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Abstract 

Substrate modulation is the modification of an enzyme’s activity either through inhibition or 

activation by its substrate. Substrate modulation plays key roles in the functioning of complex 

biological systems, such as the regulation of acetylcholine, where the two cholinesterases with 

opposite substrate regulatory mechanisms exist to control acetylcholine’s concentration and 

distribution throughout the body. The importance of these systems is generally ignored in 

therapeutic development due to a lack of appropriate models for inhibitor interactions with 

enzymes that are modulated by their substrate. Here we will examine the most prevalent equation 

used to describe substrate modulation and by rearranging it we will demonstrate the ease with 

which it can be modified to model inhibitor or activator eFects. In so doing we will establish an easy 

method for deriving the rearranged equation, providing an expandable framework for deriving 

equations with unlimited substrate modulation terms. 
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Substrate inhibition and substrate activation are of major importance in the understanding of 

enzymatic regulation but are largely ignored by most researchers and drug developers. This is very 

evident in the development of cholinesterase inhibitors for Alzheimer’s disease where drug 

characterization completely disregards the potential eFects drugs may have on the substrate-

modified forms of the enzymes. This is due in part to the lack of suitable equations for modeling 

inhibitor interactions with enzymes that experience substrate modulation. 

Substrate modulation studies are generally fit to the equation proposed by Radic et al., in 1993 

(Equation 1). 
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This equation only describes changes in the enzyme’s activity based on the binding of substrate to 

the enzyme’s allosteric site. This equation does not describe the eFect of inhibitors or activators 

even though it is based on the equation for nonessential activators proposed by Webb, in 1963 

(Radic et al., 1993). While the derivation of this equation is not disclosed, both the substrate 

modulation equation (1) and the nonessential activator equation are based on the notion that the 

enzyme has a normal catalytic rate that is altered by the binding of an activator or a secondary 

substrate. This alteration is described with the constant b in equation 1, and results in a basic rate 

equation where the substrate is converted to a product based on catalysis by two enzyme forms, ES 

and ESS (Webb, 1963; equation 2) 



Eq 2 

𝑣 = 𝑘&#'([𝐸𝑆] + 𝑏𝑘&#'([𝐸𝑆𝑆] 

 

To reveal the direct eFect b has on the reaction rate of the substrate modulation equation (1) we 

can perform a simple rearrangement (equations 3 & 4) 

Eq 3 
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Here, we end up with an equation (4) that defines the binding of the substrate to the enzyme’s 

active site with the Michaelis Menten equation (Michaelis & Menten 1913; equation 5). 

Eq 5 

𝑣 =
[𝑆]

𝑘! + [𝑆]
𝑉"#$  

 

While binding to the allosteric site in the substrate modulation equation (4) is now defined with an 

unusual-looking binding curve based on the allosteric site’s binding constant (kss; equation 6). 



Eq 6 
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In this rearrangement b directly multiplies the maximum velocity (equation 4) and is defined as the 

eFiciency of hydrolysis for the allosterically bound enzyme (Radic et a., 1993). As such values for b 

are relative to the rate of the maximum velocity of the enzyme. Therefore, values less than one 

reduce activity, producing substrate inhibition, while values greater than one increase the activity, 

and are therefore used to describe substrate activation. 

As stated above the binding curve for allosteric binding is unusual in that the numerator has a term 

where the allosteric binding constant is divided by the hydrolysis eFiciency (equation 6). To 

understand what this term is we can expand the allosteric binding term (equations 7 & 8). 
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Eq 8 

𝑣 =
[𝑆]

𝑘! + [𝑆]
𝑉"#$𝑏 .

1
𝑏 2

𝑘%%
𝑘%% + [𝑆]

3 +
[𝑆]

𝑘%% + [𝑆]
/ 

 

With this expansion, we get an inverted binding curve where the allosteric binding constant is 

divided by itself and the substrate concentration (equation 9). 



Eq 9 
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Rearranging this term, we will add zero to the numerator in the form of the substrate concentration 

minus itself (equation 10). 
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We can now reduce this term to one minus the binding curve for the allosteric site (equation 11). 

Eq 11 
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This form of the equation implies that changes in enzymatic activity result from a reduction in the 

regular enzyme activity by the fraction of 1/b to any change induced by the allosteric binding, so we 

can further simplify this by reintegrating b into the equation (equation 12). 

Eq 12 
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This can now be expanded to show the eFect this term has on the Vmax (equation 13). 

Eq 13 
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This gets us to an expression that clearly shows the change induced by allosteric binding, where the 

catalytic rate produced by the enzyme is replaced by the rate of the allosterically bound enzyme 

based on substrate binding to the allosteric binding site (Walsh et al., 2007; Walsh 2012). 

Cleaning up the equation we will replace the Vmax, bVmax, and KM with VS, VSS, and KS respectively, to 

emphasize the form of the enzyme the terms relate to (equation 14). 

Eq 14 
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While this form of the equation is mathematically equivalent to the form proposed by Radic et al., 

(1993; equation 1), there are several factors that make it superior for the analysis of substrate 

modulation. The equation in this form is more intuitive, clearly revealing the eFect the allosteric 

binding curve has on the reaction rate (Figure 1). 

 

 



 

Figure 1. 

 

Fig 1. By clearly distinguishing between the binding and eFect of the secondary substrate 

interaction, the eFect of inhibitors or activators can be examined based on the specific enzymatic 

form. A) schematic of the eFect of allosteric substrate activation, B) schematic of the eFect of 

allosteric substrate inhibition. 

 

In addition, the clear representation of the substrate binding curves allows natural modification of 

these curves for the study of inhibitor or activator eFects on either form of the substrate-modulated 

enzyme (Walsh et al., 2007; Walsh 2012; Walsh 2024). By simply adding terms describing inhibition 

or activation of the enzyme form free from allosteric regulation (equations 15 & 16) in parallel with 

terms aFecting the substrate-modulated form (equations 17 & 18) an intuitive equation describing 

modifier eFects can be produced (Walsh 2012). 

Eq 15 
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𝑉" − ∆𝑉"
[𝑋]

[𝑋] + 𝐾#$
 

Eq 16 

𝐾" − ∆𝐾"
[𝑋]

[𝑋] + 𝐾#$
 

Eq 17 
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Eq 18 
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Also, this expanded form of the substrate modulation equation (14) provides a simple path for its 

derivation and the derivation of equations for multiple substrate interactions. 

 

Derivation of an iteratively expandable substrate modulation equation 

To derive the expanded substrate modulation equation, we need to define the rate equation of 

substrate hydrolysis very similarly to the rate used to generate the nonessential activator equation 

(Webb, 1963; equation 2). But in this case, we will replace the constant b and use a term for the 

change in catalytic activity instead (Dkcat1; equation 19). 

Eq 19 

𝑣 = 𝑘&#'([𝐸𝑆] − ∆𝑘&#'([𝐸𝑆𝑆] 



 

This changes the comparative scalar value of b to an absolute change in the catalytic rate that we 

will continue to expand by adding in the catalytic rate for the allosterically regulated form of the 

enzyme (kcat2). With this addition, we can now define the rate as a shift between the catalytic rates 

associated with each form of the enzyme (equation 20). 

Eq 20 

𝑣 = 𝑘&#'([𝐸𝑆] − (𝑘&#'( − 𝑘&#'))	[𝐸𝑆𝑆] 

 

At this point deriving our rate equation further could result in confusion if we tried to derive it in the 

traditional fashion. When deriving the Michaelis Menten equation or equations for inhibitor and 

activator interactions, at this point we would introduce a conservation of mass equation defining 

the states the enzyme can be found in (Equation 21; Walsh 2024). This would introduce the total 

enzyme concentration into the mix allowing us to eventually define the maximum reaction rate 

(Vmax) for our enzyme population. 

Eq 21 

[𝐸]'*'#+ = [𝐸] + [𝐸𝑆] + [𝐸𝑆𝑆] 

 

In this case, proceeding with the derivation based on the total enzyme population would be 

confusing. But if we think about this as the chemical binding equilibrium of substrate interacting 

with two separate binding sites, the derivation becomes much simpler. In this case, we can define 



substrate binding to the active site as equation (22) and we can define binding to the allosteric 

binding site as equation (23). 

Eq 22 

[𝑎𝑐𝑡𝑖𝑣𝑒	𝑠𝑖𝑡𝑒]'*'#+ = [𝐸] + [𝐸𝑆] 

Eq 23 

[𝑎𝑙𝑙𝑜𝑠𝑡𝑒𝑟𝑖𝑐	𝑠𝑖𝑡𝑒]'*'#+ = [𝐸𝑆] + [𝐸𝑆𝑆] 

 

These equations can be equated to the total enzyme population with the assumption that the 

enzyme has one active site and one allosteric site. This allows us to essentially treat them 

independently in the derivation, akin to deriving two Michaelis Menten equations at the same time. 

From here we can define our chemical equilibriums for substrate binding to the active site 

(equation 24) and substrate binding to the allosteric site (equation 25). 

Eq 24 

𝐾" =
[𝐸][𝑆]
[𝐸𝑆]  

Eq 25 

𝐾"" =
[𝐸𝑆][𝑆]
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Following this we can rearrange the chemical equilibriums to define binding to the active site in 

terms of the free enzyme concentration (equation 26) and binding to the allosteric site in terms of 

the enzyme-substrate complex (equation 27). 

Eq 26 

[𝐸] =
𝐾"[𝐸𝑆]
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Eq 27 
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We can now insert these into the equations we use for defining the binding sites (equations 22, 23) 

to produce equations (28 & 29) 

Eq 28 
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Eq 29 
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Which we can then factor (equations 30 & 31) 

Eq 30 
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Eq 31 
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We can follow this up by rearranging to define the enzyme-substrate complexes (equations 32 & 

33). 

Eq 32 

[𝐸𝑆] =
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Eq 33 
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This allows us to insert these equations into our rate equation (equation34). 

Eq 34 

𝑣 = 𝑘&#'(
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We can then multiply by the substrate concentration (equation 35). 



Eq 35 

𝑣 = 𝑘&#'(
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Now to get to our maximum reaction rates we must use the same assumption we used above, that 

the total enzyme population is equal to the total number of active sites and the total number of 

allosteric sites (equation 36). 

Eq 36 

[𝐸]'*'#+ = [𝑎𝑐𝑡𝑖𝑣𝑒	𝑠𝑖𝑡𝑒]'*'#+ = [𝑎𝑙𝑙𝑜𝑠𝑡𝑒𝑟𝑖𝑐	𝑠𝑖𝑡𝑒]'*'#+  

 

This allows us to get the maximum enzyme catalytic activity for the enzyme-substrate complex 

when we multiply the catalytic rate by the concentration of the active sites or the allosteric sites 

(equation 37). 

Eq 37 

𝑣 = 𝑉%
[𝑆]

[𝑆] + 𝐾𝑆
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If we were to expand this further, we end up with equation (14), demonstrating the ease with which 

this equation can be derived. As is demonstrated above through the parallel derivation of binding to 

the active site and allosteric site, this approach can be used to derive equations for as many 

binding sites as required experimentally. For example, the substrate inhibition and substrate 

activation associated with cholinesterases can be modeled with the substrate modulation equation 



(14) but γ-secretase requires a third binding interaction to account for substrate activation and 

inhibition aFecting the same enzyme (Walsh, 2014). 

 

Conclusions 

Here we have shown that the commonly used equation for modeling substrate modulation 

(equation 1) can be easily rearranged into a form that clearly distinguishes active site binding from 

binding to the allosteric site (equation 14). This distinction between the substrate-modulated forms 

allows modeling of the eFects of inhibitors or activators on these distinct forms. Distinguishing 

between the substrate interactions with their binding curves also simplifies the derivation of these 

equations resulting in a framework for modeling complex biological interactions. This framework for 

analysing biological interactions presents a unified standard way of comparing complex enzymatic 

mechanisms across biological systems. Such an approach has been missing from the literature 

due to the common practice of deriving new equations from scratch, using traditional assumptions, 

assumptions that are heavily flawed (Walsh 2024). Expanding on this approach should provide a 

better understanding of biological systems regulated by enzymatic activity. 
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