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This paper identifies the conditions and mechanisms that give rise to stochastic bubbles that are

expected to collapse. To illustrate the essence of the emergence of stochastic bubbles, we first present

a toy model, and then we present a full-fledged macro-finance model of intangible capital and show

that stochastic stock bubbles attached to intangible capital emerge in the process of spillover of

technological innovation. We show that the dynamics with stochastic bubbles, which is characterized

by unbalanced growth, is a temporary deviation from a balanced growth path in which asset prices

equal the fundamentals.

1. Introduction

Asset price bubbles are situations where asset prices exceed the fundamental values defined by the

expected discounted present value of dividends. Although asset price bubbles are commonly discussed

in the popular press and there is some empirical support,1 the dominant view of modern macro-finance

theory is that bubbles are either not possible in rational equilibrium models or even if they are, a

situation in which bubbles occur is a special circumstance and hence fragile. Indeed, as an influential

paper by[1], Theorem 3.3, Corollary 3.4] shows, there is a fundamental difficulty in generating asset bubbles

in real assets that pay dividends, such as stocks, land, and housing. Because of[1]’s “Bubble

Impossibility Theorem”, there seems to be a presupposition in the macro-finance literature that asset

prices should reflect the fundamentals. In these circumstances,[2]  challenge the conventional view.

Within workhorse macroeconomic models, including overlapping generations and infinite-horizon

models of Bewley’s types, they prove the existence of bubbles attached to real assets and establish the
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Bubble Necessity Theorem, i.e., under some conditions, the only possible equilibrium is one that

features asset price bubbles with the non-negligible bubble sizes relative to the economy.

In this paper, we consider environments with aggregate risk and advance the findings of[2]. In

particular, this paper examines stochastic bubbles that are expected to collapse. We identify the

economic conditions and mechanisms that give rise to stochastic bubbles. To describe stochastic

bubbles, we consider regime switching between two states, i.e., one ( ) characterized by “unbalanced

growth” where different factors of production grow at different rates, and the other ( )

characterized by “balanced growth” where they grow at the same rate. Once the state of   arises, the

macroeconomy will remain in that state, i.e., the state characterized by balanced growth is an

absorbing state. The source of aggregate risk arises from this regime change.

We will derive three main results. First, in Section 2, to illustrate the essence of the emergence of

stochastic bubbles, we present a toy model of two-period overlapping generations endowment

economies with two sectors, in which there are land and income generating sectors. In the land sector,

land yields rents, which serves as a means of saving for the young. In the income-generating sector,

each young is endowed with income (endowments) exogenously. The productivity growth rates of the

two sectors may be different. The young’s income takes two states, where in state  , the productivity

growth rate of the income-generating sector is higher, and hence the young’s endowments grow faster

than land rents, exhibiting unbalanced growth. On the other hand, in the state of  , the productivity

growth rates are equal between the two sectors, and hence the young’s endowments and land rents

grow at the same rate, exhibiting balanced growth. In this setting, we show that land price bubbles that

are expected to collapse emerge as the unique equilibrium outcome in transitional dynamics with

unbalanced growth, and once the state of the macroeconomy transitions to  , land price bubbles

collapse. After identifying the conditions for the emergence of stochastic bubbles, as robustness, we

will also show that these results will hold even when we consider the case with multiple savings

vehicles, in which case stochastic bubbles in the values of multiple assets simultaneously emerge.

Second, based on the insights obtained in Section 2, in Section 3, we consider stock price bubbles. As

highlighted by[3]  as one of the stylized facts, “asset price bubbles tend to appear in periods of

excitement about innovations”.2[3] also points out “The increase in the price of assets during a bubble

makes it easier to finance investments related to the new technologies”. In fact, during the rapid

increase in the stock prices of IT (information technology) related companies during the dot-com

bubble era, there were numerous IPOs (see[3]), implying the numerous establishment of new
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companies. Unlike many other technologies, IT has a significant impact on production and innovation

in many sectors, the characteristic that qualifies it as one of the “General Purpose Technologies

(GPTs)” as defined by[4].3

Based on these motivations, we construct a macro-finance model of intangible capital, with positive

spillovers to the rest of the economy. We show that stochastic stock bubbles attached to intangible

capital emerge in the process of spillover of technological innovation. More precisely, we adopt the

innovation-driven growth model developed by[5]  to analyze the relationship between knowledge

spillovers from knowledge-intensive sectors, such as IT, to other production factors (or sectors) and

the emergence of stock bubbles. Our analysis reveals that as long as the state of   persists, where the

spillover effects of innovation are strong and unevenly spread across production factors, the economy

temporarily deviates from the Balanced Growth Path (BGP) and exhibits unbalanced growth dynamics.

During this phase, the knowledge-intensive sector experiences the emergence of stock bubbles, where

rising stock prices encourage the establishment of new firms and further innovations. These

innovations, in turn, increase future wages, stock prices, and further innovations, creating a virtuous

cycle. During this phase, the economy enjoys an era of high growth. However, once the state of 

 arises, in which knowledge spillovers weaken and the effects of innovations become evenly spread

across production factors, the economy returns to the BGP and the stock bubble bursts. While

innovation slows down after the bubble bursts and the economy transitions into a low-growth era, the

technologies developed during the bubble period persist, leading to a higher level of post-bubble GDP

as the bubble period lasts longer. These results are consistent with the narrative“the relationship

between bubbles and technological innovation suggests that some of these episodes may play a positive

role in economic growth” highlighted by[3].

As the models in Sections 2 and 3 show, the dynamics with stochastic bubbles, which is characterized

by unbalanced growth, can be seen as a temporary deviation from a balanced growth path in which

asset prices equal the fundamentals, i.e., the expected present discounted value of future dividends.

Implication for macro-theory construction

Our construction of a macro-finance model where unbalanced growth dynamics can temporarily occur

provides a new perspective on the methodology of macro-theory construction because asset pricing

implications change markedly. That is to say, as is well known as “Uzawa steady-state growth

theorem”, which is the heart of macro-theory construction with a balanced growth path (BGP), any
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growth model that produces a BGP is knife edge theory[6][7][8]. Indeed,[9]  clearly note “As with any

model that generates balanced growth, knife-edge restrictions are required to maintain the balance”.

Under knife-edge conditions that generate balanced growth, in many cases, there is a single dynamic

path that can be drawn with one stroke of the brush and along the dynamic path, the macroeconomy

converges to a steady state characterized by balanced growth, in which asset prices and dividends grow

at the same rate. As long as we construct a model in this way, it is assumed from the beginning of model

construction that asset prices are equal to the fundamentals. What our paper shows is that even the

slightest deviation from the knife-edge cases leads to markedly different implications for asset prices.4

The macroeconomy temporarily takes a different dynamic path from the BGP, and in this transitional

dynamics, stochastic bubbles emerge. Based on these insights, in Section 4.1, as the third main result,

we will uncover the relationship between the Uzawa steady-state growth theorem and asset price

bubbles.

2. Stochastic bubbles in toy model

To illustrate the essence of the emergence of stochastic bubbles, we present a toy model in endowment

economies in which land price bubbles that are expected to collapse emerge as the unique equilibrium

outcome. Then we identify the economic conditions for the emergence of stochastic bubbles.

2.1. The basic setup

We consider a standard two-period overlapping generations (OLG) model with two sectors, i.e., land

and income-generating sectors, respectively. Time is indexed by  . In each period, young

agents with a unit measure are born, and they live for two periods. Each young person is endowed with 

 units of consumption goods (only) when young, where   denotes each state at date  . 

 can be interpreted as the income the young receive by working in the income-generating sector. In

the land sector, there is a fixed supply of land with  , and a unit of land produces    units of

consumption goods as dividends in each period.    and    capture productivities of the respective

sectors. There are two states in the macroeconomy. One state of    is characterized by

unbalanced growth, where the productivity growth rates of the two sectors are different, while the

other state of    is characterized by balanced growth, where the productivity growth rates are

equal.

Following[10],   follows the following Markov chain.
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Assumption 1. Letting   denote the state of the economy at time  , we have 

This assumption implies that the state of   is an absorbing state.

The realizations of    and    are governed by the following

assumptions.

Assumption 2.

Assumption 3. 

Assumption 4. 

These assumptions imply that as long as the state of   persists, the productivity growth rate of the

income-generating sector is higher, and hence the incomes of the young grow faster than rents,

exhibiting unbalanced growth. Once the probability    arises, the productivity growth rates are

equal, exhibiting balanced growth, and therefore the income of the young generation and the land

rents grow at the same rate. We will see these points again in (2.10).

In addition, we also consider the case where the initial date  ,    and    and 

. In this case, when the state of   arises at date  , according to the assumptions

1, 2, 3, and 4, both   and   will decrease to levels of what they would have been if the macroeconomy

had taken   all the way from the initial date  .

Utility function

The utility function of each young person is given by 

where    is expected utility at date  , and    is the expected value conditional on information

available at date  , and   is consumption when old.

The budget constraint

The budget constraints of each agent in young and old periods are 
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where   is the amount of land holdings at date  , and   is the price of land at date   in each state.

From (2.5) and (2.6), we obtain indirect utility 

where 

  captures how society trades off resources between dates    and  . Because hypothetically if a

social planner took resources from a young agent at date  , (s)he would require    units of

consumption goods to maintain the same expected utility.

2.2. Equilibrium

Each young person maximizes his expected utility (2.5) subject to (2.6) in each period.

The market for consumption goods clears at all dates. 

 is aggregate consumption at date  , and the land market clears, i.e.,  .

By dividing both sides by   in (2.9), we obtain 

From assumptions 2 and 3, we learn that as long as the state of   persists, endowments (incomes of

the young) grow faster than land rents, and therefore the ratio of aggregate land rents to aggregate

endowments decreases. Once the probability   arises, endowments and rents grow at the same rate,

and therefore the economy is back to balanced growth, in which the ratios of aggregate consumption

and land rents to aggregate endowments are constant.

2.3. Dynamics
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That is, land prices, pulled up by high endowment (income) growth, will rise.

On the other hand, conditional on  , 

i.e., when the probability   arises, the land price falls and afterward, it grows at the same rate of

land rents (assumption 3).

Conditional on   at time  , (2.8) is now written as 

Since  ,  ,  , and    follow according to (2.2), (2.11), and (2.13), each young person can

compute the future values of each variable after date    onward, as of time  . Therefore, they are

known as of time  .

Similarly, conditional on   at time  , (2.8) is written as 

Hence, land prices at time   when probability   arises at time   is 

After time    onward,    is constant because    and    grow at the same rate. Hence, once the

state of the macroeconomy is back on the balanced growth path,    equals the discounted present

value of future rents, i.e., the fundamental value, and the price-rent ratio   is constant.

We are now ready to define stochastic bubbles that are expected to collapse. To examine them, we

consider when the economy is in state   at time  .

Conditional on   at time  , the fundamental value of land prices at time   is defined as 

i.e., (2.17) equals the expected discounted present value of future dividends, as of time  . Recall that 

 is equal to the discounted value of future rents.
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Solving (2.14) for   and iterating forward yields 

As   in (2.18), we obtain  , where we define land price bubbles as 

That is, a land price bubble is equal to the difference between the market price of land and its

fundamental value. By definition, there is no bubble at time    if and only if the no-bubble condition

holds. That is, 

The economic meaning of the bubble component    in (2.19) is that it captures a speculative aspect,

that is, agents buy land now for the purpose of resale in the future, rather than for the purpose of

receiving dividends. When the no-bubble condition (2.20) holds, the aspect of speculation becomes

negligible and land prices are determined only by factors that are backed in equilibrium, namely the

expected future dividends. On the other hand, if  , equilibrium land prices contain a speculative

aspect. They are priced above the expected discounted present value of the rents received.

Note that the deterministic case without aggregate uncertainty can be described by setting  .

Hence, the state of the macroeconomy after the event of   corresponds to the case where   and 

 is replaced by   in (2.19) and (2.20). The no-bubble condition (2.20) is satisfied, i.e., there is no

bubble after the probability   arises.

2.4. Emergence of stochastic bubbles

In this section, we will show that stochastic land bubbles that are expected to collapse emerge as the

unique equilibrium outcome.

Considering  ,  , and  , (2.17) becomes 
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because  . When  , the numerator in (2.22) is

replaced by  . In either case, the fundamental value-rent ratio will

be finite as long as the state of   persists.

On the other hand, rearranging (2.14) yields 

Then, we obtain 

where  ,  , and 

  (   grows at a faster rate than    and    because  ).

From (2.24), we learn that the price-rent ratio will increase without bound so long as the state of 

 persists.

The comparison between (2.22) and (2.24) shows that the equilibrium price of land will eventually

exceed its fundamental value and contain a bubble. Moreover, once land prices are expected to contain

bubbles in the future, land bubbles will be included even in the current period. In other words, by the

backward induction argument,   at all dates.

For instance, consider a special case in which  . In this case,   and   are constant,

and both   and the land price at the time of bubble burst   are also constant. On the other hand, 

 will increase at the rate of   as long as the probability   persists. This special case clearly shows

that when the probability    arises, the land bubble not only collapses, but also the price will fall

sharply as the bubble period lasts longer.

This toy model tells us that so long as the state of   persists and endowments (incomes of the young)

grow at a faster rate than rents, the macroeconomy exhibits unbalanced growth, along which land

prices will rise, including bubbles, and the price-rent ratio will increase divergently. Once the

probability    arises, then the land bubbles collapse and the macroeconomy returns to balanced

growth, where the price-rent ratio is stable.
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2.5. Three economic implications to be drawn

From the above toy model, we can draw three economic implications.

1. First, the toy model we have presented implies that the dynamics of land price bubbles with a

divergent increase in the price-rent ratio can be seen as a temporary deviation from the balanced

growth path where land prices equal the discounted present value of future dividends, i.e., the

fundamentals.

2. Second, since land prices are uniquely determined, land price bubbles that are expected to collapse

emerge as the unique equilibrium outcome.

3. Third, we can derive the economic conditions under which stochastic bubbles emerge as the

equilibrium outcome. That is to say,

1.  increases faster rate than land rents,  , i.e., unbalanced growth occurs, and

2.  increases at a faster than  , which implies that the growth rate of income in the state

of unbalanced growth is higher than that in the state of balanced growth, and

3.   grows faster than  , which implies that the longer the state of    persists, the

sharper the fall in land prices.

If and only if conditions (a), (b), and (c) are simultaneously satisfied, we will obtain    in

(2.14) asymptotically, in which case the no-bubble condition (2.20) will be violated.

Two points need to be stated. First, unlike the case of deterministic bubbles in which condition (a)

alone is sufficient to generate bubbles, conditions (b) and (c) are also needed to generate stochastic

bubbles.  Second, a regime-switching model with   and   does not mean that stochastic bubbles

will always emerge because conditions (a), (b), and (c) are not always satisfied. A natural next question

would be if there exists a plausible economic model with investment and production in which all three

conditions are simultaneously satisfied. In Section 3, we will present such a model.

2.6. Multiple savings vehicles

So far, land is the only saving vehicle. A natural question would be what happens with multiple savings

vehicles. In this section, we will show that our argument in the previous section will hold even when

there are multiple means of saving.

To address this issue, we introduce another saving vehicle. We consider another dividend-paying asset,

e.g., a stock market index with outstanding shares normalized to  . Stock market index per share
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produces dividends   in every period depending on each state, and its price at date   is  .

Considering the no-arbitrage equation between the two assets,   is now written as 

Rearranging (2.25) yields 

and 

Adding (2.26) and (2.27) together yields 

We learn that if we compare (2.14) with (2.28), they are parallel. That is, aggregate assets of land and

shares can be considered as if they were a single asset. Then, the argument in the previous section i.e.,

conditions (a), (b), and (c), can be applied directly. That is, stochastic bubbles in the aggregate value of

land and stocks emerge as the unique equilibrium outcome if

i.  grows faster than  , and

ii.  grows faster than  , and

iii.  grows faster than  .

For example, if the growth rates of   and   are equal to   and  , respectively, in which case the

economy returns to balanced growth after probability    arises, or are lower than  , these three

conditions are simultaneously satisfied and, therefore, stochastic bubbles in land and stock prices

simultaneously emerge.5
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t
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t+1 QBG

t+1

rUGt rBGt G′
d

Gd

1 − π Ga

qeios.com doi.org/10.32388/UXI069 11

https://www.qeios.com/
https://doi.org/10.32388/UXI069


As we can see from this analysis, without loss of generality, the same argument can be applied when

extended to the N-asset model. From the no-arbitrage condition across N assets, by bundling N assets

together as a single asset, macro bubbles can be described with a single asset model. Hence, in the next

section, to avoid complexity and illustrate the point, we focus on a model with a single asset.

3. Innovation and stochastic stock bubbles

So far, we have presented an example that shows the existence of stochastic bubbles in endowment

economies. In this section, we construct a full-fledged macroeconomic model with intangible capital

and production, and show that stochastic stock price bubbles attached to intangible capital emerge as

the equilibrium outcome. It will also be shown that the dynamics with stock price bubbles associated

with innovation is a temporary deviation from balanced growth in which stock prices reflect the

fundamentals. The model we present is a growth model with innovation.

3.1. The basic setup

The essential structure of the model is similar to the variety expansion model of[5]. To illustrate the key

mechanism of how stochastic stock bubbles emerge, we reformulate their model into a two-period

overlapping generations (OLG) framework.

Time is indexed by  . There are two types of individuals. In each period, a continuum

measure   of skilled labor and a continuum measure   of unskilled labor are born, who live for two

periods. Each individual has one unit of time only when young. Each skilled labor optimally allocates

one unit of time to each of the R&D activities and labor for the production of the knowledge-intensive

intermediate goods. On the other hand, each unskilled labor inelastically supplies one unit of time to

labor in the consumer goods sector.

3.2. Consumption goods sector

There is a representative competitive firm that produces the consumption goods. The aggregate

production function is given by 

where   is output of consumption goods when the state of the economy is   at date  , 

  is the productivity level of unskilled labor    in the state    at date  ,    is input of knowledge-

intensive goods when the state of economy is    at date  ,    is the productivity level of    in the

t = 0, 1, . . .

H L

= ,Y
st
t [α( L + (1 − α)( ]A

st
t )1−ρ Z

st
t X

st
t )1−ρ

1

1−ρ (3.1)
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state    at date  , and    and    are parameters.    is elasticity of substitution between 

 and  . If we set  , the production function (3.1) simplifies to the one presented in[5].6

As in Section 2, we introduce aggregate uncertainty to describe stochastic bubbles. Let 

 represents the state of the economy at date  . When the economy is in state  ,

the productivity growth rates of the production factors   and   differ , i.e., unbalanced growth

occurs. On the other hand, when  , the productivity growth is equal across production factors so

that balanced growth is achieved. The conditions of the specific parameters for each state are explained

in detail in Section 3.8. Suppose that the initial state is  . The evolution of state follows the

assumption 1.

We choose the consumption goods as numeraire. From the first order conditions for the profit

maximization problem, we obtain 

and 

where   is the wage rate of labor   in the state   at date   and   is the price of the good   in the

state   at date  . Note that   here is different from that in Section 2.6.

3.3. Knowledge-intensive goods sector

There is a representative competitive firm that produces the knowledge-intensive goods. The

aggregate production function is given by 

where    is input of differentiated intermediate goods    in the state    at date  ,    is number of

varieties of intermediate goods in the state    at date  , and    is a parameter. As will be

explained in Section 3.5,   is endogenously determined and grows as a result of innovation. In other

words, new goods are developed through innovation. In this context,   represents the total variety of

goods created by past innovations and can be viewed as the stock of ideas (knowledge) in the economy.

st t ρ > 0 α ∈ (0, 1) 1/ρ
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st
t α = 0

∈ {UG,BG}st t = UGst
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γ
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From the first order condition for the profit maximization problem, we obtain a factor demand

function: 

where   is the price of intermediate good   in the state   at date  . Substituting (3.5) into (3.4) we

obtain the price of  : 

3.4. Differentiated intermediate goods sector

The differentiated intermediate good    is produced under monopolistic competition. One unit of

the intermediate good is produced by the input of one unit of time by skilled labor. Facing the demand

function (3.5), the unique producer of variety   maximizes profits 

where    is wage rate of skilled labor in the state  , by charging a price  . Then, all

varieties are priced equally at   where 

 Since firms price equally, the output of goods is also equal at   across varieties where 

 and the profit is also equal at   across varieties where 

3.5. R&D sector

An skilled labor who devotes   units of time to R&D activities in the state   at date   creates 

  units of new differentiated intermediate products, where    is a R&D productivity

parameter. The newly invented varieties are fully protected by patents for an infinite period. Therefore,

as analyzed in section 3.4, the sole producer of each variety holds monopoly power and earns the

monopoly profit   indefinitely. The stock price of a firm,  , can also be interpreted as the price of

an idea or patent, i.e., intangible capital.7
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The term    in R&D production function    captures knowledge spillover from the past

innovations to the current innovations, and, as is well known in the literature, this linearity

assumption of knowledge spillover is necessary for producing endogenous growth.

3.6. Household

Utility function of skilled labors and unskilled labors is given by

where   is utility level in the state   at date  ,   is the expected value conditional on information

available at date  , and    is consumption when old. Here,  , where    refers to skilled

labors and   refers to unskilled labors.

The budget constraints in young and old periods are 

  where    and    are stock price of the firms and dividend per share in the state    at date  . We

assume the law of one price, as in ordinary macroeconomic models, i.e., if the dividend and

fundamental value of stocks are the same, the price will be the same. Unlike Section 2,    is now

endogenously determined and state dependent.    is a continuum measure of firms established

before date  , including the new firms established at date  ,   is asset holding rate of the

individual  ,   is income level of individual   in the state   at date  .

From (3.11) and (3.12), we obtain indirect utility 

 where   is given by (2.8).

Skilled labor optimally chooses   to maximize the expected utility. The income level of skilled labor is

given by  . Then, the interior solution for the utility maximization

problem gives 

The choice of   is indifferent under (3.14). Suppose each skilled labor chooses the same R&D activity

level  , then the evolution of the number of firms is 

We can see that the number of varieties   increases over time if and only if  .

n
st
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Since skilled labors work   units of time, the following labor market clearing condition holds: 

3.7. Asset market

Aggregating the first equation in (3.12) over all skilled and unskilled labors, and imposing the

equilibrium condition  , we obtain 

The first and second terms on the left-hand side represent the aggregate savings of skilled labors and

unskilled labors, respectively, and the right-hand side represents the aggregate supply of firms’ stock.

3.8. Productivity growth of production factors

From (3.9) and (3.16), the aggregate output of knowledge-intensive goods is 

Following[11][12], suppose 

where   is a parameter in the state  , removing the role of the love-of-variety elasticity from the

parameter  . Since   holds, the parameter   purely measures the extent to

which additional variety from innovation increases the productivity of knowledge-intensive goods,

that is, it measures the degree of love-of-variety.8

Suppose that 

where  , implying that there are knowledge spillovers from past innovations to the productivity

of unskilled labors  .

Then, from (3.1), (3.18), (3.19), and (3.20), aggregate output of consumption goods is 

Therefore, the parameters   and   determine the productivity growth rates of the two production

factors   and  .

In the state  , we assume 

1 − τ
st
t

= (1 − )H.nstt x
st
t τ

st
t (3.16)

H + L = 1m
st
H,t m

st
L,t

H + L = .w
st
L,t P

st
t n

st+1
t+1 (3.17)

= ( (1 − )H.X
st
t n

st
t )

1−γ

γ τ
st
t (3.18)

= ( ( ,Z
st
t n

st
t )ϕ

st
n
st
t )

−
1−γ

γ (3.19)

> 0ϕst st

γ = ( (1 − )HZ
st
t X

st
t n

st
t )ϕ

st
τ
st
t ϕst

= ( ,A
st
t n

st
t )ψ

st
(3.20)

> 0ψst

L

= .Y
st
t [α[( L + (1 − α)[( (1 − )H ]n

st
t )ψ

st
]1−ρ n

st
t )ϕ

st
τ
st
t ]1−ρ

1

1−ρ (3.21)

ϕst ψst

LA
st
t Z

st
t X

st
t

= UGst

qeios.com doi.org/10.32388/UXI069 16

https://www.qeios.com/
https://doi.org/10.32388/UXI069


where    and    are the values of    and    when  , respectively. Under (3.22), when

innovation generates new technologies, its spillover effects are unevenly spread across the two

production factors, and hence their productivity growth rates differ as long as the state of   persists.

We refer to this situation as unbalanced growth.

Conversely, in the state  , we suppose 

holds, where   and   are the new parameter values of   and   after drawing the probability 

. The condition (3.23) ensures that the productivity growth rates of the two production factors are

equal, allowing the existence of the balanced growth path (BGP), along which the ratios of aggregate

consumption and aggregate investment in the R&D activity to GDP, and the ratio of aggregate

dividends from stocks to GDP are constant.

We impose the following condition on the parameter values.

Assumption 5.

(3.22) and assumption 5 imply that as long as the state of    persists, the spillover effects of

innovation are high and spread unevenly across the two production factors. However, once the state of 

 ends, the spillover effects of innovation decrease and spread evenly throughout the economy.

Note that (3.23) is a knife edge condition, but as noted in the introduction, any growth model with BGP

is knife edge theory.

3.9. Equilibrium dynamics of knowledge 

From (3.15), the growth rate of the number of varieties   is written as 

The growth rate increases as   increases. In the following, we will explain how   evolves.

The equilibrium condition of the asset market determines the interior level of   for a given   (see

Appendix A.1 for the derivation):
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where 

The first term of (3.27) comes from the aggregate wage income of skilled labor, while the second term

comes from the aggregate wage income of unskilled labor. These incomes flow into the stock market to

purchase existing shares, as represented by the right hand side of (3.26).

Figure 1. Solution to equation (3.26) when   holds.

Figure 1 shows an interior solution of  . In the state of  , if  , the second

term on LHS of (3.27) increases as   increases for a given  . Therefore,   increases over time

and converges to 1.
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To explain intuition, assume    and  . This implies that the growth in    due to

innovation accelerates the growth of knowledge-intensive goods   faster than effective labor 

. Since  , the elasticity of substitution between factors    is less than 1, indicating a

complementary relationship. As a result, the faster growth of    increases demand for its

complement, labor  , raising the wages of unskilled labor relative to those of skilled labor. This

increased wage flows into the stock market, driving up stock prices, which in turn stimulates R&D

activities and raises  .

Next, assume   and  . Here, the growth in   causes labor   to grow faster than

knowledge-intensive goods  . With  , the elasticity of substitution exceeds 1, indicating a

substitutional relationship. In this case, faster growth of productivity of labor boosts its labor demand,

increasing unskilled labor’s wages relative to those of skilled labor. Then, this increased wage flows

into the stock market, driving up stock prices, which, in turn, raises  .9

Finally, consider the state    where    holds. The economy transitions to the

BGP immediately without transitional dynamics. On the BGP, according to (3.26) and the condition

(3.23), the interior equilibrium value of   is determined by 

i.e.,    is positive constant on the BGP.10 The rate of productivity growth of the two

factors of production is the same.

3.10. Emergence of stochastic stock bubbles

We are now ready to show the emergence of stochastic bubbles. For this purpose, we derive the

normalized stock price and dividend, which allows us to show the emergence of stochastic stock

bubbles intuitively. We consider a situation in which until date  ,    and the

macroeconomy exhibits unbalanced growth, and after date  ,   and the macroeconomy is

back to balanced growth.

According to (3.9), (3.10), and (3.16), we obtain the normalized dividend 

Rewriting (3.14), we obtain the normalized stock price 
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Suppose that the current state is  . Then using (3.29) and (3.30), the no-arbitrage condition

(2.8) can be written as 

By solving (3.31) for   and iterating it forward, we obtain equations corresponding to (2.17), (2.18),

and (2.19), respectively, in terms of the normalized price and fundamental value. Note that   in (2.17)

and (2.18) is now determined endogenously and state dependent.11

To prove the emergence of stochastic bubbles, we will take two steps. First, we will show that after 

,  . Then, given this result, we will consider the economy when    at time 

 and show  .

When the economy draws the probability   in period  , the economy transitions to the BGP. On the

BGP, the no-arbitrage condition in terms of the normalized price is given by 

where   is the rate of return of stocks and  .

Also, skilled labor’s wage rate on the BGP is expressed as (see Appendix A.2 for the derivation) 

Substituting this into (3.32) yields 
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Substituting    into (3.34) yields  . Then, substituting this 

 into (3.36) yields  , i.e.,     for all  .

We will now consider the economy at time   when   at time  . We focus on the asymptotic

behavior of the model when the state of   persists, i.e.,  . The reason we focus on asymptotic

behavior is that whether stock bubbles emerge at present depends on whether they are expected to

arise in the future, which in turn depends on the asymptotic behavior.

Under the assumption 5, asymptotically, the no-arbitrage condition (3.31) in terms of the normalized

price will become (see Appendix A.2 for the derivation) 

where 

and 

That is, the normalized price   asymptotically follows the no-arbitrage condition for assets without

dividends. Hence, the normalized fundamental value will asymptotically become zero, while the

normalized equilibrium price satisfies   for all  . This implies that the equilibrium stock

price will eventually exceed its fundamental value for sufficiently large    as long as the state of 

 persists, i.e.,   as  . Moreover, if equilibrium stock prices are expected to contain

bubbles in the future, bubbles will be included even in the current price. In other words, the price of the

stock contains a bubble and   for all  .

It should be noted that the normalized fundamental value will asymptotically become zero but the

non-normalized value, i.e.,  , is always positive because after the state of   arises,  .

Implications for the price-dividend ratio

We can also show that the dynamics of the price-dividend ratio is markedly different before and after 

.

Before  , i.e.,  , since the normalized dividend    in the no-arbitrage condition (3.31)

asymptotically converges to zero as  , this implies that the price-dividend ratio 
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will rise divergently as long as the state of   persists.

On the other hand, once the state of    ends and the stock bubble collapses at time  , the price-

dividend ratio 

gets constant after  .

(3.40) and (3.41) tell us that together with a regime change depending on    and  , the price-

dividend ratio will initially rise with bubbles, which appears to be explosive, and then fall with their

collapse. This dynamics of the price-rent ratio has a potential for connecting our analysis with the

bubble detection literature[13][14][15], which detects a bubble by an explosive dynamics in the price-

dividend ratio. We should note that for the emergence of stochastic bubbles, the conditions (b) and (c)

we have identified in Section 2 are also important as well as a divergent increase in the ratio.

We summarize these insights in the following Proposition.

Proposition 1 (Emergence of stochastic stock bubbles). Suppose that assumption 

  and assumption 5. Additionally, assume that the initial condition 

 holds. Then,

i. for all  , the stock price   contains a bubble, with a divergent increase in the price-dividend

ratio, where   is the period in which the economy draws the probability  .

1. After  , the stock price    is equal to its fundamental value and the price-dividend ratio gets

constant.

From Proposition 1, we learn that the dynamics with unbalanced growth and stock bubbles can be seen

as a temporary deviation from the balanced growth path.

Intuitively, when  , i.e., the spillover effects of innovation are high, and  ,

the positive effects of innovation are unevenly spread on the two production factors  , and 

. This causes a divergence in their productivity growth rates, leading to unbalanced growth.

This unbalanced growth, in turn, leads to a stock price bubble in industries that drive innovation. This

implies that when  , i.e., the elasticity of substitution between the two factors of production is less

than one, bubbles are attached to the price of intangible capital with higher rates of growth. However,

once the state of   with high spillovers ends and the spillover effects of innovation are evenly spread

UG
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across the two factors of production, the economy transitions to the BGP, and the stock price bubble

bursts. Our model suggests that stock bubbles emerge in the process of spillover of technological

innovation, which is consistent with one of the stylized facts highlighted by[3], as noted in the

introduction.

It should be mentioned that we can verify that the economic conditions under which stochastic stock

bubbles emerge in Proposition 1 are consistent with conditions (a), (b) and (c) that we have identified in

Section 2.5. The correspondence can be explained as follows.    ensures the

condition (a) in Section 2.5. Under  ,    in the no-arbitrage condition (3.31)

converges to zero, implying that    grows faster than  . On the other hand, 

  ensures conditions (b) and (c). Under  , the second term

involving   in the no-arbitrage condition (3.31) converges to zero, implying that   grows faster

than both   and  .

Growth rate of   before and after 

We can further derive the dynamics of    before and after  . Additionally suppose 

. Then,   holds for all  . Therefore, we obtain 

This implies that the collapse of the stock bubbles at time    leads to lower growth in the number of

varieties and less innovation after  .12

Intuitively, as long as the state of   persists, the level of   activity   increases monotonically,

generating more variety and enhancing innovations. Once the state of   ends and the stock bubbles

burst, the level of    activity    declines, leading to reduced growth of variety and innovations.

Note that if  , (3.42) holds for sufficiently large   when the state of   persists.

We summarize these insights in the following Proposition.

Proposition 2 (Impact of stock bubbles on innovations ). Suppose that    and

assumption 5. Additionally, assume that the initial condition    and 

 hold. Then,

i. for all  , the    activity level    increases monotonically over time, generating more

variety and boosting innovations, where    is the period in which the economy draws the probability 

.
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1. At date  , the R&D activity level   declines, and for  , the growth rate of the number of varieties

gets lower. Together with Proposition 1, after the burst of stock bubbles, the macroeconomy enters a

period of sluggish innovation.

Under the bubble equilibrium with unbalanced growth, innovation increases the wages, driving stock

prices to rise rapidly compared to the BGP. This rise in stock prices stimulates the development of new

technologies, accelerating innovation, which, in turn, further enhances future wages, stock prices, and

innovation activities. This dynamics creates a virtuous cycle of rising stock prices and innovation.

3.11. Long-term effects of stock bubbles

We now examine the long-run effects of stock bubbles. We obtain the following Proposition.

Proposition 3 (Long-term positive effects of stock bubbles). Suppose that   and

assumption 5. Additionally, assume that the initial conditions    and 

 hold. Then, the longer the bubble period  , the higher the GDP level after the

bubble collapses. In other words, stock bubbles leave positive effects on the macroeconomy even after the

collapse.

Proof. From (3.26), the condition    ensures that    holds for all 

. Consequently, as    increases, the accumulation of knowledge    increases. According to

(3.33) and (3.47), both   and   increase with  . Therefore, an increase in   leads

to a higher level of GDP:   for all  . 

This proposition gives us an important insight into the light side of stock price bubbles. That is to say,

during the bubble period, innovation is producing a wide variety of goods and technologies, and the

economy is enjoying it. Even after the bubble collapses, the technologies    developed during the

bubble period will survive, resulting in a higher GDP level even after the collapse. This positive effect is

stronger as the bubble period is longer. As noted in the introduction, this light side of stock bubbles is

also consistent with the narrative highlighted by[3], i.e., stock bubbles may have positive effects on

innovative investments and economic growth.13

Short-term effects of the collapse of stock bubbles

While stock bubbles leave long-term positive effects, their collapse leads to a greater decline in GDP

and stock prices the longer the bubble lasts. To see this point, let us focus on the asymptotic behavior

for analytical tractability.
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Let us first investigate the collapse of stock bubbles on the dynamics of the stock price  . From

(3.30), the stock price is given by 

Considering the situation where   but  , (3.43) leads to 

When  ,   holds asymptotically. The intuition is that if the state

of    persists, the level of R&D activity    holds. Even if the state transitions to    in the

following period, the value of the state variable    is already determined at date  . Therefore, 

  holds. In addition, under the assumption 5,    (see Appendix A.2 for

the derivation). Intuitively, the wage for skilled labor   grows at the same rate as   asymptotically.

From (3.46) below, the growth rate of output   in the state   is asymptotically  . On the

other hand, from (3.47) below, and  , the growth rate of the hypothetical output 

  in state    conditional on the state being    at date    is  . Therefore, 

  holds, i.e., the skilled labor wage in the state    grows faster than that on the

hypothetical BGP. For these two reasons, inequality (3.44) eventually holds, indicating that the collapse

of the bubble leads to a sharper decline in stock prices when the bubble period is longer. This insight is

the same as the insight we have derived in the condition (b) we have identified in Section 2.5.

Moreover, we can also derive another insight into the stagnation of the stock price after the burst of

stock bubbles. As explained in the paragraph above, since the skilled labor wage   grows at the same

rate as output   asymptotically, we have   and   (see

Appendix A.2 for the derivation). Thus, since   and  , from (3.43), the

following inequality holds asymptotically between any date   and  : 

indicating that the growth rate of stock prices decreases after the burst of stock bubbles. As noted

already, the economy transitions to the BGP immediately without transitional dynamics. Hence, the

right-hand side of (3.45) holds immediately after the economy moves to the state of  .

Next, we examine the effects of the collapse of stock bubbles on the dynamics of  . Under the

condition  ,    holds. Therefore, the output 
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 in the state of   asymptotically becomes 

The intuition is as follows. Suppose    and  . This means that the two factors of

production, i.e.,    and  , are complementary, and the former is growing faster than the

latter. In this case, the production factor with slower growth    asymptotically determines the

output level  . On the other hand, suppose that    and  . This means that the

productivity growth of    is faster than that of  , and the two factors of production are

substitutional. In this case, the production factor with faster growth   asymptotically determines

the output level  .

Once the macroeconomy falls into the state of  , from (3.21), the output   is given by 

Then, from (3.46) and (3.47), at any date between   and  , we asymptotically obtain the inequality 

Thus, the growth of output stagnates after the bubble bursts.

Moreover, consider the situation where    but  . Then, since 

 asymptotically and the hypothetical output   in the state   conditional on the

state being   at date   increases at the rate of   asymptotically, under the assumption 5, the

following inequality eventually holds: 

Consequently, the collapse of the stock bubble not only causes a sharper decline in stock prices, but also

generates a sharper decline in the output level   when the bubble period is longer.

In summary, the longer the bubble period, the more the collapse of the bubble significantly reduces the

output  , stock price  , and R&D activities  . Consequently, GDP    also

experiences a sharper decline.
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4. Discussions

4.1. Relation to Uzawa steady-state growth theorem

The model we have presented implies that the emergence of stock price bubbles is closely related to

Uzawa steady-state growth theorem ([6]), which is at the heart of macro-growth theory. Typically, the

Uzawa’s theorem is analyzed within the context of neoclassical growth theory to explore the

characteristics of technological progress necessary for achieving a BGP. As is well known, the aggregate

production function must exhibit Harrod-neutral (purely labor-augmenting) technological progress

on the BGP. Here, we extend the application of the Uzawa’s theorem to our framework for discussion.

Proposition 4. (Uzawa steady-state growth theorem) Consider the aggregate production function of

consumption goods (3.1) where    and    are given by (3.19) and (3.20), respectively. The aggregate

production of the good   satisfies (3.9), i.e., all intermediate goods   has the same production level  .

The evolution of number of varieties is given by (3.15). The labor market clearing condition (3.16) is satisfied.

Suppose there are constant growth rates such that    and    for all 

, i.e., the economy is on a BGP. Then,   must hold for all  .

Proof. See Appendix A.3. 

In the case of a Cobb-Douglas production function ( ), which is a knife-edge case, a BGP can be

achieved even if there is a difference in the growth rates of the two production factors   and  ,

i.e.,   is acceptable for a BGP. However, if the production function is not Cobb-Douglas ( ),

the growth rates of the two factors must be equal to achieve a BGP, i.e.,   must hold. In either

case, we can see that the parameters for ensuring balanced growth are knife-edge.14 Based on

Propositions 1 and 4, the relationship between the emergence of stock price bubbles and Uzawa’s

theorem becomes clear in the following corollary.

Corollary 1. The bubbly equilibrium in Proposition 1 fails to satisfy the Uzawa steady-state growth theorem,

i.e.,   does not hold.

What we can learn from Propositions 1, 4, and Corollary 1 is that

i. even the slightest deviation from the condition    leads to a world of

unbalanced growth, where different production factors grow at different rates, and

ii. in the world of unbalanced growth, the condition  , even if it arises only

temporarily, leads to the emergence of asset price bubbles.
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4.2. Related literature

Our paper belongs to the so-called “rational bubble literature” that studies bubbles as speculation

backed by nothing, which was pioneered by[16][17][18][19][20], and[1]. Theoretical foundations in rational

bubble models include[21][22], and[23], among others.

As noted in the introduction, it is well known in the literature on rational bubbles that there is a

fundamental difficulty in generating bubbles in real assets with positive dividends. This difficulty

follows from[[1], Theorem 3.3, Corollary 3.4], who show that, when the asset pays non-negligible dividends

relative to the aggregate endowment, bubbles are impossible.15 This “Bubble Impossibility Theorem”

has been extended under alternative financial constraints by[24] and[25].

Due to the fundamental difficulty,16 there are only a handful of papers that deal with bubbles attached

to real assets, including[26],[[18], Proposition 1(c)],17[27], and[28].18 A series of papers by[2][29]

[30] and[31] not only show bubbles attached to real assets within workhorse macroeconomic models, but

also present a conceptually new perspective of the necessity of asset price bubbles, as noted in the

introduction. The present paper advances the direction their series of papers have opened up and

considers stochastic bubbles that are expected to collapse, while all papers noted above study

deterministic bubbles that are not expected to collapse.

Regarding the point that we consider aggregate risk, the present paper is most closely related to[32],

who study the implications for land prices in economies with aggregate uncertainty. They show that

land prices exhibit recurrent stochastic fluctuations, with expansions and contractions in the size of

land bubbles. A critical difference of our paper from[32] is that we consider bubbles that are expected to

collapse completely, while in their paper, land prices always contain a bubble and the size of bubbles

changes all the time.

4.3. Concluding remarks

As noted in the introduction, any balanced growth model is knife-edge theory. By imposing knife-edge

restrictions, macro-models that generate a BGP are constructed from the beginning so that asset prices

are equal to the fundamentals. We have shown that the slightest deviation from knife-edge cases leads

to markedly different asset pricing implications. To illustrate this point, as an example of a full-fledged

macro-finance model, we have employed the innovation-driven growth model proposed by[5]. Our

approach that allows for the possibility of unbalanced growth and considers regime switching with
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unbalanced growth and balanced growth can generally be applied to other modern innovation-driven

growth models, including[33][34], and[35].

Similarly, in many cases, by imposing knife-edge conditions, macro-finance models are constructed

from the outset so that the macroeconomy converges to a steady state characterized by balanced

growth. In other words, the macroeconomy is always on the same dynamic path, which usually

corresponds to a saddle path that can be drawn with one stroke of the brush. By adding various types of

exogenous shocks or by changing the magnitude of those shocks, macro-finance models have

attempted to account for fluctuations in asset prices qualitatively and quantitatively, which has

produced fruitful outcomes up to present. In light of this existing approach, it would be fair to say that

our methodology of macro-finance-theory construction would provide a different approach. That is,

our approach of removing the knife-edge restrictions allows the macroeconomy to temporarily take a

different dynamic path from a balanced growth path. As our paper has illustrated, this deviation from

the BGP would result in markedly different implications for asset pricing. In other words, the dynamic

path with asset price bubbles can be understood as a temporary deviation from the BGP. Also, in the

present paper, to illustrate the key conditions and mechanisms of stochastic bubbles, we abstract from

financial frictions and financial accelerator effects, which play an important role in recent macro-

finance models, including influential papers such as[36][37][38][39][40][41][42], etc. Our approach can be

embedded into these representative models of financial accelerator. As such, we hope that our

construction of a macro-finance-model where unbalanced growth dynamics can temporarily occur

would provide a new direction in macro-finance theory.

Appendix A.

A.1. Derivation of (3.26)

According to (3.15), (3.17) becomes 

From (3.8), (3.6) becomes 

Then, according to (3.3) and (A.2), we obtain 
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From (3.2), (3.18), (3.19), (3.20), and (A.3), we obtain 

(3.14) is rewritten as 

Substituting (A.4) and (A.5) into (A.1) yields (3.26).

A.2. The asymptotic behavior of each variable in the case of 

First, we investigate the asymptotic behaviors of  ,  , and  , respectively, when the state of 

  persists. Suppose    and  . Then, since 

,   for all  , and  , the second

term in (3.27) must converge to a positive constant. Thus, asymptotically, the following relationship

holds: 

where   is a positive constant.

Furthermore, since   holds, 

From (3.3) and (A.2), we obtain 

Then, substituting (A.6) and (A.7) into (A.8) obtains 

where   is a constant.
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where   satisfies (3.28). From (A.2) and (A.10), we derive   as follows: 

Consider the asymptotic behavior of the no-arbitrage condition (3.31) when the state of 

 persists.   holds. Since the hypothetical value of   conditional on the state

being    at date    is determined in the period  ,    also holds. Then, from (A.9) and

(A.11), we obtain 

Since   grows at rate  , 

holds.

Derive the asymptotic no-arbitrage condition when  . Noting that 

,    is constant, and  , the asymptotic rate of return is

derived from (3.31) as:

From this, the asymptotic no-arbitrage condition is 
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5.3. Proof of Proposition 4

From (3.15),    must remain constant for all    to ensure a constant growth of  .

Suppose   for all  , where   is a constant. From (3.9), (3.16), (3.19), and (3.20),

the production function of consumption good (3.1) is rewritten by (3.21), where  , i.e., 

Since   and  , the production function (A.16) at date   is 

Multiplying both sides of (A.17) by   yields 

Comparing (A.16) and (A.18),   must hold for  . This implies  .

Next consider the case of   (Cobb-Douglas production function), i.e., (A.16) becomes 

Repeat the same steps of the proof. At the date  , (A.19) becomes 

Multiplying both sides of (A.20) by   yields 

Comparing (A.19) and (A.21),   must hold for  . This can hold even if  .

To summarize the above results,   must hold on a BGP.

Acknowledgements

This research was financially supported by Japan Securities Scholarship Foundation; the Joint Usage /

Research Center, Institute of Economic Research, Hitotsubashi University (Grant ID: IERPK2439); JSPS

τ
st
t t ≥ t0 / =n

st+1
t+1 n

st
t Gn

=τ
st
t τ st t ≥ t0 ∈ (0, 1)τ st

=τ
st
t τ st

= .Y
st
t [α[( L + (1 − α)[( (1 − )H ]nstt )ψ

st
]1−ρ nstt )ϕ

st
τ st ]1−ρ

1

1−ρ (A.16)

=Y
st
t Y

st0
t0

G
t−t0
Y =n

st
t n

st0
t0
G

t−t0
n t0

= .Y
s0
t0

α[( L + (1 − α)[( (1 − )H

⎧

⎩

⎨

⎪⎪⎪⎪

⎪⎪⎪⎪

n
st
t G

−(t− )t0
n

  
n
st0
t0

)ψ
st

]1−ρ n
st
t G

−(t− )t0
n

  
n
st0
t0

)ϕ
st

τ st ]1−ρ

⎫

⎭

⎬

⎪⎪⎪⎪

⎪⎪⎪⎪

1

1−ρ

(A.17)

G
t−t0
Y

= .Y
st
t α + (1 − α)

⎡

⎣
( ( L)

G
t−t0
Y

G
(t− )ψst t0

n

n
st
t )ψ

st

1−ρ

( ( (1 − )H)
G

t−t0
Y

G
(t− )ϕst t0

n

n
st
t )ϕ

st
τ st

1−ρ
⎤

⎦

1

1−ρ

(A.18)

= =G
st
Y G

ϕst
n G

ψst
n ρ ≠ 1 =ϕst ψst

ρ = 1

= [( L [( (1 − )H .Y st
t nstt )ψ

st
]α nstt )ϕ

st
τ st ]1−α (A.19)

t0

= [( L [( (1 − )H .Y
s0
t0

nstt G
−(t− )t0
n )ψ

st
]α nstt G

−(t− )t0
n )ϕ

st
τ st ]1−α (A.20)

G
t−t0
Y

= [( L [( (1 − )H .Y
st
t ( )

GY

G
ψst
n

α(t− )t0

( )
GY

G
ϕst
n

(1−α)(t− )t0

n
st
t )ψ

st
]α n

st
t )ϕ

st
τ st ]1−α (A.21)

=GY G
α +(1−α)ψst ϕst
n ρ = 1 ≠ϕst ψst

( − )(ρ − 1) = 0ϕst ψst

qeios.com doi.org/10.32388/UXI069 32

https://www.qeios.com/
https://doi.org/10.32388/UXI069


KAKENHI Grant Number JP19K13660; and the Kansai University Fund for Domestic and Overseas

Research Fund, 2023. We are responsible for any remaining errors.

Notes

JEL codes: D52, D53, E44, G12.

Footnotes

1 [[43], Appendix B] documents 38 bubbly episodes in the 1618–1998 period.

2 [3] notes “The stock market bubble of the 1920s was driven primarily by the new technology stocks of

the time, namely the automobile, aircraft, motion picture, and radio industries; the dotcom bubble has

an obvious connection to Internet technology”.

3  [4] characterizes GPTs as displaying three fundamental features: (i) pervasiveness (they spread to a

wide range of sectors), (ii) improvement (they can continuously evolve), and (iii) innovation spanning

(They enhance new secondary innovations). Another well-known example is the steam engine. As the

construction of railways adopting steam engines advanced, a stock price bubble known as the “Railway

Mania” emerged.

4 We thank Joseph Stiglitz for this approach because one of the authors (Hirano) took a big hint through

continuous discussions with him about the methodology in which take a standard model as it is and

change only one part, which then leads to markedly different economic insights.

5 Note that even though the bubble sizes on individual assets are indeterminate, the total size of the

bubble is determinate, and hence the consumption allocation is identical regardless of the size of the

bubble attached to each asset. This argument is the same as the “bubble substitution” argument in[18].

6 Strictly following the setting of[5], (3.1) would be defined as a utility function rather than a production

function. When interpreted as a utility function, households derive utility from two types of goods, 

  and  . In the original[5]  framework, this corresponds to  , meaning that utility is

derived from a single composite good  .

7 It is possible to consider not patent protection for ideas regarding the production methods of goods,

but instead to keep the ideas as trade secrets. If it is assumed that the trade secret can fully protect the

LAst
t Z st

t X
st
t α = 0

Z st
t X

st
t
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idea, then the analysis of the model would not differ. Therefore, in general,   can be considered as

the price of the idea regarding the production method of the goods.

8 By redefining    and setting  , instead of adopting the assumption (3.19)

made by[11][12], where   is a parameter value of   in the state  , our results will not change. However,

if the assumption (3.19) are not adopted, any change in   would simultaneously result in a change in 

, thereby altering price (3.8) and dividends (3.10) as well, which complicates the interpretation of the

model further.

9 For the case where  , we can similarly derive the intuition.

10 Note that the interior   is ensured by the condition 

If this condition is not satisfied,   holds, i.e., there are no R&D activities.

11 The values of the variables in the state    depend on when the economy transitions to the state 

  but in (3.31), readers will be able to infer from assumption 1 that when  , the economy

transitions to the state   at date   with probability  . In this paper, we follow the convention

used in[10] and many subsequent studies on stochastic bubbles.

12 Note that if we focus on the asymptotic behavior of  , we learn from (3.21) that the output

growth rate rises and falls together with an increase and decrease in  . Hence, the growth rate of

aggregate output also decreases together with the burst of stock bubbles.

13 [3] also discusses that instead of stock bubbles, the consequences of leveraged real estate bubbles can

be different because they can lead to devastating consequences in the financial system.

14 In Uzawa’s theorem within neoclassical growth theory, capital-augmenting technological progress

must be entirely absent on the BGP, which represents a knife-edge assumption. Notably, when the

aggregate production function is Cobb-Douglas, capital-augmenting technological progress can be

incorporated by reinterpreting it as labor-augmenting technological progress. Furthermore, the

assumption that the elasticity of substitution between capital and labor is exactly 1 also constitutes a

knife-edge condition.[44] constructs a model of directed technological change, where the productivity

growth of two production factors is determined by two sectors of R&D investment. He shows that

balanced growth can only be achieved under a knife-edge condition.[9] consider a general neoclassical

production function and obtain balanced growth, despite the presence of capital-augmenting

technological progress. Nevertheless, it still requires knife-edge conditions. Indeed,[9]  clearly note

“our model is no exception to this rule.”

P
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15 This difficulty also implies that there is a discontinuity in proving the existence of a bubble between

zero-dividend assets (pure bubble assets like fiat money or cryptocurrency) and dividend-paying

assets such as stocks, land, and housing.

16 Because of the difficulty, the rational bubble literature has almost exclusively focused on pure

bubbles without dividends. Since the literature on pure bubbles is too large, we would like readers to

see[29]  for a recent review of pure-bubble models and criticisms from the general audience to those

models. See also[45], who discusses that pure bubble models face fundamental limitations for

applications including policy and quantitative analyses. Importantly, as[2] show, the economic insights

and implications are markedly different between pure bubbles and bubbles attached to real assets.

17 See[29] and[2] for the differences of their series of papers from[26], and[[18], Proposition 1(c)].

18  [28]  study[18]’s model in the presence of altruism.[27]  examines deterministic bubbles attached to

individual stocks in a world in which the law of one price is violated, i.e., even if the dividend and the

fundamental value of stocks are the same, the price of each stock can be different. In contrast, in our

model of stock prices in Section 3, we assume the law of one price, as in ordinary macro-finance

models, i.e., if the fundamental value of stocks is the same, the price is the same. In[28] and[27], there is

a continuum of bubble equilibria as in pure bubble models. In contrast, in the present paper and a series

of papers by[2][29][30] and[31], equilibrium is uniquely determined.
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