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route and boulder sections separated by rests. Contrary to other similar

methods, this model introduces a probabilistic approach describing the
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climbers can have about a route grade. Mathematically, the problem takes the

form of a data �tting with non-linear functions that depend on a few

parameters, where the inputs and output of the model are probability

distributions. Fitted parameters are optimized over a dataset containing

information on well-established climbing routes. Several aspects of the model

are commented on and studied. A short comparative study of some of the

hardest routes in the world is also presented.
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I. Introduction

Climbing grades are important features of rock

climbing since they aim to indicate the dif�culty of

each route [1]. They are also an important piece of

information for climbers since they tell them how

affordable a route is. Grades are also important for

professional climbers searching for the most

challenging climbs in the world. Different grade

systems exist [1], but they are widely known for being

both subjective and representing a kind of underlying

truth of a route's dif�culty [2]. The grades of sport and

boulder lines take into account in a complex way the

size, the shape, the spacing of the holds, the steepness,

the length of the route, and sometimes the clipping

positions [3]. All these aspects put constraints on the

human ability to climb a rock. Based on their technical

skills, strength, and �exibility, climbers process these

data to estimate the dif�culty. This is a complex task for

which there is no real recipe (although machine

learning techniques have been tried to predict the grade

of boulder problems from the data of hold positions [4]).

A climber can propose a grade based on their own

experience within a given dif�culty range, but the

process is, in the end, based on personal feeling. The

"of�cial" grade of the route is obtained after multiple

repetitions of this latter until a consensus is obtained.

Mathematically, this can be seen as an average over all

the personal grades. This observation leads to the idea

that attributing a grade to a route can be modeled

mathematically using probability theory [5]. In such a

picture, the grade is a random variable that takes its

value for each person who climbs the route. As a

consequence, a route is attributed to a probability

density of grade that tells us how likely a given

dif�culty level can be felt by someone. The "of�cial"

grade is then the expected value.

On another side, there has been an increasing interest

in a systematic way of evaluating the grade of a route

from the data of each sequence of this latter. Such an

algorithm has existed informally more or less for many

years, but the development of a well-de�ned and

effective computation method is very recent [3,6-7]. To
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date, the most successful method is the one provided by

the website  [3], called DGC in this

paper, for Darth-Grader Calculator. DGC calculates a

route grade based on the association of several route

and boulder sections separated by rests. In many

situations, it returns the correct grade (or at least a

likely grade), but it has several drawbacks [8]. (i) It does

not take into account the uncertainty or the

probabilistic aspects. (ii) It cannot take into account an

effect that can be called "a sensitivity to initial

conditions," for which a small change in one or several

sections can lead to a very different �nal result. (iii) In

some speci�c situations, it leads to obvious false

estimations. For example, a    boulder followed

without rest by a   route (in the French grade system)

is rated   (hard) by DGC, while the reverse route, i.e.,

a   followed without rest by a  , returns an   (soft)

route. The   boulder being extremely harder than the 

 route, it must not make any signi�cant difference in

the �nal grade if it comes �rst or second.

This paper is devoted to the presentation of a

mathematical model resolving the issues of DGC listed

above. The algorithm is then used for a short

comparative study of some of the hardest routes in the

world. The program used for the numerical

computation is not yet user-friendly nor available on

the internet. But these further developments could be of

great interest to many practitioners, both amateur and

professional.

The structure of the article is as follows. First, the

mathematical model is presented. The motivations

behind the model are explained in detail, and the

parameter �tting procedure is discussed (the system

depends on a few parameters that must be determined

�rst). Next, the comparative study of a few routes is

presented. Finally, a short conclusion is made.

II. The Mathematical Model

The model is based on the idea that the grade of a route

can be evaluated by decomposing the route into small

sections and rests that can be graded individually. The

association of all these building blocks must return the

grade of the entire line. As will be explained in detail

below, the association rule must take into account a few

mathematical ingredients. But before going into these

details, let us start the discussion with a quite widely

believed fact [3], two   separated by a medium rest (i.e.,

a rest which is quite good, but not suf�cient to recover

completely from the previous physical effort), should

be  . In mathematical terms, one would translate this

into [9]

or more generally,

where   denotes the grade   of the grade system, and 

 denotes a medium rest. Equation (2) is a recurrence

relationship. If one knows the dif�culty of the �rst

grade levels, it is then possible, in principle, to span the

entire grade system, to recover all the existing grades,

and even the ones which have not been achieved yet.

Equation (2) is interesting and easily exploitable for a

human, but it is not easily used in a numerical

algorithm, and most importantly, it fails to capture

nuances. With this relation, it is not possible to model a

situation like "these two routes are both  , but this one

seems quite a bit harder, but not enough to be  ".

A. Energy Associated With a Climbing Grade

To incorporate thin nuances in the estimation of

climbing dif�culty levels, the mathematical grade

system must be de�ned over real numbers    and not

over integers  . The real number associated with the

dif�culty of a route is denoted  , and it can be

interpreted as the energy that must be provided by the

climber to send the route. The analogy has, however,

some limits since the dif�culty does not depend on

pure strength, but it also depends on technical abilities,

or other physical abilities that reduce the intensity of

the effort, such as �exibility. Then, the quantity   is not

strictly a physical energy, and it is kept unitless.

Another interpretation of the quantity    is one of the

ranking points (a little bit like the 8a.nu scores [10]).

Achieving a given grade returns a speci�c number of

points. The harder the route, the higher the number of

points.

To provide a correspondence between a grade system

and the real numbers, it is necessary to �x (in a quite

arbitrary way) the energy of the �rst grades, and then,

the reference energy of all the grades can be deduced

using equation (2), which becomes  .

Assuming that the �rst grades are given by 2, 3, and  ,

the energies associated with these grades are assumed

to be respectively  . Note that for this model,

it is chosen to start the grade system with these three

grades since it is very dif�cult to make a distinction

between subdivisions (given by letters) in the degrees 2

and 3. The energy associated with each grade from 2 to 

  is given in �gure 1. The correspondence between

energy and grade as given in this �gure is called _the

energy of reference_. We observe an exponential

increase in the energy [11] (it is not linear; notice the log
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scale in the graph). Note that a similar conclusion has

been established in Ref. [12], where the authors have

performed a rigorous analysis using a Bayesian

analysis. A simple curve �tting enables us to determine

an approximated formula to estimate the energy of

reference of a climbing grade. It is given by

with   the number corresponding to the grade  , with 

,  ,  ,  ,... Of course, the

precise values of the energies depend on the initial

ones, chosen arbitrarily, but it does not change the fact

that the energy increases exponentially with the grade.

The exponential increase is a key feature; the precise

value of the energy is not as relevant. This observation

can be understood by making an analogy with the

intensity of sounds [13]. To quantify the strength of a

sound, we usually use the decibel unit (dB). This is a log

scale, and a small difference in dB implies a large

difference in the energy carried by the sound. This unit

system has been chosen because humans are not

sensitive linearly to the energy received from an

acoustic wave. They are only able to distinguish large

differences in energy (i.e., if a sound feels a little bit

stronger than another one, it does not carry a little bit

more energy; it carries a lot more energy). A similar

situation happens for the dif�culty of climbing routes.

E ≈ 1.212n (3)

n gn
= 2g1 = 3g2 = 4ag3 = 4bg4
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Figure 1. Energy of reference   associated with each climbing grade (French system), from

level 2 to level  . The curve �ts as for equation  , with   the number associated

with the grade  . The correspondence with the �rst grades is  ,  ,  , 

,...

B. Bouldery vs. Endurance Sections

When sections are short and bouldery, it is harder to

attribute a grade similar to that of an entire route. The

common practice is to provide a boulder grade on short

hard sections (i.e.,    moves) and to keep a route

grade for long endurance sections (i.e.,   moves) [14].

Here again, the French grade (Fontainebleau) system is

employed for boulder grades. Despite its similar

notation to the route grade system, the dif�culty levels

and the scale of the boulder system do not correspond

to the route system [15]. It was initially assumed that

there was a dissimilarity of one degree between boulder

grades and route grades. For example, doing a    or 

  in Fontainebleau would be as hard as doing a 

  route. This correspondence remains valid for the

easiest problems, but it has been modi�ed over the

years when new climbing dif�culties have been

introduced. For example, a    boulder corresponds to 

 routes, and a   boulder corresponds to a   route.

However, there still exist some discrepancies. The 

 correspondence is now widely assumed for

the route Hubble [16], at Raven Tor, but some very long

boulders are graded  , and they are assumed

equivalent to   or   routes (e.g., "la force", at Orsay's

roof, "The wheel of life" in the Grampians, "Unendliche

Geshichte 1+2+3" in Magic Wood) [17].

To assign an energy value to boulder grades, whose

scale is already �xed by equation (2), a few assumptions

are required. In the following, it is assumed that  , 

,  ,  ,  , 

,  ,  .

Here, the energy of a slashed grade corresponds to the

midpoint energy between the reference energies of the

two nearby grades (note that the slash will also be used

with another meaning, below in the text). A linear

interpolation is used for the grades in between. The last

correspondences are based on Adam Ondra's opinion,

as given in [15].

C. Different Association Rules

The next step of the mathematical model is to introduce

different association rules of energy. The underlying

purpose is to incorporate in the computation the quality

of a rest between two sections and the intensity of the

sections (bouldery or endurance). Following the

classi�cation of DGC [3], rests are classi�ed into good (

), medium ( ), bad ( ), and non-existing ( ). A

good rest is a rest for which an (almost) complete

recovery of the physical abilities is possible. A non-

existing rest is by de�nition the absence of rest, a bad

rest is a very short break where it is possible to shake a

bit and chalk the hands, but it is not suf�cient for a

complete recovery. A medium rest is something in

between a good and a non-existing rest..

E
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Using the same convention as equation (2), an arbitrary

association rule is noted

with  .

The 4 types of rests provide an easy-to-use

classi�cation. However, they have some limitations,

which are the same as the climbing grades. For the

mathematical model, it is preferable to describe a rest

with a real number, taken in the interval  . For

simplicity, such a number is also noted    in the

following. A rest with    corresponds to a

nonexistent rest, and a rest with   corresponds to a

good rest. Medium and bad rests are de�ned

respectively by   and  .

With these materials at hand, it is now possible to

translate equation (4) into an operation on energies. It

takes the form of a function  , with 

. Here, the following form of the

function is chosen:

 R  =gn gk gl (4)

R = G,M,B,N

I = [0, 1]

R

R = 0

R = 1

R = 0.5 R = 0.25

= f( ,R, )E3 E1 E2

f : R × I × R ↦ R
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f( ,R, ) = + β(1 + (R) )E1 E2 E+ α1,2 e−
(ln −lnE2 E1)4

σ E− (5)

= max( , )E+ E2 E1 (6)

= min( , )E− E2 E1 (7)
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where    is a positive constant different from zero 0 if

the second section is a boulder problem. For a long

section of endurance,  . Moreover,    is

another parameter to determine. In total, the model has

6 parameters,  . They must

be determined from the data of well-established routes.

The derivation method of these coef�cients is

described in section II F.

The association function may look a little bit

complicated, but it possesses the following interesting

properties:

It returns a real number that can be assimilated to

the energy of a route.

It is not commutative, e.g.,    is not equal to 

.

It cannot be smaller than the largest energy

associated with the two sections (e.g., the energy of 

 cannot be smaller than the energy of  ).

The easiest section contributes signi�cantly to the

total grade only if its dif�culty level is not too far

from the highest one (e.g., the    in    is

negligible in front of the  , and the result must be 

, but in the case of  , the    is not

negligible, and the �nal result must be higher than 

.)

The quality of the rest in�uences the total grade by

weighting the contribution of the easiest section.

The hardest one remains unaffected by a rest.

A boulder section coming in second position is

usually harder to achieve. Consequently, its energy

acquires an added value, but only if the boulder

problem resides in the same range of dif�culty as

the other section.

D. Introducing probability distributions

In the previous sections, a mathematical model of

routes and boulder climbing grades has been

developed. An energy quantity has been assigned to any

kind of climbing sequence, and association rules have

been proposed to compute the energy of a full route.

Real numbers have been used to open the possibility

that routes or boulders with the same grade can feel

more or less hard, but this aspect has not been fully

exploited yet. Moreover, the model, as it is presented so

far, is not fully satisfactory since it does not well

describe the various opinions on the dif�culty level of a

line. A possible origin for the disparate viewpoints

comes from the personal limitations of climbers. For

example, a reachy route is harder for small people. This

leads to the idea that a grade is not always fully

determined, and we have a probability of obtaining a

given dif�culty level. The probability distribution can

be spread over different levels (for example, 50% 8 +

and 50% 8 ), but it can also be extremely localized on a

single one (e.g., 3% 7 +, 92% 8 , and 5% 8 +).

In the mathematical model, the probability distribution

is de�ned by a normalized function  .

This distribution can be mapped back to the climbing

grades using the energy-grade correspondence given in

�gure 1. The switching between two grades    and 

  is de�ned by the midpoint energy 

.

With the introduction of probabilities, the energy of a

route becomes a random variable. As a consequence,

during the computation, we have to specify a

probability distribution of energy for each climbing

section and rest. Many choices of input probability

distribution can be decided. For the climbing sections,

they are all chosen to be uniform on the interval 

, where    and    are respectively the

minimum and the maximum energy allowed on the

uncertainty interval. A uniform probability distribution

on an interval    is noted by  . The input probability

for the energy    is therefore noted  .

Logarithms are utilized to return approximately a

uniform distribution on climbing grades rather than on

energy. The values of    and    are by default the

switching energies between the nearest grades, but

they can also be any energy. The interval of uncertainty

can be chosen arbitrarily large. This is useful for

sections very dif�cult to estimate (i.e., the interval can

cover more than a single dif�culty level).

In addition to the probability distribution on energies, a

probability distribution    is assigned to

the rests. They are also assumed to be uniform on a

subinterval  , i.e.,  .

Now that input probability distributions are speci�ed,

the question is how the probability distribution of a full

route can be computed. For each section and rest,

(R)α12

=
⎧

⎩
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⎪

⎪
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−
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β0

= 0β0 σ > 0

, , , , ,σαG12 αG21 αN12 αN21 β0

8a N 7c

7c N 8a

8a G 7a 8a

5b 8a N 5b

8a

8a 8a N 7c 7c

8a

a

b

c a a

p(E) : R → [0, 1]

gn
gn+1

= (E( ) + E( ))Eswitching
1
2

gn gn+1

[ln( ), ln( )]E1 E2 E1 E2

A uA
E (E)u[ln( ),ln( )]E1 E2

E1 E2

p(R) : I → [0, 1]

[ , ] ∈ IR1 R2 p(R) = (R)u[ , ]R1 R2
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random values of energies and rests are generated

numerically. With these values, the energy of the full

route is computed recursively using equation (5). The

process is repeated many times (typically several

thousand repetitions). The �nal energy of the route is

stored in memory for each repetition. Each value of the

�nal energy is different, and they are realizations of a

random variable corresponding to the energy of the full

route. Then, the probability distribution of the line is

reconstructed with the histogram of the computed

energies. Note that, contrary to the initial probability

distributions, the �nal one is not necessarily uniform.

E. Summary of the algorithm and illustration

through an example

Now that all the ingredients of the mathematical model

have been introduced, it is possible to summarize the

calculation steps more clearly.

�. De�ne the probability distribution 

  for each climbing section of the

routes, as well as the probability distribution 

  for each rest of the route. The indices 

  refer to their order of appearance in the full

route. The de�nition of these probabilities consists

of specifying  ,  , and  .

�. For    to  , with    chosen suf�ciently

large (quite good values are    or 

), do the following steps:

Generate random energies  , and random rest 

, using the probability laws   and 

.

Compute recursively the energy of the route using 

,  , and equation (5). The recursion is

performed as follows. First, compute 

, then compute, 

,... until all the

sections and rests of the route have been used. The

result of this computation corresponds to the �nal

energy of the route, and it is noted  .

�. Compute a histogram from the data of the 

 values  . Normalize the histogram to get a

probability distribution.

To illustrate the algorithm, the example of a

hypothetical route is considered. The line is de�ned by:

The use of slashes differs from the usual convention

and its �rst appearance in this paper. It means that the

probability distribution is not centered on a single

grade, but the interval used for the probability

distribution is determined by the reference energy of

the two grades.

The distributions associated with each section of the

route are the following:

For a    section,  , with 

  and 

For a medium rest,  , with    the

Dirac distribution.

For a medium/good rest,  .

For a    section, 

, with 

 and  .

The probability distribution of the full route is

computed in two steps, each step being given by the

computation of the map  . The �rst application of 

  returns us a distribution 

, which corresponds to the

distribution associated with  . The second use

of    provides us the �nal probability distribution 

. Of course, this

last distribution corresponds to equation (10).

Figure 2. (Left) smooth probability distribution 

,  , and  . To simplify the

reading, the abscissa is in a log scale, and reference

energy values are replaced by their corresponding

grade. (Right) probability   to �nd a given grade

for the three cases of the left panel (see equation (11)

for its de�nition).

The probability distributions  ,  ,

and    are plotted in �gure 2. Several

observations can be made. First, the shape of the

distribution is not conserved. The initial distribution is

(almost) �at; the small variations are numerical

artifacts induced by the �nite sampling of the

distribution. The second distribution is closer to a

u
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normal law, and the third one has two distinct peaks.

The accumulation of uncertainties at each section of the

route is responsible for a large uncertainty in the �nal

dif�culty level. For most people, it is likely a 7c route,

but 7b+ and 7c+ are also possible. In fact, almost �fty

percent of the climbers may disagree on the �nal grade.

In the end, the 7c may remain the "of�cial" grade, but

no clear consensus may be achieved. Interestingly, we

recover the property illustrated in equation (2). This is a

key observation for the consistency of the model.

Indeed, equation (2) was used to de�ne the reference

energies, but it is not used anymore in the de�nition of 

  (equation (5)). It is therefore non-trivial that 

 conserves the relation (2).

The continuous probability distribution    provides

precise information on the dif�culty of the line, but it

does not directly answer the following question: what is

the probability of getting a given grade? In other words,

we would like to pass from a continuous description

with the variable    to a discrete description with the

variable  , expressed in a usual grade system. The

mapping is performed with the integral:

These discrete probabilities are given in the right panel

of �gure 2.

F. Computation of the Model Parameters

The computation of the free parameters of the model is

a nontrivial task. They can be determined by �tting the

model with experimental data, i.e., data of well-

established routes.

A collection of 33 well-characterized routes is used as a

training dataset for the model (see appendix). The

number of elements in the dataset is small compared to

typical machine learning problems [18-19], but here, the

number of parameters of the model is small, and it does

not seem necessary to use datasets with thousands or

millions of elements [20]. The dataset entries are chosen

to represent as much as possible all the possible kinds

of associations. The parameter �tting of  ,  , 

,  , and    is performed by minimizing the

cost function:

with,    the number of routes in the training

dataset,    as the target energy associated with

the grade of the route    of the dataset. This energy is

assumed to be known without uncertainty, and the

grade/energy correspondence is the one given in �gure

1.    denotes the estimated mean value of the

�nal energy of the route  , as computed by the

algorithm. This energy depends directly on the series of

climbing sequences and rests of the line (which are

speci�ed in the dataset), and it also depends on the

parameters to �t. Note that    can be evaluated with

good accuracy using only a few random realizations of 

  (on the order of 50 compared to an order of

5000 to evaluate the probability distribution correctly).

The cost function    is then minimized with the

algorithm JAYA [21]. The result of the optimization is: 

,  ,  , 

, and  .

Figure 3. Probabilities   predicted by the

algorithm. The target (of�cial) grades of the routes are

given after their names in brackets. As we can observe,

the probabilities are always highly concentrated

around the target grade.

Note that 4 decimals are taken into account to obtain a

�ne result. However, extensive numerical tests have

shown that the parameter sensitivity is quite low.

Restricting the parameters to one or two decimals can

provide quite good results.

The parameter    is not determined like the other

parameters. It is �xed by hand to  . The dataset

does not allow us to determine it very accurately, but

having an accurate value does not seem strictly

necessary. It is chosen large enough so that only nearby

grades can in�uence each other, but not too much, to

limit the in�uence of a small grade on a large one.

With this kind of mathematical model, which is aimed

at predicting new data from the basis of known ones

(i.e., like in machine-learning techniques), another

dataset called the validation set is used to verify the

model's predictive power. In typical machine learning

systems, the training dataset is around 80% of all the

data, and the validation dataset is the remaining 20%

f

f

p(E)

E

gn

p( ) = p(E) dE.gn ∫
( + )/2En+1 En

( + )/2En−1 En

(11)
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1
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∑
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[18-19]. Here, the validation set is composed of 8 routes

with different grades (see appendix for details). The

probabilities    of these routes, as predicted by the

algorithm, are given in �gure 3. We observe a very good

correspondence between the target grades and the

highest-grade probability predicted by the algorithm,

hence validating the relevance of the model.

G. Further comments on the assumptions of the

model

To construct the model, several assumptions are

required. They have already been more or less discussed

in the text, but they are commented on again with more

details.

a. Initialization values of energies

The energy scale requires initial values to be generated.

They are chosen arbitrarily. The choice of initial value

can potentially have an impact on the �nal result.

However, we observe that an asymptotic behavior is

reached quickly (see Fig. 1), and thus discrepancies

between different initializations should be mostly

visible on the easiest grades. Furthermore, the fact that

the model parameters are optimized for a given energy

scale tends to limit the dependence of the model on the

energy values. The most important thing is the relation

between the different levels, not their precise values.

Moreover, the fact that probability distributions are

used over a very wide range of energy tends to suppress

issues related to �ne-tuning of the energy scale. Indeed,

with the probability approach, it is not necessary to get

"the true" grade (which is an inadequate notion), but a

plausible grade distribution, given the knowledge of

prior data. In addition, the probability distributions are

typically large in the space of variables, so small

variations of these latter tend to be negligible.

b. Construction of the energy scale based on

route data

The route energy scale is constructed recursively using

an empirical approach, and the boulder energy scale is

mapped non-linearly onto the route scale. This

approach is motivated by an empirical relation of

recurrence. The reverse procedure, which would consist

of �rst de�ning the boulder energy scale, is less obvious

since boulders are very short and it can be harder to

decompose the problem into well-identi�ed sections

(although it is not impossible). Moreover, there is no

real proof that the recurrence relation holds exactly true

at any climbing level (of routes). It may be interesting to

make the relation grade-dependent. Nonetheless, as

already pointed out, the most important thing is not the

energy scale by itself, but the association rule, which is

�tted from experimental data. Again, this procedure

tends to limit modelization artifacts.

c. Correspondence between rest quality and

percentage of rest

Following DGC convention, 4 types of rests are used as

simple user inputs for the algorithm. However, the core

of the model uses a continuity of different rests, and

similarly to climbing grades, a correspondence between

the discrete and the continuous descriptions must be

imposed. Again, this contains a part of arbitrariness,

but the precise values are motivated by empirical

assumptions so that the model can reproduce

qualitatively the desired output. The use of   and 

 for respectively   and   rests are obviously the most

reasonable assumptions. The value    for a 

  rest is related to the de�nition of medium:

something halfway between two sizes. The value 

  for a    rest follows the same idea as the

medium case, but now the extremities are given by 

  and    rests. Similarly to grades, the use of

probability distributions and the use of a �tted model

tend to suppress the artifacts induced by these arbitrary

de�nitions.

d. De�nition of the parameterized association

rules

The de�nition of the association rule depends on some

arbitrary assumptions (e.g., the use of Gaussian

functions). Other functions may produce very similar

outputs. This choice is motivated by the fact that 

 must be a map  , it must be non-

commutative, it is strictly increasing with respect to the

�rst and last arguments, it must be sensitive mostly

around the largest grade, depending on the rest and the

nature of the section, and the output is weighted to

describe diverse situations when sections are combined

together. The adjusted parameters are used to reduce

the part of arbitrariness. This may be enhanced with

models using additional parameters, but this would

require a larger dataset and a more detailed description

of the routes in the databases.

e. Uniform distributions

Uniform distributions are used as a default choice of

probability distribution. This is a basic assumption in

cases where no real information on a true probability

distribution is available. It is possible to replace the

p( )gn

R = 0

1 N G

R = 0.5

M

R = 0.25 B

N M

f R × [0, 1] × R ⟼ R
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uniform distributions with more realistic ones if they

are known.

III. Application: comparison of some

of the world's hardest routes

To �nish this paper, the algorithm is applied in a short

comparative analysis of some of the hardest routes in

the world (at the moment of writing this paper).

The routes are Silence (9c) [17], DNA (9c) [22], B.I.G. (9c)
[23], Sleeping Lion (9b+) [24], and Excalibur (9b+) [25]. The

lines have been visited by several climbers, but since

their �rst ascent, none has been repeated yet [26]. The

�rst ascents were made respectively by Adam Ondra

(2017), Seb Bouin (2022), Jackob Schubert (2023), Chris

Sharma (2023), and Stefano Ghisol� (2023). For each of

these climbers, these routes may be considered their

hardest achievement so far.

The grade density probabilities are computed with the

following sequences:

Silence: 

,

DNA:  ,

B.I.G:  ,

Sleeping Lion: 

Excalibur:  .

It should be noted that some sequences of Silence and

DNA are slightly different from the ones initially given

after the �rst ascent, due to additional opinions given

by other climbers. For Silence, the �rst crux may be

slightly harder than    since it has been tried by at

least 3 other climbers, but only A. Ondra has done it yet.

Concerning the second crux of the route, it may be

easier than initially expected. For DNA, after the

comments on J. Schubert, the boulder problems can be

harder than the grades given by S. Bouin, especially the

�rst one, which has a reachy move.

The probability density    of each route is given in

�gure 3. The grade probabilities   are given in table

III. We observe that all the routes are predicted in the

range   /  , but only Silence can be considered as a

pure    since it has a    probability on this grade.

The second hardest route is    but with a 

 probability around  . All the other routes are more

likely to be  . However, several comments on these

results can be made.

First of all, Sleeping Lion is very close to DNA; the

dif�culty also seems clearly above  . Then, Chris

Sharma could have announced    for this route. The

frontier is very close. If we consider that the two middle

rests are respectively   and  , the   probability goes

to  . If the   boulder problems are all replaced by 

  boulders and the    boulder is

replaced by a   boulder, the grade falls to   with a

probability of  .

As a second comment, the density probabilities of B.I.G

and Excalibur are quite similar. They are also very large,

and this complicates the choice of a grade. For B.I.G, the

arguments were clearly asserted by Ondra and

Schubert: the route is very long, and the crux feels very

hard coming from the ground. Moreover, the route

remains more or less humid all the time, and this is a

source of additional dif�culty. The    possibility is

small, but for these two climbers, the route feels harder

than all the other    they have made. For Excalibur,

this is quite the opposite. The route is short, and so is

the duration of the effort. The key to success relies on

the middle rest. For a medium rest, the grade is   at 

 (still, it remains a hard one), but for a very bad or

nonexistent rest (let us say, there is no rest at all), the

route is   at only  .

To conclude this small application of the algorithm, it

enables us to render quite accurately the true dif�culty

of a route. A clear consensus on the grade of Silence

may be easily achieved, but this may not be the case for

DNA, B.I.G., and Sleeping Lion. Their grades could be

adjusted by the next repeaters. With these lines very

dif�cult to grade, the maths do not always return the

�nal conclusion. One also has to answer the question,

"Which grade do you want for this route?" As A. Ondra

said about B.I.G [27]: "I think this amazing route

deserves a nice grade, too." This is not the �rst time

that such a thing has happened! Maybe almost all

climbing crags have amazing routes with nice grades?

8b G 8c/8C +  B/M 8A/8B B 7C +  G 7B

8c/8c +  M/G 8A/8B B 8A + /8B N/B 8c+

9b N/B 8A/8B N 8a/8a+

7B/7B +  G 8A M/G 8A B/M 8A/8A +  N/B 8A

8B B/M 8C

8C

p(E)

p( )gn

9b+ 9c

9c 100%

DNA

9c 55%

9b+

B. I.G

9c

M B 9c

69% 8A

7C + /8A 8A/8A+

8A 9b+

99%

9c

9b+

9b+

72%

9c 60%
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Figure 4. Probability   to obtain a given grade for DNA, Silence, B.IG.,

Sleeping Lion, and Excalibur. To simplify the reading, the abscissa is in a log

scale, and reference energy values are replaced by their corresponding

grades.

Table I. Probability   to

obtain a given grade for DNA,

Silence, B.IG., Sleeping Lion,

and Excalibur.

IV. Conclusion

In this paper, a mathematical model for the estimation

of climbing route grades was presented. The calculation

is based on the association of several route and boulder

sections separated by rests. The model incorporates

several key ingredients. First, the level of dif�culty and

the quality of a rest are quanti�ed using real numbers.

They are interpreted respectively by the amount of

energy that must be provided to achieve the route (or in

some sense the number of rewarding points for sending

a given dif�culty), and a percentage of the quality of the

rest. Based on real-life observations, a correspondence

between grade/energy and "type of rest"/"percentage of

rest" is made. Interestingly, the energy scales

exponentially with the grade. A second important

feature is the association rule that allows us to combine

the energy of sections separated by rests into the

energy associated with the full line. Using the

grade/energy correspondence, the grade of the full

section can be deduced. The association rule depends

on a few parameters derived by a �tting procedure. This

latter is performed utilizing an optimization algorithm

that computes the best set of parameters reproducing

the dif�culty level of a dataset of well-characterized

routes. The �tted model is then checked using a second

dataset. The last important point is the incorporation of

probability densities in the model. The use of

probabilities is motivated by the various dif�culty levels

that climbers may witness on the same line. In this

setting, the grade attributed by each climber is a

random variable, and the "of�cial" grade, the grade

given in a guidebook, for instance, is the expected

value.

As an illustrative example, the algorithm was applied to

compare a few of the most dif�cult routes in the world:

Silence, DNA, B.I.G., Sleeping Lion, and Excalibur. This

short comparative study emphasizes very different

situations: cases where there is no possible uncertainty

p(E)

p( )gn
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about the grade (everybody will agree on it), and cases

where a consensus is far more dif�cult. Several

motivations used to choose one grade rather than

another have also been reviewed.

The algorithm has been extensively tested on numerous

routes, which are not necessarily included in databases

(if they could not be considered as "references" for the

grade), and the algorithm has always returned a

plausible result. In some way, the use of probabilities

reduces the potential failures since it always returns the

most likely climbing grades given some prior

knowledge. The prior knowledge is constituted of both

the optimized model and the accuracy of the route

description. It is not guaranteed that the algorithm

always returns the most accurate description of the

route. Indeed, the predictions inherit all the usual

limitations of data �tting. Nevertheless, this model can

be further improved to take into account additional

features. For example, the addition of very physical

sections may not have the same impact as the addition

of more technical sections. Moreover, the �tting

parameters may also be improved with a bigger dataset.

Another possibility is to replace equation (5) with a

neural network. A neural network usually has a very

large number of free parameters that must be �xed

with the training procedure. This large number of

degrees of freedom in the model can enable us to reduce

many assumptions (such as the form of eq. (5)).

Basically, it would learn the association rule from

nothing else than the dataset. This may be very

interesting, but it would require a very huge dataset and

heavy numerical computations for the training.

As a �nal remark, the algorithm can also be used to

predict the grade of boulder problems if the moves or

the sections are graded individually. This kind of

computation is straightforward; it is only suf�cient to

replace the route energies of reference with the boulder

energies of references in the computation of the

histogram. As an example, the algorithm predicts a

100% probability on   for _Burden of Dreams_, which

is the correct grade according to the community (for

this computation, the following sequence is used: 

).

Appendix A: Datasets

The dataset used for the parameter �tting is given in

Table II. The dataset used to validate the �tted

parameters is given in Table III. The dataset is restricted

to routes that are commonly assumed to be a reference

for the grade (the popularity of the route can be either

local or international). Some of the dataset entries are

adapted from [3]. In such a case, the name of the route is

written in italics.

Table II. Dataset used for the parameter �tting.

Table III. Dataset used to validate the �tted

parameters.
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