IATTs typically assume that ATTs are reliably embedded within the provided true
targets associated with the evaluation instances, even when the overall set of provided true targets may
contain inaccuracies—that is, when the set constitutes IATTs. In contrast, the recently proposed LAF
framework relaxes this assumption by allowing that ATTs may or may not be present among the given
true targets 31 1n the absence of a strict requirement for ATTs, LAF offers a more adaptable and realistic
framework for evaluation, particularly suited to scenarios with uncertain or noisy supervision 34,
Following a similar perspective, approaches for the learning of predictive models in the current ML

literature can likewise be categorized into three main types based on the accuracy of the true targets

associated with the learning data: (1) conventional learning with ATTs W, (2) conventional

geios.com doi.org/10.32388/UMHEFG.4


https://www.qeios.com/
https://doi.org/10.32388/UMHEFG.4

learning with IATTs M@M, and (3) undefinable true target learning (UTTL) f2—51, which can
operate with MIATTs [261[271[281129] conyentional learning approaches based on ATTs or IATTs generally
assume that the true target exists as a well-defined object in the real world. In contrast, the recently
introduced UTTL paradigm relaxes this assumption by positing that the true target does not exist as a
precisely defined object in the real world 251 Accordingly, UTTL eliminates the need for ATTs during
learning, making it well-suited for scenarios in which the true target is ill-defined or inherently
ambiguous. A more detailed discussion of existing evaluation and learning approaches, along with a

comparison of their underlying assumptions, is provided in Section 3.

Respectively, LAF and UTTL offer distinct frameworks for evaluation with MIATTs and learning with
MIATTSs, without relying on ATTs. These approaches are particularly well-suited to addressing the
challenge that, in many real-world ML scenarios, acquiring ATTs is difficult, expensive, or fundamentally
infeasible. However, treating LAF and UTTL in isolation may hinder their broader applicability and
practical deployment. To provide a more unified and effective solution, this article proposes a cohesive
scientific paradigm, EL-MIATTs, which integrates the foundational principles of both LAF and UTTL into

a single framework.

Specifically, drawing on prior studies [1311141(251(26](271[28][30] e establish the scientific foundation for
proposing the unified paradigm of EL-MIATTs. The respective principles of the LAF and UTTL have
independently demonstrated the feasibility of evaluation and learning in the absence of ATTs. From
these principles, we derive a shared foundational assumption: the true target for a given ML task is not
assumed to exist as a well-defined object in the real world. This assumption motivates the formal
definition of MIATTSs, conceptualized as collections of weak yet partially informative targets that each
reflect certain aspects of the underlying true target. The logical progression connecting these elements—
assumption, definition, and principles—collectively establishes the scientific foundation for proposing

the unified paradigm. Further details on this foundation are presented in Section 4.

Building upon this foundation, we then present a comprehensive theoretical framework for formalizing
the evaluation and learning of predictive models using MIATTs. This framework systematically outlines
the procedures for MIATTSs generation, predictive model construction, metric formulation, and model
optimization. By operationalizing this paradigm, it provides principled guidance for applying MIATTs-

based evaluation and learning of predictive models. The full framework is detailed in Section 5.
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In summary, the unified scientific paradigm of EL-MIATTs proposed in this article provides a novel and
flexible framework for addressing ML tasks in domains where AT Ts are difficult, costly, or fundamentally

infeasible to obtain. The key contributions of this work are as follows:

It integrates the foundational principles of both LAF and UTTL into a unified scientific paradigm of
EL-MIATTs

¢ It clarifies the concepts and interrelationships among core ML terminologies, including instance,
label, target, evaluation, and learning

« It provides a concise review of existing evaluation and learning approaches, along with a comparative
analysis of their underlying assumptions

» Drawing on prior studies, it establishes the scientific foundation for a unified paradigm of EL-MIATTs
by integrating the principles of LAF and UTTL

o It presents a comprehensive theoretical framework that systematically guides the processes of
MIATTs generation, predictive model construction, metric formulation, and model optimization,

which formalize the evaluation and learning of predictive models with MIATTs.

The remainder of this article is organized as follows. Section 2 introduces fundamental terminologies in
ML and clarifies their interrelations. Section 3 reviews related work on evaluation and learning
approaches, categorizing them based on assumptions regarding the availability of true targets. Section 4
establishes the scientific foundation for the proposed unified paradigm of EL-MIATTs, building on prior
studies and theoretical reasoning. Section 5 presents a theoretical framework for formalizing the
evaluation and learning of predictive models with MIATTs, which cover the generation of MIATTS,
construction of predictive models, formulation of evaluation metrics, and optimization procedures.
Finally, Section 6 concludes the article and discusses open challenges and potential directions for future

research.

2. Fundamental terminologies and their relations in ML

Generally speaking, the objective of ML is to construct a predictive model with data collected for a
specific prediction task based on efficient computing resources. Instance, label, and target constitute the
fundamental components of the data associated with a particular ML task. Section 2.1 provides detailed
explanations of these three terms in the context of ML data. To achieve the goal of ML in practical

applications, learning and validation are two essential concepts, representing the core computational
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procedures required to develop an appropriate predictive model for the given task. These two
terminologies, pertaining to the implementation of ML solutions, are discussed in Section 2.2.
Collectively, these five fundamental terms—related to both data collection and solution implementation
—establish the conceptual foundation of ML. Section 2.3 illustrates the interrelationships among these

five core elements.

2.1. Instance, label, and target

An instance in ML is usually regarded as an event or entity, which, for example, can be a number vector or
an image matrix for a specific ML task. A label in ML is commonly assigned to an instance. When we
refer to a label in ML, we can also implicitly refer to the instance associated with the label. When a
number of labels and their corresponding instances are provided, there is some collected data for ML. A
label assigned to an instance usually contains some semantic facts that mostly cannot be directly used in
ML, since the semantic facts contained in the label can be too complex or simple and unstructured to be
easily used for computation in ML [21. To address this issue, ML practitioners must build a transformation
that can transform a label into a target that can be conveniently used for computation (3], Regarding the
transformation from its associated label, a target can also be re-transformed into a label that contains
some semantic facts Bl As a result, a target is essentially a somewhat equivalent formation
corresponding to a particular label, which can be conveniently used for computation in ML. Identical to
the reference to a label in ML, when we refer to a target in ML, we can also implicitly refer to the instance

associated with the label from which the target is transformed.

Beyond the general terminologies of label and target, some attributive words can be added to form new
terminologies for a definitive label or target that has a more specific meaning. For example, we can add
attributive words like ground-truth, accurate, or inaccurate to label or target to form new definitive

terminologies. Some examples of definitive labels or targets and their meanings are provided in Table 1.

2.2. Evaluation and Learning

As we discussed in the previous section, a label assigned to an instance in the collected data commonly
cannot be directly used for computation in ML. The two computational procedures for evaluation and
learning of a predictive model for a specific ML task are usually implemented based on a number of
targets and corresponding instances, which constitute data processed from the collected data with

provided labels.
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Based on the processed data that consists of a number of targets and corresponding instances, the
evaluation procedure in ML aims to estimate the error between the predicted target of a predictive model
regarding an instance and the target associated with the instance, while the learning procedure in ML
aims to produce a predictive model that can map an instance to its corresponding target. Specifically, the

evaluation procedure in ML is carried out by referring to some metrics to compute the error between the

predicted target of a predictive model for an instance and the target associated with the instance [13104]

while the learning procedure in ML is carried out by optimizing a predefined objective function EN
321 pased on a certain learning algorithm, such as deep neural networks @l[ﬁl, for a predictive model to
implement the mapping from an instance to its corresponding target. Particularly, the evaluation

procedure is usually an essential part of the learning procedure, as a specific strategy for the evaluation

procedure can generally be used in the optimization of a predefined objective in the learning

procedure [25]
Terminology Meaning Terminology Meaning
A somewhat equivalent formation
Semantic facts assigned to an
Label Target corresponding to a label for convenient
instance
computation in ML
Semantic facts that possess the Formation corresponding to a ground-
Ground-truth label True target
intended information truth label
Semantic facts that accurately
Accurate ground- Accurate true | Formation corresponding to an accurate
possess the intended
truth label target ground-truth label
information
Semantic facts that
Inaccurate Inaccurate true | Formation corresponding to an inaccurate
inaccurately possess the
ground-truth label target ground-truth label
intended information

Table 1. Definitive label or target and their meanings

For a specific ML task, the two computational procedures of evaluation and learning will eventually
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produce an appropriate predictive model that can map an unseen instance to a predicted target, which

can also be re-transformed into a predicted label for the unseen instance.

2.3. Relations

The relations of the illustrated five fundamental terminologies in ML are shown in Fig. 1, in which a

single data point is displayed for simplicity.

The collected data for a specific ML task consist of an instance and its assigned label. As the label for the
collected data usually contains some semantic facts that mostly cannot be directly used for computation
in ML, the label for the instance is transformed into a target, which can also be re-transformed into the
label. With the collected data and the transformation from a label to a target, we can obtain the processed

data for evaluation and learning of a predictive model for the specific ML task.

On the basis of the processed data, the instance and its corresponding target transformed from the label
are respectively used for computation in the evaluation and learning of a predictive model. While
implementing the two computational procedures of evaluation and learning, the evaluation procedure
provides a supportive foundation for the learning procedure for a predictive model for the specific ML

task.

Finally, for the specific ML task, the two computational procedures of evaluation and learning of a
predictive model cooperatively produce an appropriate predictive model, which can take an unseen
instance as an input and output a predicted target for the unseen instance. The output predicted target of
the produced predictive model regarding the input unseen instance can also be re-transformed into a

predicted label that can be associated with the unseen instance.
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Figure 1. Outline for the relations of instance, label, target, evaluation and learning in ML.

3. Related work

The evaluation and learning of predictive models are fundamental to the formulation of the new ML
paradigm—EL-MIATTs—proposed in this article. In this section, we provide a brief review of existing

evaluation and learning approaches for predictive models, along with their underlying assumptions, as

discussed in the current ML literature.
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3.1. Evaluation of predictive models

With respect to the accuracy of true targets associated with evaluation data, we broadly categorize the
evaluation approaches for predictive models in the current ML literature into three types: conventional
evaluation using accurate true targets (ATTs), conventional evaluation using inaccurate true targets
(IATTs), and logical assessment formula (LAF) for evaluation based on multiple inaccurate true targets

(MIATTs).

3.1.1. Conventional evaluation with ATTs

To evaluate predictive models with ATTs, standard metrics such as true positive (TP), false positive (FP),
true negative (TN), and false negative (FN) are defined based on the comparison between predictions and

AGTLs. Derived from these, metrics like precision, recall, F-measure, accuracy, and intersection over

union are commonly used for classification (8! and image segmentation tasks [el[7],

To reduce the labor-intensive effort required for labeling a large number of ATTs, several evaluation
approaches utilizing limited AGTLs have been proposed. For example, Jung et al. (3] proposed using pre-
trained classifiers, a small set of true labels, and multiple pseudo-ground-truth label sets. Predictions
from the classifiers are ranked against both true and pseudo-label sets, and the pseudo set most
correlated with the true set is selected for evaluation without expert annotations. For another example,
Deng et al. 4} introduced a regression-based approach: after training a classifier f(#) on labeled data
(z,y), its performance on a test set (x:,y:) is assessed via ATT-based metrics. Then, using data
augmentation to generate multiple variants of test sets, their performance statistics are extracted and

used to train a regression model that predicts the classifier's performance based on feature statistics.

3.1.2. Conventional evaluation with IATTs

To enable evaluation with IATTs, Warfield et al. 31 proposed the STAPLE method, which uses the
expectation-maximization (EM) algorithm [36] and related approaches 371381 tg estimate the probability
that each target in the IATTs represents a true target. These probabilistic targets—derived from human
raters or predictive models—can then be used to evaluate unseen test results without requiring ATTs 391

[40] yoyce et al. 4 introduced approximate ground truth refinement (AGTR), which clusters data points
assumed to share the same true label. AGTR relies on expert knowledge to group similar instances and

requires an estimated error rate, enabling the derivation of performance bounds for model evaluation.
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3.1.3. LAF for evaluation with MIATTs

Conventional evaluation methods based on ATTs or IATTs typically assume that ATTs are reliably
embedded within the provided true targets associated with the evaluation instances. In contrast, the
recently proposed LAF, which can operate with MIATTs, relaxes this assumption by allowing that ATTs
may or may not be present among the given true targets [3), Rather than strictly requiring the presence
of ATTs, this relaxed assumption for LAF simplifies the preparation of MIATTs for evaluation in real-

world applications.

3.2. Learning of predictive models

In line with the categorization of evaluation approaches in Section 3.1, learning approaches for predictive
models in the current ML literature can similarly be classified into three main types based on the
accuracy of true targets associated with the learning data: conventional learning using ATTs,

conventional learning with IATTs and undefinable true target learning (UTTL) for learning with MIAT Ts.

3.2.1. Conventional learning with ATTs

Learning predictive models with ATTs includes both supervised learning (SL) 81091 ang semi-supervised

learning (SSL) 0510671 gy, js typically performed using large-scale labeled datasets with ATTs. Recent
studies further refine SL into subtypes based on the nature of the transformation from labels to targets in
the learning data L In contrast, SSL leverages a small amount of labeled data with ATTs alongside a
large amount of unlabeled data. Due to the incompleteness of true target information in the learning set,

SSL is often considered a form of weakly supervised learning (WSL) [62]

3.2.2. Conventional learning with IATTSs

Learning predictive models with IATTs encompasses both multi-instance learning (MIL) [22123124] 554
label noise learning (LNL) [20121) ML, is conducted on datasets where multiple instances are grouped
under a single true target, with the assumption that at least one instance in each group is correctly
labeled, while the others may be mislabeled. LNL, on the other hand, involves learning on data where
individual instances are directly assigned potentially inaccurate labels. Due to the inherent inexactness

and noise in the true target information, both MIL and LNL are also commonly regarded as forms of WSL.
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3.2.3. UTTL for learning with MIATTs

Conventional learning approaches based on ATTs or IATTs typically assume that the true target exists as
a well-defined object in the real world and that ATTs can, in principle, be provided for the learning data.
In contrast, the recently proposed UTTL, which operates with MIATTS, relaxes this assumption by
positing that the true target does not exist as a well-defined object in the real world [22], Accordingly,

UTTL does not require ATTs for learning and instead relies solely on MIATTs.

3.3. Comparative summary of assumptions

A comparative summary of the assumptions underlying different evaluation and learning approaches is

presented in Table 2.
Assumption Evaluation Approach Assumption Learning Approach
AT'Ts are reliably embedded Conventional

The true target exists as a well- | Conventional learning
within the provided true evaluation with ATTs or
defined object in the real world | with ATTs or IATTs

targets IATTs
ATTs may or may not be The true target does not exist as
LAF for evaluation with UTTL for learning with
present among the given true a well-defined object in the real
MIATTSs MIATTSs
targets world

Table 2. Comparative summary of assumptions underlying different evaluation and learning approaches

In traditional ML, both evaluation and learning are grounded on the implicit assumption that the true
target is a well-defined and reliably accessible object in the real world. Accordingly, evaluation with ATTs
or IATTs presumes that the trustworthy truth is sufficiently provided in labels for measuring model
correctness. Likewise, model training under this assumption optimizes against a fixed, deterministic

ground truth, aligning with the statistical learning theory premise of noise-bounded supervision.

In contrast, LAF and UTTL explicitly challenge this foundational assumption. The LAF-based evaluation
approach accepts that true targets may be partially or inconsistently represented across multiple

approximations (MIATTSs), requiring logical aggregation rather than direct comparison with a single
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truth. Similarly, UTTL-based learning operates under the assumption that no single well-defined true

target exists, instead optimizing over multiple, partially reliable surrogates of truth.

In this article, we propose a unified scientific paradigm that is grounded in the shared assumption
underlying both LAF and UTTL, that is, the true target for a given ML task is not assumed to exist as a

well-defined object in the real world.

4. Scientific foundation for EL-MIATTs

This section establishes the scientific foundation for proposing the unified scientific paradigm of EL-
MIATTs. Drawing on prior research, Section 4.1 summarizes the fundamental principles of LAF and
UTTL. These principles lead to the formulation of their shared assumption in Section 4.2, which in turn
motivates the formal definition of MIATTs in Section 4.3. The essence of MIATTs is discussed in Section
4.4. Finally, Section 4.5 outlines the logical progression that connects these elements, establishing the

scientific foundation for the proposed unified paradigm.

4.1. Fundamental principles of LAF and UTTL

Prior research has validated the core principles that support the practical viability of LAF and UTTL

across both theoretical analyses and real-world applications 121[141[251[26][27][28][30]

4.11. Fundamental principle of LAF

Under the assumption that ATTs may or may not be present among the given true targets (see Table 2),
the foundational principle of LAF for evaluation with MIATTs was derived through deductive reasoning,
demonstrating that, based on MIATTs, LAF can approximate conventional ATT-based evaluation
reasonably well in complex tasks, while potentially exhibiting greater deviations in simpler ones (12130,
Building on this principle, a series of logical assessment metrics was developed specifically for image
segmentation, and the application of these LAF-based metrics in real-world scenarios has demonstrated

their effectiveness 14l Thus, we have the following Principle 1 for the practicability of LAF.

Principle 1 (Practicability of LAF). Based on MIATTs, LAF can approximate conventional ATT-based

evaluation reasonably well in complex tasks, while potentially exhibiting greater deviations in simpler ones.
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4.1.2. Fundamental principle of UTTL

Under the assumption that the true target does not exist as a well-defined object in the real world (see
Table 2), a class of learning methods has been developed based on abductive reasoning, demonstrating
that, based on MIATTs, UTTL can be effectively implemented within a multi-target learning
framework 221301 These methods have been successfully applied to various medical image
segmentation tasks, demonstrating notable effectiveness in practice [26](27][281[29], Thus, we have the

following Principle 2 for the practicability of UTTL.

Principle 2 (Practicability of UTTL). Based on MIATTs, UTTL can be effectively implemented within a multi-

target learning framework.

4.2. Shared assumption of LAF and UTTL

From Principle 1 and Principle 2, it can be observed that the practicality of both LAF and UTTL relies on
the usage of MIATTs, despite differences in their original formulations. This observation suggests the
existence of a shared foundation within the respective assumptions for LAF and UTTL. In fact, the
assumption underlying LAF implicitly encompasses that of UTTL, as the assumption for LAF allows for
the possibility that the true target either exists or does not exist in the real world. Consequently, the
shared assumption between LAF and UTTL can be distilled as follows: the true target is not necessary to
exist as a well-defined object in the real world. Based on this understanding, we formulate the following

Assumption 1, which represents the common foundation of both LAF and UTTL.

Assumption 1 (Shared Assumption of LAF and UTTL): The true target for a given ML task is not assumed to

exist as a well-defined object in the real world.

4.3. Definition of MIATTs

Assumption 1 motivates the need to formally define MIATTs. By definition, a MIATT's set contains two or
more individual inaccurate true targets, all associated with the same underlying true target. While each
individual inaccurate target in the MIATTs set may be insufficient on its own to represent the true target

comprehensively, it is assumed to capture a specific and meaningful aspect of it.

Consequently, the set of semantic facts (SFs) encoded in each individual inaccurate target within the

MIATTs is considered a subset of the complete set of SFs that would fully characterize the underlying true
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target. Furthermore, the union of SFs across the entire MIATTSs set either belongs to or may approximate

the complete SF set of the true target.
To characterize these properties formally, we introduce the following Definition 1 for MIATTs.

Definition 1 (Multiple Inaccurate True Targets, MIATTSs). Let t* denote the underlying (possibly
undefinable) true target for a given machine learning task, and let SF'(t*) be the set of all semantic facts that

precisely characterize t*. A MIATTs set associated with t* is a finite collection
MIATTs = {t,"|n € {1,---,N}}, N >2

where each t,,* is an inaccurate true target satisfying:

1) Partial representation:
SF(t,*) C SF(t"),

i.e,each t,* encodes only a subset of the underlying true target’s semantic facts.

2) Collective coverage:
N
|JSF(t.") € SF(t"),
n=1

with the possibility that Uivzl SF (t,*) = SF(t*).

In other words, no single t,,* fully specifies t*, but together the MIATTs set captures one or more of its essential

aspects.

44. Essence behind MIATTSs

Since each ¢,* is weak but partially informative with respect to the underlying true target ¢*, a collection
of such targets—constituting the MIATTs—can collectively capture diverse aspects of ¢*. The core
essence behind MIATTs lies in their role as an ensemble of partial approximations: while no single ¢,,*
provides a complete specification of ¢*, their aggregation encodes a distribution over multiple plausible
interpretations of ¢*. This distribution reflects both the richness and uncertainty inherent in
approximating t*, ensuring that the semantic space of the underlying true target is covered, albeit
imperfectly. In this sense, MIATTs should not be viewed as a definitive reconstruction of ¢*, but rather as
a structured hypothesis space where each IATT contributes fragments of evidence. The essence of

MIATTs, therefore, is to balance coverage and noise, transforming the problem of single-true target
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inference into one of collective representation, which enhances robustness against uncertainty and

inaccurate knowledge.

4.5. Logical progression toward a unified paradigm

Assumption 1 regarding the true target, Definition 1 formalizing MIATTSs, the essence behind MIATTS,
and the validated Principle 1 and Principle 2 supporting the practicability of LAF and UTTL collectively

establish the scientific foundation for the unified paradigm of EL-MIATTs.

The logical progression underlying the proposed framework is summarized in Table 3. As shown,
Assumption 1 concerning the nature of the true target motivates Definition 1, which formally introduces
MIATTs and analytically reveals the essence behind MIATTs. This definition and the behind essence, in
turn, supports the development of Principle 1 and Principle 2, demonstrating the practicability of LAF
and UTTL. Together, these foundations lead to the proposal for a unified scientific paradigm of

evaluation and learning.

Scientific foundation
MIATTSs Proposal
Assumption Principles
Definition Essence
A distribution over multiple plausible interpretations of the | Principle1 EL-
Assumption 1 | Definition 1
underlying true target Principle 2 MIATTs

Table 3. Logical foundations underlying the unified paradigm of EL-MIATTs

Note: This table summarizes the logical progression of the proposed paradigm. Assumption 1 establishes
the ontological premise that the true target may not exist as a well-defined object in the real world. Based
on this, Definition 1 formalizes the concept of MIATTSs, the essence behind which is a distribution over
multiple plausible interpretations of the underly true target. This formalization enables the development
of Principle 1 and Principle 2, which validate the practicability of LAF and UTTL. These components

collectively support the formulation of the unified paradigm for EL-MIATTs proposed in this work.
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5. Evaluation and learning of a predictive model with MIATTs

Building upon the scientific foundation established in Section 4, this section presents a systematic
framework for formalizing the evaluation and learning processes of predictive models utilizing MIATTs.
Section 5.1 introduces the procedure for generating MIATTs for a given instance, grounded in the formal
definition provided earlier. Section 5.2 describes the construction of a predictive model that maps an
instance to a predicted true target for a specific ML task in the context of MIATTs. Section 5.3 formulates
metrics to quantify the discrepancy between the predicted true target and the corresponding MIATTs of
an instance. Based on these metrics, Section 5.4 develops evaluation and learning procedures aimed at
optimizing the predictive model to accurately approximate the desired true target. Finally, Section 5.5
offers a visual and conceptual synthesis of the entire evaluation and learning process in the context of
MIATTs. Section 5.6 outlines recommendations for configuring the critical hyperparameters involved in
the framework’s formulation, leveraging the fundamental principles of LAF and UTTL to facilitate its

practical application.

5.1. Generation of MIATTs

MIATTs can be generated from the provided instance (i) and its corresponding label (I). Regarding
Definition 1, generating the MIATTs (GM) for ¢ can be formally expressed as
MIATTs = GM (i,1;0M) = {t,*|n € {1,---,N}}. (1)

Here, M denotes the hyperparameters for implementing the function of GM. For example, # can be
the organization of a series of procedures involving humans and machines, which can be executed to
generate the MIATTSs that can be subject to the condition
N >2& SF(t,*) C SF(t*) & UL, SF (t,*) C SF(t*) for the i.

Note that the [ corresponding to the 7 is not necessary to provide in formula (1), but it can be provided to
simplify the implementation of the function of GM as it can provide some prior knowledge about the

t* for 1.

5.2. Predictive model in context of MIATTs

In ML, a predictive model (PM) is usually regarded as a parameterized function that can map an input

instance () into a predicted true target (f ), which can be formally expressed as

t = PM(i;0™M). (2)
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Here, #”M denotes the parameters for constructing the function of PM.

Regarding formula (2), for a particular ML task, the essence is to find the optimized parameters (5PM ) for
the function of P M. The found épM can enable the function of PM to output the desired ¢ that has the
minimum difference from the true target (¢*) associated with i. As a result, suitable metrics for
measuring the difference between t and t* regarding i should be essentially established for finding the
6 P for the function of PM. Usually, on the basis of established suitable metrics, computational
procedures for the evaluation and learning of the function of PM are implemented for finding 6 PM. In
summary, based on the data of ¢ and its corresponding ¢* for a particular ML task, the construction of an
appropriate function of PM for mapping i to the desired ¢ can be described as: establishing suitable
metrics for the difference between ¢ and ¢* regarding i to implement the computational procedures for
the evaluation and learning of the function of PM to find épM that can enable the function of PM to

output the desired ¢ that has the minimum difference from the ¢* associated with i.

In the context of MIATTS, for a particular ML task, the function of PM for mapping the i into the ¢ can
still be formally expressed in the same way as formula (2). However, the construction of an appropriate
function of PM for mapping the i into the desired ¢ will be different, as the data basis here is changed to
the new form of the 4 and its corresponding MIATT's instead of the traditional form of the ¢ and its
corresponding t*. As a result, for the construction of an appropriate function of PM for mapping the
i into the desired ¢ in the context of MIATTSs, we need to establish new metrics for measuring the
difference between ¢ and the MIATT's regarding the i. Further, on the basis of the established new
metrics, we also need to implement new computational procedures for the evaluation and learning of the
function of P M for finding the 6 "M that can enable the function of P to output the desired ¢ that has

the minimum difference from the M1 ATT's associated with the <.

5.3. Metrics for the difference between the predicted true target and MIATTs

The metrics (Ms) for the difference between the ¢ and MIATTs for the i should be a series of
computable equations that can quantitatively measure the discrepancies of the ¢ from the MIATT's in
various aspects. Establishing the computable equations for the Ms can be conducted on the basis of
some underlying theoretical results deduced regarding the ¢ and the MIATTSs. As a result, the
establishment of the Ms has two key components: 1) Deducing (D) underlying theoretical results (UTRs)
regarding the ¢ and the MTATT's for the i; 2) Establishing (E) computable equations for the Ms based on

the ¢, MIATT's and the deduced UTRs. Formally, the two key components can be expressed as
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UTRs = D (¢, MIATTs;6"), (3)

Ms = E (i, MIATTs,UTRs;6%). (4)

Here AP and 6% are the hyperparameters for the implementation of the function of D and for the

implementation of the function of E, respectively.

In implementing the function of D in formula (3), we need to theoretically prove that the difference
measured between the ¢ and the MTATT's can reflect some aspects of the difference measured between
the ¢ and the underlying ¢* for the 7. This theoretical proof is essential, as it can provide specific UT Rs to

offer a firm theoretical foundation for implementing formula (4).

In implementing the function of E in formula (4), we need to experimentally validate whether the
UT Rs provided by formula (3) can be realized in practice. This experimental validation is also necessary,

as it can provide computable M s regarding a specific application.

In summary, the establishment of the metrics for the difference between the predicted true target and the
MIATTs corresponding to an instance requires both theoretical proof and experimental validation, which

eventually specifies the 6P and ¥ in formulas (3) and (4).

54. Procedures for EL-MIATTs

The evaluation procedure (EP) of the PM with MIATTs aims to compute the numerical error (e)
between the ¢ of the PM and the MIATT's regarding the i. As the finally established M in the context
of MIATTs is a series of computable equations, it can be used to compute the e. Thus, under the condition

of the established M's in the context of MIATTs, the EP of the PM with MIATT's can be expressed as
e = EP (¢, MIATTs|Ms) = Ms(t, MIATTs). (5)

The learning procedure (LP) of the PM with MIATT's aims, under a specified learning strategy, to find
~PM -

the optimized parameters (§ ) that can enable the PM to predict the ¢ that minimizes the

e established in formula (5), which can be regarded a specific loss function. Regarding formulas (5) and

(2), the LP of the PM with MIATT's can be expressed as

67" = LP (e = Ms(f, MIATTs)|0") )
= arcmin (Ms (t = PM (i;@PM) , MIATTs) |0LP) (©)
0PM

Here #*F is the hyperparameters for implementation of the function of LP, such as specifying the

learning strategy.
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From formulas (5) and (6), we can note that the M s established for measuring the difference between the
t and MIATT's plays the decisive role in implementing the functions of EP and LP for the PM with
MIATTSs, and the implementation of the function of EP also supports the implementation of the

function of LP.

5.5. Summary of the Process Pipeline

The overall process pipeline for formalizing the unified scientific paradigm for evaluation and learning of
predictive models with MIATTs can be visually summarized in Figure 2, which comprises four key

components:

1. MIATTs Generation: Based on the formal definition of MIATTs, generate appropriate MIATTs for
each instance through human annotation and/or machine-assisted methods.

2. Model Construction: Design a parameterized predictive model that maps an instance to a predicted
true target within the context of a specific ML task using MIATTs.

3. Metric Formulation: Establish evaluation metrics—supported by theoretical analysis and empirical
validation—to quantify the discrepancy between the predicted true target and the corresponding
MIATTSs for each instance.

4. Model Optimization: Develop procedures for evaluation and learning based on the defined metrics.
These procedures are used to optimize the model parameters, aiming to minimize the discrepancy
between the predicted true targets and the MIATTSs, thereby producing an improved predictive
model. In the optimization process, the evaluation procedure provides supports for the learning

procedure.

Accordingly, with the 7] M found via model optimization (formulas (5) and (6)), we can obtain the finally
evolved PM that is able to map the i into the desired true target (¢). This mapping can be formally

expressed as

i=PM (i;éPM) . (7)
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Figure 2. Summarized process pipeline for the formalization of the unified scientific paradigm for evaluation

and learning of predictive model with MIATTs.

5.6. Practical implementation leveraging principles of LAF and UTTL

Formulas (1) through (7) constitute the formal foundation of the proposed framework for evaluating and
learning predictive models using MIATTs. To apply this framework in practice, it is essential to specify

the hyperparameters associated with these formulas, particularly those in formulas (3) to (6), which
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represent the core components for the evaluation and learning of predictive models within the MIATTs

context.

Grounded in the scientific foundation presented in Section 4, we suggest using LAF as the
hyperparameter for implementing formula (3). In doing so, Principle 1—establishing the practicability of
LAF—serves as the theoretical basis for employing MIATTs in evaluation tasks. Building on this, formula
(4), which involves defining task-specific evaluation metrics (e.g., for image classification or
segmentation), can be instantiated by translating the properties of MIATTs into measurable quantities
tailored to the given ML task. These metrics then directly inform the implementation of the evaluation
procedure in formula (5). Following the formulation of the evaluation procedure, we can further leverage
UTTL as the hyperparameter for implementing formula (6). This draws upon Principle 2, which

establishes the feasibility of learning from MIATTs under UTTL.

Taken together, the integration of LAF and UTTL into formulas (3) through (6) ensures that the
evaluation and learning procedures with MIATTs are both theoretically grounded and practically

executable.

6. Discussion

The significance of research on EL-MIATTs lies in its role as the first systematic framework to explicitly
address the fundamental epistemic challenge in ML—that the true target of a given task is not assumed
to exist as a well-defined object in the real world. Traditional ML paradigms implicitly assume the
availability of an accurate, consistent ground truth, an assumption that becomes untenable in complex,
ambiguous, or human-centered tasks such as medical diagnosis, natural language understanding, or

social behavior prediction.

By questioning this foundational premise, EL-MIATTs establishes a new line of inquiry that redefines
both the theoretical and practical basis of model evaluation and learning. It systematically reconstructs
the evaluation and learning processes around MIATTSs, a representation of distributed, partial, and
uncertain truths derived from diverse perspectives or annotators. This paradigm shift enables the
development of metrics and algorithms that are logically grounded, uncertainty-aware, and more faithful

to the semantics of real-world data.

Moreover, EL-MIATTs bridges the long-standing gap between logical semantics and statistical

optimization (431441 by integrating LAF ] for evaluation and UTTL (23] for model training. Together,
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they establish a consistent theoretical basis where logical semantics (truth approximation and reasoning)
and statistical optimization (learning under noisy supervision) can coexist, and model interpretability,
robustness, and adaptability coevolve with the understanding of uncertainty itself. By doing so, they
extend the applicability of ML to domains where ground truth is inherently ambiguous, contested, or

context-dependent—such as subjective annotation tasks and open-world perception.

Ultimately, research on EL-MIATTs not only extends the theoretical landscape of ML under uncertainty
but also provides a practical pathway toward more explainable, trustworthy, and human-aligned Al
systems, a crucial step for advancing machine intelligence beyond rigid truth assumptions and toward

reasoning under imperfect knowledge.

7. Conclusion and Future Work

The unified scientific paradigm of evaluation and learning with multiple inaccurate true targets (EL-
MIATTs) proposed in this article provides a novel and flexible framework for addressing machine
learning (ML) tasks in domains where accurate true targets (ATTs) are difficult, costly, or even impossible
to obtain. By integrating the Logical Assessment Formula (LAF) 3] and Undefinable True Target
Learning (UTTL) [25] this framework relaxes conventional assumptions about true target accuracy and
offers an alternative path forward grounded in the assumption that the true target for a given ML task is
not assumed to exist as a well-defined object in the real world. This epistemological shift allows for a
broader class of problems to be formally addressed, particularly in areas such as medical image analysis,
robotics perception, and Al alignment B0l where data ambiguity and subjective annotations are

prevalent.

Prior studies have shown that LAF can approximate conventional evaluation effectively in complex
prediction tasks, while UTTL has been successfully instantiated within multi-target learning
frameworks 31251301 These developments collectively underpin the core scientific foundation
supporting the practicability of EL-MIATTs. While prior empirical validations of LAF and UTTL provide
indirect support for the proposed framework of EL-MIATTs 41261127128 targeted experimental
validation within specific application domains is essential to more directly assess its robustness and
generalizability.

To help bridge this gap, an example implementation of the proposed framework for bicycle lane

segmentation in street images is presented in 3] for reference. In this implementation, the annotation
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process is intentionally conducted under a non-expert setting with the assistance of a large model, and
the proposed EL-MIATTs framework is explicitly designed to support the progressive transformation of
non-experts into better professionals in identifying bicycle lanes in street images. Through iterative
evaluation and learning with multiple inaccurate true targets, the framework guides non-expert
annotators toward more professional-level judgment and consistency. Grounded in the EL-MIATTSs
framework, this work represents the first proof-of-concept implementation that explicitly demonstrates

the possibility to help non-experts become better professionals within a specific application domain.

Moreover, the development of standardized datasets and validation protocols tailored for MIATTs-based
evaluation and learning will be critical for promoting broader adoption and ensuring reproducibility
within the ML community. Future work will focus on addressing these issues to further advance the

applicability of the unified scientific paradigm of EL-MIATTs.
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