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ABSTRACT 

 

The wave travels in the compressible fluid by a finite propagation speed. 
In the center-of-linear-momentum reference frame, the macroscopic 
velocity is zero, thereby, the macroscopic kinetic energy is also zero, the 
potential energy density (pressure) and the mass density are equivalent, 
and the proportional coefficient is the square of the wave speed. The 
macroscopic dynamic behavior of the compressible fluid flow cannot be 
depicted in CoM frame but is preferably described in the Lab frame – a 
pseudo-inertial frame. The system’s velocity is, thus, reference frame 
dependent, however, wave propagation speed is frame independent. This 
relative velocity leads the fluid to be compressed and the mass density will 
increase, and the energy will increase, too, observed in the Lab frame. 
The increase factor is the Lorentz factor, which depends on the particle’s 
relative flow velocity (relative to the reference frame) and the wave speed. 
This system is similar to a variable-mass system. The Hamiltonian, kinetic, 
and potential energy densities are not only the function of the relative 
velocity but also the function of wave speed.  It is highlighted that for 
compressible fluids, when the flow velocity is equal to the wave speed, 
there exists a singularity, where the mass density, kinetic energy, and 
Hamiltonian increase infinitely great, while the potential energy goes to 
zero.  This behavior is quite different from incompressible flow. According 
to the definition, the wave propagation speed is infinitely great for 
incompressible flow, and the potential energy is purely a function of 
position in flow field, not a function of wave speed. Any change will 
instantaneously propagate through the whole field without any time lag. 
The mathematical description cannot depict and thus disregards the wave 
behavior, just like the Newtonian mechanics. This is also the reason why 
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the particles are instantaneously entangled in quantum mechanics, no 
matter how far they are in the field. At last, the dynamic equation is given 
out in Euler coordinates. It shows that the equation is not defined at the 
transonic point of 𝛽 = 𝑣 𝑐⁄ = 1 , where there is a singularity point.  

 

 

1. Introduction 

 

As an approximation, the incompressible fluid model is widely applied 
under the low flow velocity condition, or exactly to say, when the flow 
velocity is far smaller than the wave propagation speed, by using the 
Newtonian mechanics, in which the change of the mass density is ignored, 
due to its simplification. However, the compressibility of a fluid is the 
intrinsic property, meaning it's a fundamental characteristic of the fluid 
itself. The compressibility of a fluid refers to its tendency to decrease in 
volume under an increase in pressure. Any fluid is compressible, to some 
degree.  Even though some fluids, like liquids, are less compressible 
compared to gases, they still undergo some change in volume when 
subjected to pressure changes. Compressible fluid flow deals with the 
movement of fluids (liquids or gases) where changes in pressure and 
density significantly affect the flow behavior. This subject plays a crucial 
role in various fields of science and engineering, including aerospace, 
meteorology, and chemical engineering, such as the design of aircraft, 
rockets, gas turbines, and high-speed vehicles, and accurately describing 
the hurricane, etc. In compressible fluid field, changes in pressure and 
density propagate as waves, with a finite wave propagation speed 
determining how fast these changes occur. The speed of the wave is thus 
a critical parameter in compressible flow, this is essential difference from 
the incompressible flow model, where the wave propagation speed is 
infinitely great. Under this circumstance, the flow is always in the subsonic 
regime. We cannot use the incompressible fluid model to describe the 
transonic, supersonic, and shock wave dynamics. Thus, correctly and 
exactly describing compressible flow has great significance to help 
engineers and researchers understand complex flow phenomena, 
optimize designs, and predict performance under different operating 
conditions. 
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2. Observing in Center-of-Linear-Momentum Frame  ̶ “ Relative Rest 
Frame” 

 

When discussing movements of macroscopic bodies, usually, the kinetic 
energy referred to is that of the macroscopic movement only. The 
velocities, and thus the kinetic energies of the system are frame-
dependent (relative).  

 

2.1 In Center-of-Linear-Momentum Coordinate (CoM frame) 

 

At first, we choose the macroscopic body’s center-of-linear-momentum as 
a reference frame (CoM frame). In this coordinate frame, the total linear 
momentum of a system is zero. The net momentum of all the particles in 
the system cancels out, meaning that the system as a whole is not moving 
relative this coordinate frame. In this frame, no macroscopic motion can 
occur, as if the time were “frozen”. In the language of the relative theory, 
there is no relative motion for the observer – it is also called a co-moving 
frame in the special relativity.  

 

Initially, assuming a closed massive particle system, any two particles are 
at an infinite distance from each other. So, the interaction energies (forces) 
between any two particles are negligible. We define this initial system as 
a no-interacting particle system or as an infinitely dilute system, and thus 
no potential energy in this system.  

 

In CoM frame, exerting an external force on this system, through a 
reversible adiabatic compression process, see Fig 1. (Isentropic: no 
entropy creation or destruction during the process, no entropy flows into 
or out of the system), the system is compressed from the infinitely dilute 
state to a box with a finite volume of 𝑉!. The total mass of particles is 𝑚!, 
it is invariant, thus mass density of the box is 𝜌! = 𝑚! 𝑉!⁄ , and since the 
box is stationary in CoM frame, the net momentum flux across the 
boundary is zero. 
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According to the first law of thermodynamics and the definition of a 
reversible adiabatic compression process. 

 

𝑑𝑈 = 𝛿𝑊, (1) 
 

where dU is the change in the internal energy of the system and δW is 
work done on the system by external forces. All the work (δW) done by the 
surroundings goes into the system, and thus, the system’s internal energy 
of U increases, since no heat is being supplied from (or lost to) the 
surroundings. An increase in internal energy can be represented by the 
pressure (volumetric potential energy density  ̶  interaction energy between 
particles) increase, see Fig.2, accordingly, 

 

𝑑𝑈 = 𝑑(𝑝𝑉). (2) 
 

With the assumption that initially the interaction energy (pressure) 
between particles is negligible because particles are at an infinite distance 
from each other, thus the initial potential energy of the system can be 
assumed to be zero, without loss of generality. Integrating Eq. (2) from an 
infinitely dilute state (the initial volume of the system is assumed to be 
infinite great due to the infinite distance of the particles) to the present 
configuration with a finite volume of 𝑉!, we have, 

 

𝑈! = 𝑝!𝑉!				𝑜𝑟				𝑝! = 𝑈! 𝑉!⁄  (3) 
 

This is the stored potential energy (and volumetric energy density) inside 
the system, supplied by some external forces.  Since no macroscopic 
relative motion to the observer in CoM frame, in fluid dynamics, this 
pressure is also called stagnation pressure: 𝑝! = 𝑝"#$%.  
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(a) 

 
(b) 

 
Fig. 1 (a) stationary compressible fluid particle box in CoM frame, the 
macroscopic linear momentum is zero relative to CoM frame. The control 
volume experiences an infinitesimal change of the volume (dV).  The 
time is not considered as a variable. (b) illustration of the reversible 
adiabatic compression of the particle system from infinite distance to the 
present configuration of 𝑉! by external forces. 

 

 

A macroscopic body that is stationary (i. e. corresponding to the body's 
CoM frame) may have various kinds of internal energy at the molecular or 
atomic level, which may be regarded as kinetic energy from a microscopic 
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view, due to molecular translation, rotation, and vibration, etc.. These all 
contribute to the body's total internal energy. Since this compression is 
assumed to be reversible adiabatic, from a macroscopic view, the internal 
energy density is denoted as a pressure value (the entropy change of the 
system remains zero). Because of no macroscopic motion, and thereby 
no kinetic energy, relative to the observer in CoM frame, this is the minimal 
energy the system possesses.  

 

The current box with the volume of 𝑉! is assumed to be compressible and 
the volumetric deformation (strain) is assumed still to be within the elastic 
limit. If we exert an infinitesimal pressure (𝑑𝑝) on the box, recalling the 
definition of elastic bulk modulus: the ratio of the infinitesimal pressure 
increases to the resulting relative decrease of the volume, accordingly, we 
have 

 

𝐵! = −
𝑑𝑝

8𝑑𝑉𝑉!
9
. (4) 

 

In an elastic fluid, the speed of sound (pressure wave propagation speed) 
depends on the bulk modulus and mass density: 

 

 

Substituting Eq. (5) into Eq. (4), we can get: 
 

−
𝑑𝑝

8𝑑𝑉𝑉!
9
= 𝐵! = 𝜌!𝑐&. (6) 

 

Rearranging it and recalling the mass density definition: 

 

𝑐& =
𝐵!
𝜌!
. (5) 
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𝑑𝑝 = −𝜌!𝑐& :
𝑑𝑉
𝑉!
; = −

𝑚!𝑐&

𝑉!&
𝑑𝑉. (7) 

 

Integrating from the infinitely dilute state to the present configuration 
state	(𝑝!, 𝑉!): 

 

𝑝! =
𝑚!𝑐&

𝑉!
= 𝜌!𝑐&				𝑜𝑟				𝜌! =

𝑝!
𝑐&
. (8) 

 

Comparison Eq. (3) with Eq. (8), we have 

 

𝑈! = 𝑝!𝑉! = 𝑚!𝑐&. (9) 

 

This is the mass-energy equivalence principle in CoM frame. In other 
words, the mass density (𝜌!) and volumetric potential energy density (𝑝!) 
are equivalent, the proportional coefficient is the square of the wave speed, 
see Eq. (8). Since the net mass and energy across the boundary of the 
system is zero, it can be regarded as a closed reversible adiabatic system, 
the total internal energy is, thus, the Hamiltonian in the CoM frame: 

 

𝐻! = 𝑈! = 𝑝!𝑉! = 𝑚!𝑐&. (10) 

 

Accordingly, the volumetric Hamiltonian density in the CoM frame thereby 
reads: 

 

ℋ! = 𝑝! = 𝜌!𝑐&. (11) 
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Fig. 2.  An infinitesimal state change from A to B. Partial system is 
reversible adiabatically (isentropic) compressed from point A to B.  

 

 

2.2 Wave Momentum and Energy Travelling in Field by a Finite 
Speed 

 

Any disturbance (wave) will propagate in the field along the characteristic 
line with a speed of c, as shown in Fig.3. Waves, like any moving object, 
carry and transport momentum and energy as they propagate in field. 

If another observer is also located in CoM coordinate system (having no 
relative motion to the disturbance source), though the observer cannot 
notice a macroscopic kinetic energy, but he will feel the momentum and 
energy, carried by the wave through the medium, with some time lag, due 
to the finite wave speed. 
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Fig.3. volumetric potential energy density, p0=ρ0c2, is propagating in 
field in the form of wave by a finite wave speed of c along the wave 

prorogation characteristic line,  

 

Wave momentum may be defined as the following form, 

 

�⃗�'! =
ℋ!

𝑐
=
𝜌!𝑐&

𝑐
= 𝜌!𝑐. (12) 

 

The wave momentum flux (wave propagation energy) is 

 

ℋ'! = �⃗�(! ∙ 𝑐 = 𝜌!𝑐& = 𝑝!. (13) 

 

Accordingly, mass or mass density is a scalar parameter, it is a carrier of 
wave momentum and energy in CoM frame, if there exists a wave in space.  
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Mass density can also be defined as the ratio of wave energy density to 
the square of wave speed: 

 

𝜌! =
ℋ'!

𝑐&
. (14) 

 

As expressed by Eq. (8), the volumetric potential energy density (pressure) 
is a function of position in the compressible fluid field, and disturbance 
propagation speed (pressure wave): 

 

𝑝! = 𝑝(𝑟, 𝑐, 𝑡). (15) 
 

The interactions (disturbances) are propagating through the compressible 
fluid field by a finite speed of c: there is a time lag between when the state 
change of the fluid particle in position a and when other fluid particle in 
position b experience this disturbance. 

 

2.3 Different from Incompressible Fluid in CoM Coordinate 

 

There is a fundamental difference between the compressible and 
incompressible fluids. For incompressible fluid, according to definition, the 
compressibility (𝛽) of a fluid is zero: 

 

𝛽 = −
1
𝑉!
𝜕𝑉
𝜕𝑝

= 0. (16) 

 This implies: 

 

𝜕𝑉
𝜕𝑝

= 0, (17) 
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and therefore: 

 

𝑑𝑉 = 0. (18) 

 

Under this condition, Eq. (4) and (5) are no longer valid (in fact the bulk 
modulus is infinitely great, 𝐵! = ∞ , according to the definition). Any 
disturbance will instantaneously propagate the whole field by an infinitely 
great wave propagation speed, namely, 𝑐 ≈ ∞,  without any time lag, in 
spite of how big the field is. Under this circumstance, the volumetric 
potential energy density in the fluid field depends merely on the position 
of 𝑟. 

 

𝑝! = 𝑝(𝑟, 𝑡). (19) 

 

as is used in the classical Newtonian mechanics [1].  

 

For incompressible fluids, we cannot write out an equation to describe the 
wave dynamic behavior of the particles, since the infinitely great bulk 
modulus and wave propagation speed, thus, the disturbed field cannot be 
described by any wave propagation function.  In other word, if we persist 
in using wave function to describe this field, any particle will feel the state 
change of other particles instantaneously, no matter how far apart they are, 
provided they are in the same field. Just like the quantum entanglement 
behavior, where the potential energy in the Schrödinger equation is merely 
a function of position, which implies that the Schrödinger equation 
assumes the wave propagation speed is infinitely great. That is the so-
called “spooky action at a distance” by Einstein. 

 

3.Observing in an Inertial Reference Frame – Lab Frame 
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In CoM coordinate, the particle system is stationary to an observer, who is 
moving with the same velocity as the particle system, and therefore, the 
system has zero momentum and kinetic energy in this frame, though he 
can feel the momentum and energy, carried by the wave, as shown in Fig. 
3 (a). The CoM coordinate is simpler, but not applicable in practice: It is 
not convenient to measure the physical properties, co-coming with the fluid 
flow, furthermore, the CoM coordinate is even not an inertial reference 
frame, if we describe the particle motions in this coordinate, we may ignore 
some important dynamic behavior of the particles, even give out incorrect 
interpretations.  

 

3.1 Relative Motion Causing Length Contraction 

 

For describing the motion, we should choose a suitable inertial frame of 
reference, saying the Lab. frame as our reference frame, as we generally 
use every day, (strictly speaking, there is no universal inertial frame, but 
as an approximation, we can assume the Lab frame as an inertial frame). 

 

By contrast to the CoM frame, the particle may have a velocity relative to 
the Lab frame and thus processes kinetic energy, when the particle is 
passing an observer, who is located in the Lab reference frame, as shown 
in Fig. 4 (b). 

 

The velocity, and thereby the kinetic energy of a particle is frame-
dependent (relative). On the other hand, the propagation speed of a 
pressure wave is a property of the medium through which the sound 
(pressure wave) travels. It is, however, frame independent. 

 

As illustration and simplification, the Lab frame axis is so orientated that 
the flow is one-dimensional, saying along the x-axis, see Fig. 4 (b).  We 
can consider two scenarios. The first scenario is the macroscopic flow 
velocity is zero, the particle has only oscillation motion around its 
equilibrium position, this is the CoM coordinate. As illustrated in Fig. 4 (a), 
after a time interval the wave propagates a distance in medium, saying 
from point O to point A: 𝑥! = 𝑐∆𝑡 (observer and wave source have no 
relative motion and observer is located at point A), here ∆𝑡  is the 
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measured time interval in Lab frame. The second scenario is the 
macroscopic flow velocity is not zero, but rather has a velocity of  𝑣)*+, 
relative to the point O, after the same time interval, the particle moved 
towards the right, having a distance to O of ∆𝑥)*+ = �⃗�)*+∆𝑡, however, the 
wave produced by the moving particle also travels to point A through the 
medium, ∆𝑥,*- = 𝑐∆𝑡,*-, here ∆𝑡,*- is the measured time interval if the 
observer is co-moving with the particle, and ∆𝑥,*- ≤ 𝑥! . The wave 
traveling length appear foreshortened in the direction of motion, just 
because the particle has a relative velocity to the observer in the Lab frame, 
as shown in Fig 4 (b). This is the so-called length contraction effect in 
special relativity. 

 

For an observer, who is located at point A in space, the frequencies and 
periods are indeed different for the two scenarios, but the wave velocity is 
the same, they share the same wave propagation characteristic line, in 
spite of whether particle is moving or not. 

 

𝜆𝑓 = 𝜆,*-𝑓,*- = 𝑐. (20) 
 

where 𝜆  and 𝑓  are the wave length and frequency observed by the 
observer in CoM frame,  𝜆,*- and  𝑓,*- are wave length and frequency 
produced by the moving particle. 

 

The Observer – who is located at point A, will feel the same wave crest 
and trough “passing through” him, regardless of whether the wave source 
moving or not. Along the wave characteristic line: 

 

⎩
⎨

⎧ 	
𝑥!
𝑡!
=
𝜆
𝑇
= 𝑐	

	
𝑥,*-
𝑡,*-

=
𝜆,*-
𝑇,*-

= 𝑐
. (21) 

 

where T and 𝑇,*-  are wave periods produced by CoM and moving 
particles, respectively, see Fig. 4(a), and Fig. 4(b). 
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Fig. 4. The wave traveling length appear foreshortened in the direction 
of motion, if the particle has a relative velocity to the Lab frame. 
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This relation has a fundamental meaning: the position and time are not 
two independent variables, both variables are just constrained by Eq. (21), 
only one variable can be chosen as an independent variable, and another 
one is expressed by a function of the first one, namely through the wave 
speed of Eq. (21), either in CoM frame or in the Lab frame. That means 
the wave speed is a key parameter for compressible flow.  Furthermore, 
the position and time pairs in different frames are also related to each other.   

 

3.2 Lorentz Length Contraction and Density Increase Effect 

 

 
 

Fig. 5. Lorentz Transformation for two scenarios 
 

Either for an observer in Lab frame or from the view of a moving particle, 
the wave speed is invariant. The Lorentz transformation guarantees the 
wave speed to be invariant in different frames. 
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Fig. 5 shows the Lorentz transformation. (O-x-ct) is the Lab reference 
frame, and (O-xmov-ctmov) is the moving particle reference frame. The wave 
travels from point O to point A along the characteristic line in some time 
interval for two scenarios. The Lab observer and moving particle share the 
same characteristic line. 

 

From the view of the Lab frame, the particle flows into the positive direction 
of x, introducing a dimensionless factor of 

 

𝛽 = 𝑀 =
𝑣
𝑐
. (22) 

 

where v is the particle moving velocity, relative to Lab frame, c is the wave 
speed. In fluid dynamics, we also call this ratio as Mach number.  

 

The Lorentz transformation from moving particle frame to Lab frame reads: 

 

O𝑐𝑡𝑥 P = Q 𝛾 𝛾𝛽
𝛾𝛽 𝛾 S O

𝑐𝑡,
𝑥,

P. (23) 

 

 where,  𝛾 is the Lorentz factor, 

 

𝛾 =
1

T1 − 𝛽&
. (24) 

 

𝑥, and 𝑡, are measured distance and time interval in moving particle 
frame. t and x are measured distance and time interval in Lab frame. 

 

From Eq. (23) we can get the spatial distance transformation in moving 
direction of x, from moving particle frame to Lab frame,  

 

𝑥 = (𝛾𝛽)(𝑐𝑡,) + 𝛾𝑥,. (25) 
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Then a length measured in Lab frame is 

 

𝑥! = (𝑥& − 𝑥.) = 𝛾V𝑥,,& − 𝑥,,&W + 𝛾𝑣V𝑡,,& − 𝑡,,.W. (26) 
 

Since the two measurements made simultaneously in moving particle 
frame, 𝑡,,& = 𝑡,,., thus: 

 

𝑥! = 𝛾𝑥,*-				𝑜𝑟				𝑥,*- =
𝑥!
𝛾
= 𝛼𝑥! (27) 

 

It seems the length is contracted in the direction of motion. The contraction 
factor is the reciprocal of Lorentz factor:  𝛼 = 1 𝛾⁄ . The particle mass is 
invariant, recalling the mass density definition, 

 

𝜌,*- =
𝑚!

𝑥,*-
=
𝑚!
𝑥!
𝛾
= 𝛾 :

𝑚!

𝑥!
; = 𝛾𝜌!	. (28) 

 

So, in the Lab frame, because of the relative motion of the particle, the 
length is contracted, which leads the fluid to be compressed, as a result, 
the mass density increase, and the length compression factor is the 
reciprocal of the Lorentz factor, therefore, the density increase factor is the 
Lorentz factor, 𝛾 . This compression and density increase effect is 
illustrated in Fig. 4 (b) and (c). 

 

3.3 Hamiltonian and Lagrangian Density in Lab Frame 

 

Observed in the Lab frame, the particle has a velocity, thus it possesses 
momentum, the momentum along x-direction for compressible flow is 

 

�⃗� = 𝜌,*-�⃗� = (𝛾𝜌!)�⃗� = (𝛾𝛽)(𝜌!𝑐). (29) 
 

Compared with Eq. (12), it seems the wave momentum increase a factor 
of (𝛾𝛽). 



18 
 

 

 
 

Fig. 6. External force acts on system, projected onto momentum-time 
and energy-spatial coordinates.  

 

 

If an external force acts on the system, the linear momentum will change. 
By definition, we have the following equation in inertial frame – the Lab 
frame, 
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�⃗�12#134$5 =
𝑑�⃗�
𝑑𝑡

=
𝑑
𝑑𝑡
(𝛾𝜌!�⃗�). (30) 

 

where �⃗�12#134$5 represents volumetric external force density and  (𝛾𝜌!�⃗�) is 
the volumetric linear momentum density. 

 

This external force density obeys other useful identities (surroundings do 
work on the system, thereby the energy contents within the system will 
increase), such that 

 

�⃗�12#134$5 =
𝑑ℋ
𝑑𝑥

. (31) 

 

where ℋ is the total volumetric energy density inside the system (including 
kinetic and potential energy density, we call it as Hamiltonian density). 

 

Comparison Eq. (30) with (31), we have the following relation: 

 

𝑑𝑝
𝑑𝑡

=
𝑑ℋ
𝑑𝑥

= �⃗�12#134$5 . (32) 

 

Thus, the infinitesimal energy change of the system is 

 

𝑑ℋ =
𝑑𝑝
𝑑𝑡
𝑑𝑥. (33) 

 

Substituting Eq. (29) into Eq. (33), using the chain rule, we have 

 

𝑑ℋ = (𝛾𝜌!𝑣)𝑑𝑣 + 𝑣&𝑑(𝛾𝜌!). (34) 
 

If the fluid is incompressible ( 𝑐 = ∞, 𝛽 = 0	𝑎𝑛𝑑	𝛾 = 1), the first term in the 
LHS is just the infinitesimal change of the kinetic energy in Newtonian 



20 
 

mechanics, relative to some inertial coordinate system, for a system 
whose mass density, 𝜌!	, keeps constant during the motion. 

 

𝑑𝑇! = (𝜌!𝑣)𝑑𝑣			𝑎𝑛𝑑		𝑇! =
1
2
(𝜌!𝑣&) (35) 

 

The second term of the LHS of Eq. (34) represents the increase of the 
volumetric energy density, due to the mass density increase effect.  This 
effect (mass and energy gaining) seems to transfer mass and energy into 
the system due to the relative motion, similar to a variable-mass system.   

 

Using the product rule, the second term of Eq. (34) can be re-written as: 

 

𝑣&𝑑(𝛾𝜌!) = 𝑑(𝛾𝜌!𝑣&) − 2(𝛾𝜌!𝑣)𝑑𝑣. (36) 
 

Thus, Eq. (34) can be expressed as:  

 

𝑑ℋ = (𝛾𝜌!𝑣)𝑑𝑣 + [𝑑(𝛾𝜌!𝑣&) − 2(𝛾𝜌!𝑣)𝑑𝑣]. (37) 
 

Integrating along the velocity direction (integrating along the velocity 
direction implies both time coordinate and position coordinate change 
simultaneously, see Fig. 6 (a)), with the initial value of ℋ = 𝜌!𝑐& at v=0, 
we have 

 

ℋ = −𝛼𝜌!𝑐& + [𝛾𝜌!𝑣& + 2𝛼𝜌!𝑐&] = 𝛼𝜌!𝑐& + 𝛾𝜌!𝑣&. (38) 
 

It can be seen that the “variable-mass” term can be split into two parts: 
(𝛾𝜌!𝑣&)  and (2𝛼𝜌!𝑐&). The Hamiltonian can be written explicitly as: 

 

ℋ = 𝜌!𝑐& 8T1 − 𝛽&9 + 𝜌!𝑣& _
1

T1 − 𝛽&
`. (39) 
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The first term of LHS can be interpreted as “potential energy density”,  

 

𝑉(𝑣, 𝑐, 𝑡) = 𝛼𝜌!𝑐& = 𝛼𝑝!, (40) 
 

and the second term as “kinetic energy density”,  

 

𝑇(𝑣, 𝑐, 𝑡) = 𝛾𝜌!𝑣& = (𝛾𝛽𝜌!)𝑐𝑣 = (𝛾𝛽&)(𝜌!𝑐&) = (𝛾𝛽&)𝑝!. (41) 
 

Compared with Eq. (13), it seems the wave energy increase a factor of 
(𝛾𝛽&). 

 

Thus, Hamiltonian density can be written more concisely as: 

 

ℋ(𝑣, 𝑐, 𝑡) = 𝑉 + 𝑇. (42) 
 

Both “potential” and “kinetic” energy are functions of flow velocity and 
wave propagation speed, thus, strictly speaking, both terms are 
inseparable.  The “kinetic” energy will increase if the flow velocity 
increases, while the “potential” will decrease if the flow velocity increases. 
Furthermore, because of the finite wave propagation speed inside the 
factor 𝛾 and 𝛼, any change of the “potential” and “kinetic” energy cannot 
be felt instantaneously by other particles in the field, there always have a 
time lag, more or less. This is different from classical Newtonian 
mechanics. 

 

It can be seen, that when velocity approaches zero, the “kinetic” energy 
becomes zero, while the “potential” energy will increase to Eq. (8), namely 
the volumetric energy density, 𝑝! = 𝜌!𝑐&,  in CoM coordinate. It is nothing 
else, just the stagnation pressure in CoM coordinate, in fluid statics, it is 
also called the hydrostatic pressure.  

 

On the other hand, when the velocity approaches the wave speed, the 
“potential” energy decreases to zero, while the “kinetic” energy becomes 
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to infinitely great since the volume is compressed to an infinitely small 
layer so that the mass density grows infinitely great, see Fig. 7. 

 

 
 
Fig. 7 Generalized momentum, kinetic and potential energy density as a 
function of relative velocity in subsonic flow regime. Sonic condition (𝛽 =
1  ) is not defined, where Lorentz factor  𝛾 → ∞. 

 

 

If we define Eq. (29) as the generalized momentum, Hamiltonian can be 
expressed by the generalized momentum as 

 

ℋ(𝑝, 𝑐, 𝑡) =
(𝛾𝜌!𝑣)&

𝛾𝜌!
+ 𝛼𝜌!𝑐& =

𝑝&

𝛾𝜌!
+ :

𝑐
𝛾&𝛽

; �⃗�. (43) 

 

From the relationship between Lagrangian and Hamiltonian: 
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ℋ = 𝑝 ∙ �⃗� − ℒ				𝑜𝑟		ℒ = �⃗� ∙ 𝑣 −ℋ. (44) 
 

and substituting Eq. (29) into Eq. (44), using the result of Eq. (38), we can 
get: 

 

ℒ = −𝑉 = −𝛼𝜌!𝑐& = −
1
𝛾𝛽&

(𝜌!𝑣&). (45) 

 

When velocity approaches to zero, the Lagrangian density will approach 
to the negative potential energy density in CoM frame: where the kinetic 
energy approaches to zero [2]. 

 

ℒ = −𝜌!𝑐& = −𝑝!. (46) 
 

It can be proved, that the derivative of Lagrangian density with respect to 
velocity gives out the generalized momentum density of Eq. (29). 

 

�⃗� =
𝜕ℒ
𝜕�⃗�

= (𝛾𝜌!�⃗�). (47) 

 

With the definition of Eq. (22), 𝛽 = 𝑣 𝑐⁄ , we can re-write Eq. (38) as 

 

ℋ = 𝛾𝜌!𝑣& + 𝛼𝜌!𝑐& = 𝛾𝜌!𝑐& = 𝛾𝑝!. (48) 
 

where we use the following identity: 

 

𝛾𝛽& + 𝛼 = 𝛾𝛽& +
1
𝛾
= 𝛾. (49) 

 

The total energy density, observed in the Lab frame (kinetic plus potential) 
can also be expressed as another pure potential energy density, as if the 
observer is just co-moving with the particle (so that no kinetic energy, only 
potential energy), but multiplying a factor of 𝛾 ≥ 1, since the compression 
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effect of the mass density. That means if an observer is just co-moving 
with the particle, he will observe another stagnation pressure, it will change 
to (𝛾𝑝!). As illustrated in Fig. 8. 

 

 
 
Fig. 8 An observer is just co-moving with the particle in the Lab frame. 
The kinetic energy is zero in view of the particle, while the stagnation 
pressure will increase. 
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If the kinetic energy, potential energy and Hamiltonian are normalized by 
the potential energy in CoM frame of  𝑝! = 𝜌!𝑐&, they are reads: 

 

⎩
⎪⎪
⎨

⎪⎪
⎧

𝑇
𝜌!𝑐&

= 𝛾𝛽&

𝑉
𝜌!𝑐&

= 𝛼

ℋ
𝜌!𝑐&

= 𝛾

. (50) 

 

 

3.4 Supersonic Flow Regime 

 

The Lorentz factor is not defined by 𝑣 = 𝑐.	  However, when the flow 
velocity is bigger than the wave propagation speed, the flow goes into the 
supersonic flow regime, and both Lorentz factor, 𝛾, and expansion factor, 
𝛼, become thereby imaginary numbers. Under these circumstances, the 
Hamiltonian of Eq. (48) can be expressed as: 

 
ℋ
𝜌!𝑐&

=
1

𝑖VT𝛽& − 1W
= −𝛿𝑖. (51) 

 

and the potential and kinetic energy of Eq. (40) and (41) can be now 
expressed as: 

 

 

𝑇
𝜌!𝑐&

= −𝛿𝛽&𝑖. (53) 

 

where  

𝑉
𝜌!𝑐&

= 𝜋𝑖. (52) 
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𝛿 =
1

T𝛽& − 1
	𝑎𝑛𝑑			𝜋 = T𝛽& − 1	. (54) 

 

 

 

 

 

 

Fig. 9 illustrates the normalized Hamiltonian as a function of relative 
velocity in subsonic and supersonic flow regimes. The normalized kinetic 
and potential energy are given in Fig. 10.  

 

 

 

 

 

 
 
Fig. 9 normalized Hamiltonian as a function of relative velocity in 
subsonic and supersonic flow regimes 
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Fig. 10. normalized kinetic and potential energy as a function of relative 
velocity in subsonic and supersonic flow regimes 

 

 

3.5 Comparison with Incompressible Flow 

 

Different from the compressible fluid, where both “kinetic” and “potential” 
energy density are not only a function of velocity but also a function of 
wave propagation speed, see Eq. (38), (40) and (41). 

 

For incompressible flow, the density is not a function of the velocity and 
wave speed, it is just a function of spatial position in the flow field, (in fact, 
for the incompressible fluid model, the wave propagation speed is infinitely 
greater, thereby Lorentz factor 𝛾 = 1, thus, no relative compression effect 
for incompressible fluid). 
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𝜌 = 𝜌!(𝑟, 𝑡). (55) 
 

Thus, the kinetic energy density degenerates to the classical expression, 
as is expressed by Eq. (35), it has nothing to do with wave propagation 
speed, just like the classical definition in Newtonian mechanics.  

 

𝑇 =
1
2
(𝜌!𝑣&) =

𝑝&

2𝜌!
 (56) 

 

where the momentum reads: 

 

�⃗� = 𝜌!�⃗� (57) 
 

Though the potential energy (pressure) varies from point to point in the 
field, the interaction energies (forces) between particles have no time lag, 
it depends neither on particle velocity (thereby the momentum), nor wave 
propagation velocity, 

 

Thus, both kinetic energy and potential energy density in the fluid field 
depend merely on the position of 𝑟.   Under this circumstance, the 
Lagrangian and Hamiltonian density for incompressible fluid read: 

 

ℒ(𝑟, �⃗�, 𝑡) =
1
2
(𝜌!�⃗�&) − 𝑝(𝑟, 𝑡) (58) 

 

ℋ(𝑟, 𝑝, 𝑡) = �⃗� ∙
𝜕ℒ
𝜕�⃗�

− ℒ =
𝑝&

2𝜌!
+ 𝑝(𝑟, 𝑡) (59) 
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4. Euler Coordinates 

 

In fluid dynamics, in contrast to the “material” Lagrangian point of view, we 
usually introduce a coordinate frame of a stationary observer who is 
looking at the particle motion from the outside  ̶  Eulerian coordinate. In the 
Eulerian description the coordinates are time t and a spatial vector, where 
the spatial vector does not label the position of a “material” particle, but 
rather that of a geometrical point in spatial space, it does change with time.  

 

In fact, for the field, each geometrical point in spatial space can serve as 
a “stationary observer”, namely an inertial frame, since it has no relative 
motion to Lab frame. In other words, the total geometrical point set in 
spatial space constitutes a grid of inertial frames. 

 

Accordingly, the physical quantities in the Eulerian specification are 
described by fields on space-time. Such a fundamental field is the velocity 
field, it is defined such that it gives the value of the Lagrangian velocity of 
a material particle just passing through a spatial position point (inertial 
frame) at time t.  Another important field is the Hamiltonian density field, 
which is variant from point to point in space.  

 

In classical mechanics, the Hamiltonian equation of motion for the 
generalized momenta reads (the rate of change of momentum is equal to 
the negative gradient of energy for a closed system): 

 

�̇�6 = −
𝜕ℋ
𝜕𝑞6

. (60) 

 

where  𝑝6  and 𝑞6  are the generalized momenta and the generalized 
coordinates. For the sake of simplification and illustration, we consider 
here only one degree of freedom (DoF). 

 

Substituting the generalized momenta of Eq. (29) into Eq. (60), we have 
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𝑑𝑝
𝑑𝑡

+
𝜕ℋ
𝜕𝑥

= 0. (61) 

 

The material derivative in Eulerian description of a continuum field reads 

 

𝑑�⃗�
𝑑𝑡

= :
𝜕
𝜕𝑡
+ 𝑣 ∙

𝜕
𝜕𝑥
; (𝛾𝜌!𝑣). (62) 

 

The first term of the LHS is the partial derivative of momentum density with 
respect to time (along x=constant line) in the field, and the second term is 
the partial derivative of momentum with respect to spatial coordinate of x 
(along t=constant line), and dot products the particle velocity vector, see 
Fig. 6. Since particle in an infinitesimal time interval of 𝜕𝑡  travels an 
infinitesimal distance of 𝜕𝑥 in the field relative to the Eulerian coordinate.  

 

In field, the derivative of Hamiltonian with respect to position can be written 
as: 

 

𝜕ℋ
𝜕𝑥

=
𝜕ℋ
𝜕𝑣

∙
𝜕𝑣
𝜕𝑥
. (63) 

 

As argued by the derivation of Eq. (38), the derivative of Hamiltonian along 
the velocity direction implies both time coordinate and position coordinate 
change simultaneously in the field. 

 

As an approximation, we assume the speed of wave propagation speed is 
locally constant in the vicinity of a point in the field. 

 

Substituting the Eq. (38) into Eq. (63), with a bit algebra manipulation, we 
can get 
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𝜕ℋ
𝜕𝑥

= _𝜌!𝛾7
𝑣7

𝑐&
+ 𝛾𝜌!𝑣`

𝜕𝑣
𝜕𝑥
. (64) 

 

Substituting Eq. (62) and (64) into Eq. (61), we have 

 

:
𝜕
𝜕𝑡
+ 𝑣 ∙

𝜕
𝜕𝑥
; (𝛾𝜌!𝑣) + _𝜌!𝛾7

𝑣7

𝑐&
+ 𝛾𝜌!𝑣`

𝜕𝑣
𝜕𝑥

= 0. (65) 

 

Taking out a common factor of (𝛾𝜌!𝑣) and rewrite the last term: 

 

:
𝜕
𝜕𝑡
+ 𝑣 ∙

𝜕
𝜕𝑥
; (𝛾𝜌!𝑣) + (𝛾𝜌!𝑣)(𝛾&𝛽& + 1)

𝜕𝑣
𝜕𝑥

= 0. (66) 

 

Recalling the compressed density definition of Eq. (28), Eq. (66) can be 
written as: 

 

:
𝜕
𝜕𝑡
+ 𝑣 ∙

𝜕
𝜕𝑥
; (𝜌𝑣) + Q(𝛾&𝛽& + 1)

𝜕𝑣
𝜕𝑥
S (𝜌𝑣) = 0. (67) 

 

It can also be re-written as: 

 

:
𝜕
𝜕𝑡
+ 𝑣 ∙

𝜕
𝜕𝑥
; �⃗� + Q(𝛾&𝛽& + 1)

𝜕𝑣
𝜕𝑥
S �⃗� = 0. (68) 

 

Obviously, the solution for this equation is just the relative momentum of 
the Eq. (29). 

 

It should be noticed again; that this equation is not defined at 𝛽 = 𝑣 𝑐⁄ = 1, 
where the Lorentz factor is infinitely great. 
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5. Summary 

 

Quite different from the incompressible fluid flow, where the wave 
propagation speed is infinitely great or not defined. This paper focuses on 
the Hamiltonian and dynamics of the compressible fluid flow with a finite 
wave propagation speed. It explores the concept and implications of 
choosing the center-of-linear-momentum coordinate frame. The initial 
system is assumed to be an infinitely dilute no-interacting particle system 
and thus no potential energy in this system. It reveals the equivalence and 
relationship between potential energy, pressure, and volumetric energy 
density (Hamiltonian) in the CoM frame. The equivalence between mass 
density and volumetric potential energy density in the CoM frame is 
emphasized, with the Hamiltonian representing the total internal energy in 
a closed reversible adiabatic system.  The flow dynamics of the 
compressible fluid are generally described in the Lab frame – a pseudo 
inertial frame. The system has a motion relative to the Lab frame. This 
relative motion causes the length contraction and thereby density increase 
in the context of motion description and frame selection because the wave 
propagation speed is frame-independent. The mass density increase 
factor is the Lorentz factor. The Hamiltonian density was given out in the 
Lab frame.  Furthermore, it discusses the Hamiltonian density concisely 
represented as the sum of potential and kinetic energy, both dependent 
on flow velocity and wave propagation speed, with a focus on the 
inseparability of these energy terms due to finite wave propagation speed. 
In the supersonic flow regime, both the Lorentz factor and expansion factor 
become imaginary numbers, leading to unique expressions for the 
Hamiltonian, kinetic energy, and potential energy. In the comparison with 
the incompressible flow, it is highlighted that for incompressible fluids, the 
compressibility is zero, leading to instantaneous propagation of 
disturbances at an infinitely great wave speed in the whole field without 
any time lag. This results in the potential energy density in the fluid field 
depending solely on position, with no wave function to describe dynamic 
behavior. At last, the conservation of momentum in the Euler coordinate 
system is derived. It is highlighted that for compressible fluids, there exists 
a singularity, namely when the flow velocity equals the wave speed, where 
the mass and energy densities are compressed to an infinitely great value.   
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