
31 July 2025, Preprint v2  ·  CC-BY 4.0 PREPRINT

Research Article

Some Mathematical Issues Regarding a

New Approach Towards Quantum

Foundations

Inge Svein Helland1

1. Department of Mathematics, University of Oslo, Norway

In this article, the weakest possible theorem providing a foundation for the Hilbert space formalism of

quantum theory is stated. The necessary postulates are formulated, and the mathematics is spelt out

in detail. It is argued that, from this approach, a general epistemic interpretation of quantum

mechanics is natural. Some applications to the Bell experiment and to decision theory are briefly

discussed. The article represents the conclusion of a series of articles and books on quantum

foundations.

Corresponding author: Inge S. Helland, ingeh@math.uio.no

1. Introduction

In a number of articles, the newest ones being Helland[1][2][3], this author has proposed a completely new

foundation for quantum theory, a foundation based upon theoretical variables, which in a given context

may be attached to an observer or to a group of communicating observers. These variables can be

accessible or inaccessible. An example of a (maximal) accessible variable may be the positions 

 of   independent particles; another example may be their momenta  .

A typical inaccessible variable may be the vector  .

From a mathematical point of view, the notion of a theoretical variable will be considered primitive. The

only requirement is that if    is a theoretical variable and    is a function of  , then    is a theoretical

variable. Similarly, the notion of an accessible variable is primitive. Again, it is only required that if    is

accessible and   is a function of  , then   is accessible.
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Given these primitive notions, the theory may be implemented in different ways. In this article, I will

concentrate on the case where the variables are physical variables like positions, momenta or spin

components. A physical variable is said to be accessible if it can in principle be measured with arbitrary

accuracy.

Other implementations are possible. In Helland[4]  the theoretical variables are decision variables. In

Helland[5]  they are statistical parameters. In both cases, a fairly rich applied theory can be constructed

from the mathematical theory considered here.

By assuming the existence of two different maximal accessible variables—in Niels Bohr’s terminology

two complementary variables—and making some additional assumptions, it is shown in the above

articles that essentially the whole Hilbert space apparatus results. The purpose of the present article is to

look closer at the additional assumptions. It turns out that these can be considerably weakened.

What we do have to assume is that the two variables, called   and   in the general theory, may be seen as

functions of some basic inaccessible variable  , and that groups act on both   and  .

In Helland[1]  it was assumed that the two actual variables were related (   for some

transformation   on the space  , the range of  ). It is shown here that we only have to assume: 1) The

spaces   and   have the same category; 2) There is a group   acting on  . In the example above, we

can let   be the multivariate Weil-Heisenberg group.

We also have to assume that there is a transitive group   acting on  , and that a left-invariant measure 

 with respect to   is given. In the above example, we can just let   be the translation group.

In Helland[1] it was assumed that a multivariate representation   of   with certain properties existed.

In the present paper, we show how such a simple representation can be constructed. This assumption is

simply not necessary.

From this, the weakest possible version of my main theorem is given as Theorem 1 below. The conclusion

of the theorem is that every accessible variable has a symmetric operator in   attached to it,

where  , and    is an invariant measure on    induced by the invariant measure    on  .

(Strictly speaking, for this conclusion we need technical assumptions such that the spectral theorem is

valid for symmetric operators, not only for self-adjoint operators.) This is the starting point for much of

the Hilbert space apparatus. Apart from the above symmetry assumption, the essential assumption is

only the existence of two complementary theoretical variables in the given context.
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Note that there are no microscopic assumptions here. Thus, this derivation also gives a foundation for

what Khrennikov[6][7]  calls quantum-like models. These models have links to several scientific

disciplines. The link to quantum decision theory will be discussed elsewhere. Links to relativity theory

and quantum field theory are discussed in Helland[8] and in Helland and Parthasarathy[9].

I will concentrate on the derivation of the Hilbert space apparatus and related derivations in this article.

Assumptions that lead to the Born rule for probabilities are discussed, and the derivation is proved, in

Helland[2]. The assumptions are also discussed in Section 3 below. A derivation of the Schrödinger

equation from a few postulates has been given for instance by Klein[10].

Finally, it is a basic setting in that the theoretical variables are attached to an observer or to a group of

communicating observers. A natural assumption in addition is that they are connected to the mind(s) of

this/these observer(s). This leads to a general epistemic interpretation of quantum theory, an

interpretation that contains QBism (see, for instance, [11]) as a special case. Quantum theory is seen as a

theory of our knowledge about the real world, not directly about the real world. This is discussed in

Section 4.

The plan of this article is as follows: in Section 2, the theory is outlined in its weakest possible version. In

Section 5, some consequences—consequences for an understanding of the Bell theorem and for a new

theory of decisions—are briefly discussed. In Section 6, some final remarks are given.

2. The main theorems

I repeat that my main notion is that of theoretical variables, which can be almost anything. The

theoretical variables can be accessible or inaccessible.

For physical modelling, I assume a fixed context, and that an observer or a group of communicating

observers in this context has/have a set of theoretical variables associated with him/them. In the case of a

group of observers, their communication should be related to these variables. Then my first postulate is

as follows:

Postulate 1. There is an inaccessible variable   such that all accessible variables can be seen as functions of  .

There is a group   acting on  .

In simple physical examples, such a    can easily be constructed. As a general statement covering all

possible situations, Postulate 1 can also be given a religious interpretation; see Helland[12][13]. This will be

further discussed elsewhere.
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One possible option is to replace Postulate 1 with some assumptions in category theory; see the arXiv

version of Helland[1]. Category theory in the foundation of quantum mechanics has also been considered

by others, for instance, Coecke and Papette[14] or Döring and Isham[15]. This option will not be considered

further in the present article.

My main theorems will refer to a situation where we have two different maximal accessible theoretical

variables, which I, following Niels Bohr, will call two complementary variables. I will show that the whole

Hilbert space apparatus follows under weak conditions from the assumption that we have two such

maximal accessible variables. The term ‘maximal’ means roughly that the variable cannot be extended

and still be accessible. To be precise, I need to define a partial ordering among the variables.

Definition 1. Say that   if   for some function  .

This is a partial ordering among all theoretical variables and also a partial ordering among the accessible

ones. Note that    from Postulate 1 is an upper bound in the accessible case. (Again, one must make

precise what is meant by a function. For instance, one can let    and    be topological spaces and

concentrate on functions that are Borel-measurable.) We will say that   is a maximal accessible variable if

it is maximal with respect to this partial ordering. By Zorn’s Lemma, which is equivalent to the Axiom of

Choice, maximal variables always exist. For those who do not believe in Zorn’s Lemma, we add an

additional postulate.

Postulate 2. For every accessible variable   there is a maximal accessible variable   such that  .

In order to achieve a meaningful theory, we also need some symmetry assumptions. One such is given by

the existence of a group   acting upon   (Postulate 1). Another assumption is given by the existence of a

group   acting upon  . In concrete examples, these groups can be easily constructed.

Postulate 3. To a given accessible theoretical variable    there is a group   acting upon  , and there is a left-

invariant measure   with respect to   on  , the range space of  . The group   is transitive and has a trivial

isotropy group.

Conditions for the existence of an invariant measure are discussed in Helland[16]. Note that if an invariant

measure is supposed to act on every single theoretical variable, there is consequently an invariant

measure on every set of theoretical variables.

Finally, in this article, I will assume for two complementary variables   and  :

Postulate 4. The range space   is either finite and has the same number of values as  , or, more generally, 

 and   have the same category.
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(In terms of category theory, this means that   and   are objects, and that there is a morphism from 

  to    and another morphism from    to  . More intuitively, it means that there is a bijective

function connecting   and  .)

This is all we need for our first results: a Proposition and a basic Theorem.

Proposition 1. Assume that the basic inaccessible variable   satisfies Postulate 1, and that two given accessible

variables    and    satisfy Postulate 4. Then    and    are either in one-to-one correspondence, or the following

holds: there exists an accessible variable    which is a bijective function of  , a transformation    in  , and a

function   acting on   such that   and  .

In many applications, it turns out that this will hold with   equal to  . In that case, we say that   and   are

related:   and   for some  .

Proof

The finite-dimensional case was treated in Section 7.2 of Helland[1], so I will here look at the more general

case. Choose a function    such that  , and fix  . Let    be any point in    such that 

. Such a   must exist, since   has the same category as  .

The group   acting upon   need not be transitive. The points   and   either lie on the same orbit of 

  or on different orbits. In the first case, there exists a    such that  , so that 

. In the second case, let    be a function of    which characterises the orbits. Then there

exists a   on the orbit containing   such that  , and by definition   for some  .

In this case, we get  . Define  . Then 

, which means that    is a bijective function of  . The inverse    is well

defined, since, by  , and letting   vary, the range of   has the same category as the range

of  .

Since this holds for every  , the Proposition is proved.

The Theorem, which is a refinement of the basic Theorem 4 in Helland[1], runs as follows.

Theorem 1. Assume Postulate 1 and Postulate 2. Let    and    be two maximal accessible variables satisfying

Postulate 4 that are not in one-to-one correspondence, and assume that they are real-valued or real vectors. Let 

 satisfy Postulate 3. Then there exists a Hilbert space  , and to every accessible variable   there exists a unique

symmetric operator   in  .
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Proof

By Proposition 1, there exists a maximal variable    such that    and    are related. Then it follows from

Theorem 4 of Helland[1] (see also Theorem 1 of Helland[17]) that there exists a Hilbert space   such that

every accessible variable is associated with a unique symmetric operator in   if the following condition

holds:

There exists a unitary multi-dimensional representation   of   such that for some   the coherent states 

 are in one-to-one correspondence with the values of   and hence with the values of  .

I will now define a simple representation   on the Hilbert space   satisfying this condition.

Proposition 2. For    and  , define  . Then the above

condition holds.

Proof of Proposition 2

Lemma 1.  .

Proof

By the invariance,  . 

Lemma 2. The mapping   is a homomorphism.

Proof

Lemma 3.   is unitary for every  .

Proof

Lemma 4. Choose    such that    is a bijective function of  . Then there is a one-to-one

correspondence between   and the coherent functions  .

Proof
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 implies   for  . Since   is bijective, it follows that  . 

Theorem 1 now follows from Theorem 4 of Helland[1] and Proposition 2. 

This result, together with the other results of Helland[1][2][3], now gives a very simple alternative

foundation of quantum theory. Note that this is a purely mathematical theory, and it can be interpreted in

different directions. In an ordinary physical setting, it is natural to interpret the accessible theoretical

variables as ordinary physical variables, but also as connected to the mind of an observer or to the joint

minds of a communicating group of observers. This gives a general epistemic interpretation of quantum

theory, an interpretation which has QBism as a special case. Quantum theory is then a theory of an

observer’s or a group of observers’ knowledge about the real world, not a theory directly about the real

world.

In this article, I will not go into detail with the results of the articles mentioned above, but one

mathematical result deserves to be mentioned.

Theorem 2. If    and    are related through a transformation    of  , then there exists a unitary operator 

 such that  .

Proof

See Theorem 5 of Helland[1]. 

I should also mention again the consequences for accessible theoretical variables that take a discrete set

of values.

Every accessible variable has a symmetric operator associated with it.

The set of eigenvalues of an operator is equal to the possible values of the variable.

An accessible variable is maximal if and only if all eigenvalues are simple.

The eigenvectors can, in the maximal case, be interpreted in terms of a question together with an

answer. Specifically, it means in a context with several variables, a chosen variable   may be associated

with a question ‘What is the value of  ?’ or ‘What will   be if we measure it?’, and a specific eigenvector

of  , corresponding to the eigenvalue  , may be identified with the answer ‘ ’.

In the general case, eigenspaces have the same interpretation.

The operators of related variables are connected by a unitary similarity transform.

( θ) = ( θ)f0 g−1
1 f0 g−1

2 ( θ) = (θ)f0 g−1 f0 g = g−1
1 g2 f0 g = e

□

□
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□
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In Theorem 1 it was concluded that the relevant operators were symmetric. This is a simple property: 

  for all    in the domain of  . To use the spectral theorem in general, we need

operators corresponding to the two maximal accessible variables    and    to be self-adjoint. Then the

spectral theorem is valid[18], and it can be used to define operators corresponding to other accessible

variables.

Look at the cases   and  . Then we can recall the formulae (9) and (10) in Helland[1]:

where  , a group acting on  ,    is a left-invariant measure on  ,  ,  , 

 with   being an irreducible representation of  , and  .

The domain   of   is the set   where the integral   converges. The domain   of its adjoint

is the set   such that the functional   is bounded, and for   the adjoint

is defined by the requirement that    is the unique vector    such that    for all 

.

On investigating the self-adjointness of the symmetric operator  , the main work lies in proving that 

. Let  . Then   must be defined, so we always have that  . Let then  .

Then by the symmetry also the integral   converges. The problem is to find conditions such

that    defines a bounded functional. This means that there exists a constant    such that 

 for all  . A sufficient condition for this, given (1), is

Postulate 5. The integral   converges for every  .

Note that for  , the corresponding integral without absolute values converges.

Proposition 3. If Postulate 5 holds, then   is self-adjoint. A corresponding condition holds for  .

Proof

By the Cauchy-Schwarz inequality

and the last two integrals are finite when    and  . Without loss of generality assume 

. 
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The spectral theorem implies:

Theorem 3. For maximal variables    and    that are not bijective functions of each other, the corresponding

operators   and   do not commute.

Proof

I will prove this for the case of discrete-valued variables. The spectral theorem then gives

Since   is maximal, all the eigenvalues are different, so   uniquely determines the set of eigenvectors 

  up to phase factors. Similarly,    is uniquely determined by  . The two sets of eigenvectors

satisfy   and  . These two sets of eigenvectors cannot be identical, for in this case 

, taking the values  , and  , taking the values   would be bijective functions of each other. But when at

least one   differs from the set of vectors  , it follows from the formulae above that   and   do not

commute. 

3. Quantum probabilities

For the derivation of Born’s formula, two more postulates are needed.

Postulate 6. The generalised likelihood principle from statistics holds.

The basis for nearly all statistical inference is a statistical model, a model for the data   in terms of the

total parameter  . This is expressed by a probability function  , in the discrete case a point

probability, and in the continuous case a probability density. The likelihood of the data is defined as 

, the probability function seen as a function of the parameter.

The following principle can be taken as the basis for very much statistical inference, and in my theory it

is also used as a motivation behind Born’s formula.

The generalised likelihood principle

Consider two experiments in the same context  , and assume that    is the same full parameter in both

experiments. Suppose that two observations    and    have proportional likelihoods in the two

experiments, where the proportionality constant    is independent of  . Then, these two observations

produce the same experimental evidence on   in this context.
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The term “experimental evidence” is here left undefined and can be specified in any desirable direction.

In some statistical textbooks and articles, the likelihood principle is formulated without specifying a

context. As discussed in Helland[16][2], specifying    implies that the principle becomes much less

controversial. One may also assume that the two contexts are similar, i.e., one-to-one functions of each

other.

The second necessary postulate is

Postulate 7. Consider a physical context    observed by an observer    whose decisions are influenced by a

superior actor  . Assume that  ’s probabilities are taken as experimental evidence and that   is seen by   to

be rational in agreement with the Dutch Book Principle.

The Dutch Book Principle

No choice of payoffs in a series of bets shall lead to a sure loss for the bettor.

From these two postulates, assuming perfect experiments in the sense that no experimental noise is

assumed, and using a version of Gleason’s theorem given by Busch[19], the following version of Born’s

formula is proved.

Consider two experiments with maximal accessible discrete parameters    and  , having the same

number of values. By a corollary to Theorem 1[1], there are operators    and    in a Hilbert space 

 associated with these two parameters; the eigenvalues of the operators are the possible values of the

parameters, and the corresponding normed eigenvectors are simple. Let   correspond to the event 

 and   correspond to the event  .

Theorem 4. The conditional probabilities are given by

Thus, the probabilities are given by the squared norms of the probability amplitudes  .

From this, more general variants of the Born formula can be proved, for instance the following, valid both

for discrete and continuous variables, and taking as a point of departure a density operator   computed

from an assumed probability distribution over  :

Theorem 5.

τ

τ B

D D D B

θa θb

Aa Ab

H

|a;k⟩

=θa uk |b; j⟩ =θb vj

P ( = | = ) = .θb vj θ
a uk |⟨a;k|b : j⟩|2

c = ⟨a;k|b : j⟩

ρa

θa

E( ) = trace( ).θb∣∣ρ
a ρaAb
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A referee has asked the following question: Why did we get precisely the complex Hilbert space

formalism, and not the generalised probability theory, in the spirit of Khrennikov et al.[20]? The

generalised probability theory is described in detail in Barrett[21] and Müller[22], but we do not need the

definitions here.

The answer to why quantum probabilities in my theory are given by the Born formula, and not by any

more generalised formula, is given by the proofs of the results above, and in particular by a consequence

of the generalised likelihood principle. In the discrete case, one can define the likelihood effects

where again    corresponds to the event  . These likelihood effects are crucial in the proof of

Theorem 4. They are closely related to the positive operator-valued measures (POVM) of traditional

quantum theory, where for discrete data the measure of the event    is given by 

.

Thus, my approach towards probabilities leads to traditional quantum probabilities.

It should also be mentioned that, in addition to the postulates of this article, a final postulate is needed to

compute probabilities of independent events. A version of such a postulate is

Postulate 8. If the probability of an event   is computed by a probability amplitude   from the Born rule in

the Hilbert space  , the probability of an event    is computed by a probability amplitude   from the Born

rule in the Hilbert space  , and these two events are independent, then the probability of the event 

 can be computed from the probability amplitude  , associated with the Hilbert space  .

This postulate can be motivated by its relation to classical probability theory: If    and 

, then

4. The epistemic interpretation and Ozawa’s intersubjectivity

theorem

The interpretation of quantum theory is still a theme of intensive debate and some confusion. In a recent

poll among a group of physicists[23], 21% supported an epistemic interpretation, while 24% supported an

ontic interpretation. 15% supported a mix of the epistemic and the ontic interpretation, while 41% said

(v; , τ) = p( τ, = )|b; j⟩⟨b; j|,F b zb ∑
j

zb∣∣ θb vj (3)

|b; j⟩ =θb vj

= zzb

p( = z τ, = )|b; j⟩⟨b; j|∑j zb ∣∣ θb vj

E1 c1

H1 E2 c2

H2

∩E1 E2 c1c2 ⊗H1 H2

P ( ) =E1 | |c1
2

P ( ) =E2 | |c2
2

P ( ∩ ) = P ( )P ( ) = | | = | .E1 E2 E1 E2 c1|2
c2|2

c1c2|2

qeios.com doi.org/10.32388/UYWYD4.2 11

https://www.qeios.com/
https://doi.org/10.32388/UYWYD4.2


that they supported an ensemble interpretation. In Helland[24][16], I gave several arguments for the

epistemic viewpoint. These arguments were largely of a non-mathematical nature, and so, the main

discussion there is outside the scope of the present article. But one special issue in that connection

contains some important mathematics.

In Ozawa (2019), the author proved the following: Assume two spacelike measurements    and    at

times   and   of the same observable, associated with the operator  . Let   be the time evolution

operator of the total system, i.e., physical system plus environment. Define  , 

 and  . Assume that for all 

Then

for  .

In other words, under the assumptions of space separability and a weak reproducibility condition, the

two observers are forced to get equal measurements.

Khrennikov[25]  recently argued that QBism’s fundamental statement that ‘the measurement of an

observable is personal’ is in contravention of Ozawa’s theorem. His starting point is the following citation

from Fuchs and Schack[26]: ‘The fundamental primitive of QBism is the concept of experience. According

to QBism, quantum measurement is a theory that any agent can use to evaluate her expectations for the

content of their experience.’

Following Khrennikov, Ozawa’s theorem implies that, for accurate local observations, the measurement’s

outcome is intersubjective, which is a strong objection to QBism. There is nothing concerning personal

experiences when different observers by necessity obtain the same measurement result.

This should be contrasted with my own interpretation, which can be seen as a consequence of the

mathematical theory sketched in Sections 2 and 3 above. This mathematical theory can, in a physical

context, be interpreted in two ways: First, the mathematics, including the Born formula, can be seen as

what is given by the observations of a single observer. It should be emphasised that the probabilities in

Born’s formula can be seen as probabilities calculated by the hypothetical superior actor  . Next, the

mathematics can be interpreted as the joint observations as seen by a group of communicating

observers.

M1 M2

τ1 τ2 A U(t)

A(0) = A ⊗ I

(t) = U (I ⊗ )U(t)M1 (t)†
M1 (t) = U (I ⊗ )U(t)M2 (t)†

M2 x

P ( ( ) = x) = P ( ( ) = x) = P (A(0) = x).M1 τ1 M2 τ2 (4)

P ( ( ) = x, ( ) = y) = 0M1 τ1 M2 τ2 (5)

x ≠ y

D
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Note that, in Ozawa’s theorem, the two observers are spacelike separated and do not communicate about

their observations. However, spacelike separated observers may later meet and share their experiences.

Then it is perfectly allowable that they find that their measurement values are equal.

In conclusion, there seems to be no contravention between my general epistemic theory and Ozawa’s

intersubjectivity theorem.

It is interesting that Khrennikov[27] argues that Rovelli’s well-known relational quantum mechanics can

be specified in a way where there is no contradiction to Ozawa’s theorem. Relational quantum mechanics

states that every statement about a system should be related to another system. This ‘other system’ may

well be an observer or a communicating group of observers, which provides a link to my interpretation.

5. A mathematical consequence and an interpretation

This section has been included to illustrate an important aspect of my theory: From purely mathematical

postulates and theorems, and by just adding a natural interpretation, the following conclusions are

derived: 1) general psychological statements having universal validity; 2) an explanation of a physical

phenomenon which has been verified empirically, but which otherwise seems to be difficult to

understand. The theme of this section has been treated in previous articles, and the mathematical proofs

are deferred to these articles. However, the above aspect of the theory has not been clearly stressed

before.

The property of being related (  for some  ), is an important relation between two maximal

accessible theoretical variables   and  . By Theorem 2, if   and   are related, there is a unitary similarity

transformation between the corresponding operators. This theorem has an inverse for finite-

dimensional variables.

Theorem 6. Consider two maximal accessible finite-dimensional theoretical variables    and  . If there is a

transformation   in   and a unitary transformation   such that  , then   and   are

related.

Proof

Since, by Postulate 1,    and    are functions of  , the transformation    induces a transformation    on 

. The theorem then follows from the Lemma of Section 3 in Helland[28]. 

In my basic theory, I have assumed that the theoretical variables are associated with an observer or with a

communicating group of observers in a given context. Concentrate here on the first case, and call the

η(ϕ) = θ(kϕ) k

θ η θ η

θ η

k Ωϕ W(k) = W W(k)Aη (k)†
Aθ θ η

θ η ϕ k s

ψ = (θ,η) □
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observer  . Then we have

Theorem 7. Assume that two finite-dimensional related maximal accessible   and   are associated with    in

some fixed context. Then   cannot in the same context be associated with another maximal accessible variable 

 which is related to  , but not related to  .

Proof

This is a consequence of Theorem 6. See the proof of Theorem 1 in Helland[28]. 

The assumption that the variables are connected to the same context is crucial. In my interpretation of

quantum theory, I connect the variables to the mind of an observer or to the joint minds of a

communicating group of observers. Then we can consider maximal observations made in some fixed

context, which also means some fixed time.

Corollary 1. Assume that    has two related finite-dimensional maximal accessible variables    and    in his

mind at some fixed time  . Then he cannot simultaneously have in his mind another maximal accessible variable

that is related to  , but not related to  .

It is crucial here that time is fixed. By letting time vary,    is able to think of many variables, also

unrelated ones.

In Helland[29][28] this conclusion is applied to the observer Charlie, who observes the results of Alice and

Bob in the famous Bell experiment. It is concluded that from this statement it is possible to understand

that, in practice, noting that Charlie can be any observer, the violation of the CHSH inequality can be

understood. Note that my conclusion here is not directly a consequence of quantum mechanics, but of a

series of mathematical theorems, building upon the above four postulates.

Another application is to decision theory. Let   be faced with deciding among a finite number of actions 

. Define the decision variable   as equal to   if the action   is chosen ( ). Say that   is

accessible, and that the decision is accessible, if the decision can be carried out by  . The variable    is

called maximally accessible if the decision can just be carried out. Note that    is finite-valued, so the

theory of this article applies.

Corollary 2. Assume that   at some fixed time   has in his mind two related maximal decisions. Then he is not

able to, at the same time, think of another decision, which is related to the first of the two decisions, but not

related to the second one.

O

θ η O

O

λ θ η

□

O θ η

t

θ η

O

O

, … ,a1 ar θ j aj j = 1, … , r θ

O θ

θ

O t
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Note that here,   can be any person. According to my theory, we all have this limitation in our minds. The

conclusion can also be generalised to the decisions made by a communicating group of individuals.

This observation can also be used, together with the other results of this article, to give a new foundation

for quantum decision theory, which I plan to discuss elsewhere.

6. Some final remarks

As discussed in Helland[1][3], other possible foundations of quantum theory have been proposed, and my

approach should be compared to these. I will claim that the postulates stated here, and also in Helland[2]

[3], are simpler than most proposals in the literature, but detailed arguments behind such a claim are

beyond the scope of this article, which has concentrated on the rather simple mathematics behind my

approach.

A related approach, based on much more mathematics, is presented in Dutailly[30]. That article also

begins with variables and derives the Hilbert space formulation from them. I argue that the topological

assumptions made by Dutailly are not strictly necessary.

A limitation of my approach is that I do not assume the full validity of the superposition principle. I limit

the concept of state vectors to Hilbert space vectors which are eigenvectors of some physically

meaningful operators. These can be identified by questions of the form ‘What is  ? /What will   be if we

measure it?’ for some accessible variable  , together with sharp answers of the form  . For some such

questions, answers of the type ‘We don’t know’ are allowed. Thinking in this way gives simple

explanations for paradoxes like Schrödinger’s cat and Wigner’s friend; see Helland[8].

The postulates of this article generalise and at the same time simplify the postulates of Helland[3], where

the symmetry conditions and the question of when a symmetric operator was self-adjoint were not taken

into account. On the other hand, in Helland[3], conditions for the validity of the Born formula were

discussed. A more thorough discussion of the Born formula is given in Helland[2].
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