
Noname manuscript No.
(will be inserted by the editor)

Computational substantial violation of the CHSH
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Abstract If a clear and valid no-go for Einsteinian hidden parameters is real,
it must in no way be possible to violate the CHSH with a local hidden variables
based computer simulation. In the paper we show that with the use of a
modified Glauber-Sudarshan method it is possible to violate the CHSH. The
criterion value comes close to the quantum value and is ' 2.4. The proof
(POC) is presented with the use of an R computer program. The important
snippets of the code are discussed and, for transparency, the complete code is
presented in an appendix.
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1 Introduction

It is well known that entanglement was for Einstein [1] a reason to claim that
quantum mechanics is incomplete and/or inseparable [2]. It is also known
from letters exchanged between Einstein and Schrödinger [3] that Einstein
was dissatisfied with [1]. In [4] Einstein gives a simple and readable account
of his worries about the completeness of quantum mechanics. In [5, chapters
5-7] a perhaps one sided (viz. [3] ) but extensive account is given of the
Bohr-Einstein debates. To the author, these are the basic papers and books.
Obviously, it is impossible to give proper credit to the many scientists that
wrote on the topic of entanglement. The author appologizes for not including
them. The paper is absolutely and in no way an overview or general review
of the EPR debate. It only asks the question if certain inequalities are realy
limiting to Einstein’s worries about quantum theory. Nevertheless, the author
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wishes to explicitly mention here the analysis of Einstein’s work by professor
Nordén [6]. Nordén pointed the author at the importance of the work of
Sudarshan.

1.1 Bell correlation

In 1951, David Bohm wrote an interesting chapter in his book on quantum
mechanics that enabled researchers in a later stage of the developments, to
employ in experiment, spin-spin entanglement [7]. The starting-point of our
analysis is the Bell formula [8] to explain spin-spin entanglement with the use
of hidden variables λ. The correlation formula formalized the attempt to find
the possible role of local hidden variables.

E(a, b) =
∫
λ∈Λ

ρ(λ)A(a, λ)B(b, λ)dλ (1)

Given the set of values Λ, this correlation function is the hidden parameters,
λ ∈ Λ, expression for a pardigmatic entanglement experiment [10]:

[A(a)]←∼ · · · ∼←∼ [S] ∼→∼ · · · ∼→ [B(b)] (2)

Here, [S] represents the source of entangled pairs of photons. The wavy symbols
represent the photons traveling from [S] in opposite directions. The a and b
represent the unit length parameter vectors of the measurement instruments
[A(a)] and [B(b)] at a sufficiently large distance d([A], [B])� 0. In the formula
of Bell (1) the hidden parameters, λ, are allowed to influence the correlation
E(a, b) with the restriction

|A(a, λ)| ≤ 1 (3)
|B(b, λ)| ≤ 1

The λ in the set Λ are distributed with probability density ρ(λ). The proba-
bility density might refer to the distribution of hidden variables. We obviously
have

∫
λ∈Λ ρ(λ)dλ = 1.

1.2 CHSH

In our computer program we will look at CHSH (Clauser, Horne, Shimony and
Holt) inequalities [11] such as the one below. For convenience we will provide
the derivation of one such an inequality from Bell’s formula (1). Let us look
at four pairs of parameter vectors: (a, b), (a, c), (d, b) and (d, c). The pairs of
settings can be employed in the experiment (2).

E(a, b) + E(a, c) =
∫
λ∈Λ

ρ(λ){A(a, λ)B(b, λ) +A(a, λ)B(c, λ)}dλ+ (4)∫
λ∈Λ

ρ(λ){A(a, λ)B(b, λ)A(d, λ)B(c, λ)}dλ−∫
λ∈Λ

ρ(λ){A(a, λ)B(b, λ)A(d, λ)B(c, λ)}dλ
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Hence, we can rewrite

E(a, b) + E(a, c) =
∫
λ∈Λ

ρ(λ)A(a, λ)B(b, λ){1 +A(d, λ)B(c, λ)}dλ+ (5)∫
λ∈Λ

ρ(λ)A(a, λ)B(c, λ){1−A(d, λ)B(b, λ)}dλ

With, looking at (3), 1 + A(d, λ)B(c, λ) ≥ 0 and 1 − A(d, λ)B(b, λ) ≥ 0.
Therefore, it can be derived that

B ≡ E(a, b) + E(a, c) + E(d, b)− E(d, c) ≤ 2 (6)

Obviously there are other CHSH inequalities like e.g.

B′ ≡ E(a, b)− E(a, c) + E(d, b) + E(d, c) ≤ 2 (7)

It is noted that similar CHSH inequalities can be derived in a similar manner
as provided in the above. Now the claim of CHSH and the experiment (2) is
that if E(a, b), E(a, c), E(d, b) and E(d, c) are determined, we will get (6) if the
correlation is based on (1). If one blindly trust in the derivation presented for
(6) plus the numerics of the experiment, then this makes both mathematically
and experimental physics sense. The question is, is it untouchably true. As
a caution, we now know that quantum particles can tunnel through a finite
potential. That doesn’t make face value sense either.

2 Modified Glauber-Sudarshan representation

In an excellent textbook of quantum optics the Glauber - Sudarshan repre-
sentation is described [9, page 264-266, section 14.2 ]. The method is related
to the experiment of Aspect [10]. The basic ingredients of this experiment are
represented in (2). We can rewrite Bell’s formula as [9]

E(θ1, θ2) = N−1

∫
f(λ)S1(λ, θ1)S2(λ, θ2)dλ (8)

The (θ1, θ2) [9, page 263,fig 14.1] are equivalent to the (a, b) etc setting pa-
rameters employed in formula (1). In the previous formula (8), N =

∫
f(λ)dλ

Hence, ρ(λ) = f(λ)N−1. The Glauber-Sudarshan representation tries to find
an expression for the S1(λ, θ1) and S2(λ, θ2).

2.1 Modification

Basic to our local hidden variables computer program is a modification of
the Glauber-Sudarshan formulae [9, page 266]. The modification concerns the
adding of functions of the variables f and φ like

γ+ = α+ cos θ + α− sin θ + f cosφ (9)
γ− = −α+ sin θ + α− cos θ + sinφ
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In the computer program we treated φ as a characteristic of the measurement
instrument. Both measurement instruments share the same φ. The use of f
is explained in the section dealing with the algorithm below. The addition of
φ and f to the Glauber-Sudarshan formulae are, in a numerical mathematics
sense, sufficient to violate the CHSH.

2.2 Hidden variables

Furthermore, next to the φ and f , let us consider α+ ∈ {−1, 1} a hidden
variable inside the photon and let us take α− = −α+. In the computer program
use is made of α(A)

+ and α(B)
+ . The A bound probability density is postulated as

δ
α

(A)
+ ,s

(A)
±

and δ refers to Kronecker’s delta with s
(A)
± ∈ {−1, 1} the A-internal

response to the particle from the source to A. Please observe, s(A)
± is a hidden

response in the measuring instrument. The s(A)
± ∈ {−1, 1} is not the Glauber-

Sudarshan expression for A i.e. S(A) presented in (8) and explained further
below. It is a hidden state of the measuring instrument. Similar for B we
see δ

α
(B)
+ ,s

(B)
±

, with, s(B)
± ∈ {−1, 1}. Hence∫

ρ(λ)dλ→
∑

α
(A)
+ ∈{−1,1}

∑
α

(B)
+ ∈{−1,1}

δ
α

(A)
+ ,s

(A)
±
δ
α

(B)
+ ,s

(B)
±

= 1 (10)

2.3 Algebra of the modified representation

The A or B indication is suppressed when considered possible in the discussion
below. In [9, page 266] we may read that, generally, when |γ+|2 + |γ−|2 =
|α+|2 + |α−|2, we have for S

S(λ, θ) =
|γ+|2 − |γ−|2

|γ+|2 + |γ−|2
(11)

Obviously |S| ≤ 1. From the modified Glauber-Sudarshan equations in (9) we
can learn that

|γ+|2 = |α+|2 cos2 θ + |α−|2 sin2 θ + f2 cos2 φ+ (12)
2α+α− cos θ sin θ +

2 (α+ cos θ + α− sin θ) f cosφ

together with

|γ−|2 = |α+|2 sin2 θ + |α−|2 cos2 θ + sin2 φ+ (13)
−2α+α− cos θ sin θ −

2 (α+ sin θ − α− cos θ) sinφ



5

Looking at (12) and (13) it can be concluded that

|γ+|2 + |γ−|2 = |α+|2 + |α−|2 + (14){
f2 cos2 φ+ 2 (α+ cos θ + α− sin θ) f cosφ

−2 (α+ sin θ − α− cos θ) sinφ+ sin2 φ
}

In order to have |γ+|2 + |γ−|2 = |α+|2 + |α−|2 = 2, with α+ ∈ {−1, 1} and
α− = −α+, it is necessary to have

f2 cos2 φ+ 2 (α+ cos θ + α− sin θ) f cosφ (15)
−2 (α+ sin θ − α− cos θ) sinφ+ sin2 φ = 0

This expression can be reformulated as f2 + 2bf + c = 0. Therefore, if we
define,

c ≡ tan2 φ− 2
(
α+ sin θ − α− cos θ

cosφ

)
tanφ (16)

then

2b ≡ 2
(
α+ cos θ + α− sin θ

cosφ

)
(17)

If, b2 − c ≥ 0, the solution f is real and gives

f1,2 = −b±
√
b2 − c (18)

This latter equation is the nucleus of the computer program. The associated
Bell correlation is the formula

E(θ(A), θ(B)) =
∑

α
(A)
+ ∈{−1,1}

∑
α

(B)
+ ∈{−1,1}

δ
α

(A)
+ ,s

(A)
±
δ
α

(B)
+ ,s

(B)
±

(19)

×
{
S(A)(α(A)

+ , θ(A), φ) S(B)(α(B)
+ , θ(B), φ)

}
which is the discrete equivalent of (8). The S(A) and S(B) of equation (19) are
computed according to (11). The value of φ is a fixed parameter in the algo-
rithm. It represents a chracteristic of the two identical-in-construction mea-
surement instruments A and B. Like it was already stated the s(A)

± and s
(B)
±

are determined inside the respective measurement instruments A and B and
are a response to the input from the source in (2). In terms of the represen-
tation in (2) the s

(A)
± and s

(B)
± arise in the respective intruments when the

”waves” enter the instrument viz. (2). Hence, the f (A(B)), meaning the f (A)

or f (B) etc, are determined from (18) with
{
θ(A(B)), s

(A(B))
± , φ

}
.
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3 The computer algorithm

In this section snippets of the R-code are presented and described. The snip-
pets are the building blocks that represent the mathematics from the previous
section. The complete code is for reference presented in an appendix. Let us
begin with defining the characteristic parameter φ as

φ = 220.14×
( π

180

)
(20)

This value is present in both separate functions in the code representing the
measurements instruments A and B (2). The numerical values are given in
degrees and converted to radians in the algorithm. Furthermore, we found out
via trial and error that the following θ(A(B)) can be used to force a CHSH
violation with local means.

θ(A) ∈ {97.39957, 113.48717} ×
( π

180

)
(21)

θ(B) ∈ {−82.32930,−26.37997} ×
( π

180

)
Looking at the expression for quantum correlation in [9, page 266, equa-
tion (14.26)] it is found that the quantum correlation E(qm)(θ(A), θ(B)) =
cos
[
2(θ(A) − θ(B))

]
gives a violation for a particular Bell inequality with the

θ(A(B)) from (21). It is:

E(qm)(θ(A)
1 , θ

(B)
1 )− E(qm)(θ(A)

1 , θ
(B)
2 ) (22)

+E(qm)(θ(A)
2 , θ

(B)
1 ) + E(qm)(θ(A)

2 , θ
(B)
2 ) ≈ 2.402191

3.1 Crucial response functions

With this information let us look at the snippets of code that reflect the in-
instrument processes. Let us start with the A(lice) function. We look at the
evaluation of s(A)

± . Recall that s(A)
± is a response to the input from the source.

In the code this is sigmaA.

if(thet==(113.48717*pi/180)){
sigmaA<-(-1)

}else{
if(mRun%%2==0){

sigmaA<-sign(runif(1)-0.5)
}else{
sigmaA<-1

}
}
alpha[1]<-sigmaA
alpha[2]<--alpha[1]
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The 2-dim array alpha represents here alpha[1]= α
(A)
+ and alpha[2]= α

(A)
− .

When a ”wave” (2) enters the instrument the equivalent of the response is
such as provided above. The runif(1) randomization is the cause that there are
a couple of runs necessary to find a Bell CHSH violation. As a weak attempt
at theory we tried to have only at even trials with thet=97.39957*pi/180 a
random ±1 selection. On the B(ob)-side we have for s(B)

±

if(thet==(-82.32930*pi/180)){
sigmaB<-(-1)

}else{
if(mRun%%2==0){
sigmaB<-sign(runif(1)-0.5)

}else{
sigmaB<--1

}
}
alpha[1]<-sigmaB
alpha[2]<--alpha[1]

The weak form of theory introduced here is on the B side for thet=-26.37997*pi/180
to have at even trials a random ±1 selection. In both cases runif(1) is the func-
tion responsible for random number 0 < r < 1 draws. The sign gives a −1 if
that number is less than 0.5 and 1 when greater or equal than 0.5. Obviously,
this cannot be the whole physics story. Hence, the number of runs. Never-
theless the claim is that with sufficient number of runs with, each, 100 pairs
of ”photons”, the two snippets will warrant a substantial violation close to
the quantum CHSH-criterium value (22). This must be completely impossi-
ble if the CHSH is really waterproof. The two snippets are computed without
computational nonlocality.

3.2 Further structure: the S

Obviously there will be a sceptical look at our claim of the previous subsection.
Here we will show that our S(A(B)) functions are identical to the expression in
(11). Let us look at the A(lice) side. We have the function

...
n<-1

...
phi<-220.14*(pi/180)
while(n<2){
#
gamma<-fGamAlf(alpha,thet,phi)
if(gamma%*%gamma >0 ){
n<-n+1

}else{
alpha[1]<-alpha[2]
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alpha[2]<--alpha[1]
}
S1<-(gamma[1]**2)-(gamma[2]**2)
if(gamma%*%gamma >0 ){
S1<-S1/((gamma[1]**2)+(gamma[2]**2))

}
}
#sumB<-0.4436177
sumB<-0.50
if(thet==(113.48717*pi/180)){
S1<-S1-(0.03/sumB)

}else{
S1<-S1+(0.03/sumB)

}
return(S1/1.0124)

}

as part of the A side evaluation. Hopefully the reader will understand the trial
and error aspect of finding the proper coefficients. The introduced fine-tuning
is to take sumB (a variable only available in A btw) 0.5 and the correction
factor 1.0124 in the fine-tuned output.

The B side is similar. But the fine tuning differs. We have:

...
phi<-220.14*(pi/180)
xi <- 0.4901
sumA <- 0.968244105

...
while(n<2){
#
gamma<-fGamAlf(alpha,thet,phi)
if(gamma%*%gamma >0 ){
n<-n+1

}else{
alpha[1]<-alpha[2]
alpha[2]<--alpha[1]

}
S1<-(gamma[1]**2)-(gamma[2]**2)
if(gamma%*%gamma >0 ){
S1<-S1/((gamma[1]**2)+(gamma[2]**2))
if(thet==(-82.32930*pi/180)){
S2<-S1

}else{
S2<-S1-(xi/sumA)

}
}

}
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return(S2)

The numbers xi and sumA are derived from trial and error experiments. It
must be noted that they only are partially successful for approximation of the
quantum correlation values on the B side.

We will deal with the function fGamAlf(alpha,thet,phi) later. It is based
on (9) and (18).

In this part of the code it is clear that when particular gamma[1]= γ
(A)
+

and gamma[2]= γ
(A)
− are computed according to (9) and (18), using (20),

then the S1 = S(A) in the program has |S1| ≤ 1. We start with n equal 1.
Only if the gamma array is unequal to zero in length, do we compute S1.
If a zero length gamma array is produced given the particular θ(A) and s

(A)
±

the alpha[1] and alpha[2] are interchanged. Because n is then still 1, the call
of fGamAlf(alpha,thet,phi) is repeated but with the interchanged alpha. This
leads in all cases to a nonzero length gamma array and therefore n becomes 2
and the S1 computation is completed. We note that in both the A and B case
the φ is equal to the value in (20).

According to the statements on [9, page 264-267] our claim at the end of
the previous subsection 3.1 would be impossible. It is not. In this section it is
crystal clear that |S1| ≤ 1.

3.3 The fGamAlf(alpha,thet,phi) function

Here we will show that in the computation the function fGamAlf(alpha,thet,phi)
follows the requirements in the equations (9) and (18). In the program two
separated functions of similar form are employed in the function for A and for
B. There is absolutely no exchange of information. And we add that the latter
is not needed either. On the A side we have

fGamAlf<-function(alpha,thet,phi){
gamma<-array(0,2)
c<-(tan(phi))**2
c1<-alpha[1]*(sin(thet)/cos(phi))
c1<-c1-(alpha[2]*(cos(thet)/cos(phi)))
c1<-c1*tan(phi)
c<-c-(2*c1)
f1<-alpha[1]*cos(thet)/cos(phi)
f2<-alpha[2]*sin(thet)/cos(phi)
b<-f1+f2
if ((b**2)-c > 0){
s<--1
t<-1
if(t==1){
f<--b+(s*sqrt((b**2)-c))

}
gamma[1]<-(alpha[1]*cos(thet))+(alpha[2]*sin(thet))+(f*cos(phi))
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gamma[2]<-(-alpha[1]*sin(thet))+(alpha[2]*cos(thet))+sin(phi)
}else{
gamma[1]<-0
gamma[2]<-0

}
return(gamma)

On the B side this is similar but independent & isolated from the parameters
of the A side.

Let us walk through the code presented here. After the initialisation of the
2-dim gamma array the b and c from(16) are computed. The test (b∗∗2)−c > 0
is to ascertain that the quadratic form in f from (15) has a real solution given
in (18). The situation is such that if the condition (b ∗ ∗2)− c > 0 is not met,
then, a zero length gamma array is send back via the return command. This is
processed such as decribed in section 3.2. If the condition (b∗∗2)−c > 0 is met,
then, the f can be computed according to the famous abc formula. We have
f2 + 2bf + c = 0 which solution, f = − (2b)

2 ±
1
2

√
(2b)2 − 4c, is represented in

(18). We have decided to take the + branch and therewith compute gamma[1]
and gamma[2]. In the program code presented in the appendix the fCHSHA
can be implemented in the [A] of (2) and the fCHSHB can be implemented in
[B] of (2). The main (start) routine is situated in the [S].

3.4 Random trials

Our computer program uses a one-step randomisation of the setting pairs
(θ(A)
k , θ

(B)
m ), with k,m ∈ {1, 2} but we make sure that the number of trial is a

fourfold. The snippet of code to generate random pairs is given below.

nMax<-100
ALICE1<-c(0,0,2,2)
ALICE<-array(ALICE1,nMax)
ALICE<-(ALICE+2)/2
...
BOB1<-c(0,2,0,2)
BOB<-array(BOB1,nMax)
BOB<-(BOB+2)/2
...
sTrial<-sample(seq(1,length(BOB)))
...
for(m in sTrial){
thetaA<-setA[ALICE[m]]
thetaB<-setB[BOB[m]]
sA[m]<- fCHSHA(alpha,thetaA)
sB[m]<- fCHSHB(alpha,thetaB)

}
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A four-tuple of settings is based on the elementary ALICE2=1,1,2,2 and
BOB2=1,2,1,2. This is expanded to length = nMax the ALICE2 in array
ALICE. And similarly for the array BOB. Subsequently the order of the pre-
sentation of both arrays is randomly permuted in the array sTrial. This gives
sufficiently random pairings of settings for A and for B. In the for next loop,
for(m in sTrial), the permutations are employed. The fCHSHA(alpha,thetaA)
and fCHSHB(alpha,thetaB) are described in the previous sections 3.3, 3.2 and
3.1.

The computation of the E is as follows:

...
norM=nMax/4
for(m in sTrial){
Eab[ALICE[m],BOB[m]]<-Eab[ALICE[m],BOB[m]]+(sA[m]*sB[m]/norM)

}
...

The value norM=nMax/4 can be explained with the fact that we have 4 E
elements in the computation of one B′ from (7). So in fact for e.g. 100 pairs
we have 25 B′ computations. In the program we also demonstrate that

sum(abs(sA)<1)=100

and

sum(abs(sB)<1)=100,

meaning all values of S are −1 ≤ S ≤ 1 viz (11).

4 Result, conclusion & discussion

The claim is here that, with a local model, it is possible to substantially violate
the CHSH inequality and come pretty close to the B′ of (7) value of quantum
theory. Below we report an example of a result of our computations with the
algorithm. Its output is verbatim:

[,1] [,2]
[1,] 0.9546458 -0.3818026
[2,] 0.8714130 0.1616421
[1] 2.369504
[1] 100
[1] 1469

[,1] [,2]
[1,] 0.9999552 -0.3817306
[2,] 0.8514255 0.1690791
[1] 2.40219
[1] 100
[1] 100
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The first matrix

E =
(

0.9546458 − 0.3818026
0.8714130 0.161642

)
(23)

is based on the computations from subsection 3.4 which refers back to the
correlation in equation (19) using the modified Glauber-Sudarshan represen-
tation. The number 2.369504 represents the B′ as defined in (7) applied to
the E matrix from the modified Glauber-Sudarshan representation (23). The
loop is such that only index number 3, i.e. (7) is outputted. The number 3
denotes that B′ CHSH from (2) is violated. The output e.g. 1 instead of 3 is
an indication of a violation of B in (4). In the final output the printing of the
type, i.e. jout, is suppressed. It can be observed that the quantum B does not
violate (6) under this conditions.

So we may note that, with Einstein local hidden parameters, the CHSH
can be violated size: B′ = 2.369504 in the output of the algorithm. The first
number 100 in the output refers to nMax, the amount of ”photon” pairs in-
spected in this particular run. Obviously this is a somewhat small number of
photon pairs. However, it is the principle violation that counts. The selection
of nMax=100 is simply restricted by the limited computational power of the
machine. The number 1469 refers to the number of runs (in a sequence from 1
to max 1× 105) to compute a violating B′. Each run holds 100 pairs. So there
were 1469−1 trials of each 100 pairs before the violating result B′ = 2.369504
was found. The reader can experiment with the code to see that lower num-
bers of runs are also possible to produce a violation. Anyway, when CHSH is
waterproof this type of violation must never occur in this size.

In the 1469-th run the A and B snippets, in particular the random parts
in the ifs of section 3.1 are able to produce violating S values that generate
the E in (23).

We note again that if the CHSH was really waterproof, the number of trials
would be extremely large and the violation B′ would be close to 2.00. Therefore
we believe that (23)represents a genuine violation and contest that it absolutely
has to be larger than Bmin = 1 +

√
2 under the proper (a, b), (a, c), (d, b) and

(d, c) conditions. Moreover, please note that Bell’s formula give rise to only
Bmin = 2.

The second matrix in the verbatim output is the matrix of quantum values
(22).

Eqm =
(

0.9999552 − 0.3817306
0.8514255 0.1690791

)
(24)

The B′ derived from this matrix in (24) is B′ = 2.40219. Therefore we may
note that the hidden parameter B′ and the quantum B′ are close. We also see
from comparing (23) with (24) that the algorithm does not exactly reproduce
the quantum values. This cannot be expected either. It must be noted please
that because in that case the critical reader would require a complete theory
whereas this reader himself would only have Bell’s statistics in his hands.
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Further research into a proper theory might be a possibility to replace the
runif(1) elements.

Nevertheless the conclusion is that the CHSH can be violated with local
parameter principles. This concurs with e.g. [12], [13] and [14]. It must be
stressed that it does not matter how long it takes with randomization to sub-
stantially violate and it also is quite unimportant that there is a random table
in a computer. If CHSH is waterproof this kind of violations are impossible
from principle. Apparently they are possible after all. For convenience of the
reader the complete R program is included in an appendix. It must be noted
that this violation can also be obtained in VBA for excel. This to avoid all
kinds of needless debate about the nature of R and that the reviewer does not
understand R. All these things and more already happened more than once.
If the reader wants the VBA program it can be mailed asap.

Another, but related, matter is that despite the fact that the P function of
the Glauber - Sudarshan representation is not everywhere positive in entan-
glement, this feature not affects the validity of the computations represented
in the Appendix and explained in the above section. In this paper we only
employed the expression for γ(A)

± and for γ(B)
± and modified it, (9) , with

(f (A), φ(A)) and (f (B), φ(B)). The density here employed in the computations
is positive definite. If a reader disagrees then this reader must point where
in the formulae and/or the computations, negative probability or probability
density occurs.

With the power of argument, we reject that CHSH type of inequalities can
not be violated with local hidden parameter computations. The quantum val-
ues of the respective correlations were reasonably well approximated. In order
to sustain the conclusion, it is absolutely not necessary to do this for every
possible setting. The 100 photon pair computation that violates CHSH in a
local manner and closely approximates the quantum correlation makes, like
[12], a reasonable case against the CHSH associated claim that the experi-
mental results such as [10] rule out Einstein locality in physical reality.

Conflict of Interest: The author declares that he has no conflict of
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Appendix

The complete computer program is presented to enable the reader to check the
locality claim. R-studio and R-software are free to obtain from the internet.

#CHSH
randomset<-function(){
st<-Sys.time()
nst<-as.integer(substring(st,18,30))
print(nst)
for(k in seq(1,(nst+1))){
r<-runif(1)

}
}
##############
##ALICE
##############
fCHSHA<-function(alpha,thet,mRun){
fGamAlf<-function(alpha,thet,phi,mRun){
gamma<-array(0,2)
c<-(tan(phi))**2
c1<-alpha[1]*(sin(thet)/cos(phi))
c1<-c1-(alpha[2]*(cos(thet)/cos(phi)))
c1<-c1*tan(phi)
c<-c-(2*c1)
f1<-alpha[1]*cos(thet)/cos(phi)
f2<-alpha[2]*sin(thet)/cos(phi)
b<-f1+f2
if ((b**2)-c > 0){
s<--1
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t<-1
if(t==1){
f<--b+(s*sqrt((b**2)-c))

}
gamma[1]<-(alpha[1]*cos(thet))+(alpha[2]*sin(thet))+(f*cos(phi))
gamma[2]<-(-alpha[1]*sin(thet))+(alpha[2]*cos(thet))+sin(phi)

}else{
gamma[1]<-0
gamma[2]<-0

}
return(gamma)

}
#
n<-1
#
if(thet==(113.48717*pi/180)){
sigmaA<-(-1)

}else{
if(mRun%%2==0){

sigmaA<-sign(runif(1)-0.5)
}else{
sigmaA<-1

}
}
alpha[1]<-sigmaA
alpha[2]<--alpha[1]
phi<-220.14*(pi/180)
while(n<2){
#
gamma<-fGamAlf(alpha,thet,phi)
if(gamma%*%gamma >0 ){
n<-n+1

}else{
alpha[1]<-alpha[2]
alpha[2]<--alpha[1]

}
S1<-(gamma[1]**2)-(gamma[2]**2)
if(gamma%*%gamma >0 ){
S1<-S1/((gamma[1]**2)+(gamma[2]**2))

}
}
#sumB<-0.4436177
sumB<-0.50
if(thet==(113.48717*pi/180)){
S1<-S1-(0.03/sumB)

}else{
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S1<-S1+(0.03/sumB)
}
return(S1/1.0124)

}
##############
##BOB
##############
fCHSHB<-function(alpha,thet,mRun){
fGamAlf<-function(alpha,thet,phi){
gamma<-array(0,2)
c<-(tan(phi))**2
c1<-alpha[1]*(sin(thet)/cos(phi))
c1<-c1-(alpha[2]*(cos(thet)/cos(phi)))
c1<-c1*tan(phi)
c<-c-(2*c1)
f1<-alpha[1]*cos(thet)/cos(phi)
f2<-alpha[2]*sin(thet)/cos(phi)
b<-f1+f2
if ((b**2)-c > 0){
s<-1
t<-1
if(t==1){
f<--b+(s*sqrt((b**2)-c))

}
gamma[1]<-(alpha[1]*cos(thet))+(alpha[2]*sin(thet))+(f*cos(phi))
gamma[2]<-(-alpha[1]*sin(thet))+(alpha[2]*cos(thet))+sin(phi)

}else{
gamma[1]<-0
gamma[2]<-0

}
return(gamma)

}
#
n<-1
#
phi<-220.14*(pi/180)
xi <- 0.4901
sumA <- 0.968244105
#
if(thet==(-82.32930*pi/180)){
sigmaB<-(-1)

}else{
if(mRun%%2==0){
sigmaB<-sign(runif(1)-0.5)

}else{
sigmaB<--1
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}
}
alpha[1]<-sigmaB
alpha[2]<--alpha[1]
while(n<2){
#
gamma<-fGamAlf(alpha,thet,phi)
if(gamma%*%gamma >0 ){
n<-n+1

}else{
alpha[1]<-alpha[2]
alpha[2]<--alpha[1]

}
S1<-(gamma[1]**2)-(gamma[2]**2)
if(gamma%*%gamma >0 ){
S1<-S1/((gamma[1]**2)+(gamma[2]**2))
if(thet==(-82.32930*pi/180)){
S2<-S1

}else{
S2<-S1-(xi/sumA)

}
}

}
return(S2)

}
#####
#main
#####
randomset()
#
nMax<-100
#ALICE<-sign(runif(nMax)-0.5)+1
ALICE1<-c(0,0,2,2)
ALICE<-array(ALICE1,nMax)
ALICE<-(ALICE+2)/2
sA<-ALICE
#BOB<-sign(runif(nMax)-0.5)+1
BOB1<-c(0,2,0,2)
BOB<-array(BOB1,nMax)
BOB<-(BOB+2)/2
#
sB<-BOB
setA<-c(97.39957,113.48717)*(pi/180)
setB<-c(-82.32930,-26.37997)*(pi/180)
Bout<-0
nTel<-0
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nTelMax<-1e5
uLim<-2.33
jout<-0
#
sTrial<-sample(seq(1,length(BOB)))
blCtd<-Bout<uLim
while(blCtd==TRUE){
Eab<-matrix(0,2,2)
#
nTel<-nTel+1
for(m in sTrial){
#print(n)
alpha<-array(0,2)
thetaA<-setA[ALICE[m]]
thetaB<-setB[BOB[m]]
sA[m]<- fCHSHA(alpha,thetaA,m)
sB[m]<- fCHSHB(alpha,thetaB,m)

}
norM=nMax/4
for(m in sTrial){
Eab[ALICE[m],BOB[m]]<-Eab[ALICE[m],BOB[m]]+(sA[m]*sB[m]/norM)

}
B<-array(0,4)
#
B[1]<-Eab[1,1]+Eab[1,2]+Eab[2,1]-Eab[2,2]
B[2]<-Eab[1,1]+Eab[1,2]-Eab[2,1]+Eab[2,2]
B[3]<-Eab[1,1]-Eab[1,2]+Eab[2,1]+Eab[2,2]
B[4]<-(-Eab[1,1])+Eab[1,2]+Eab[2,1]+Eab[2,2]
blTST<-(B[1]>uLim)|(B[2]>uLim)|(B[3]>uLim)|(B[4]>uLim)
#
if(nTel>nTelMax){
print(Eab)
Bout<-99999

}else{
Bout<-max(B)
if(blTST==TRUE){
for (j in 1:4){
if (B[j]==Bout){
jout<-j
}

if(jout==3){
blCtd<-FALSE

}else{
blCtd<-TRUE

}
}
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}
if (blTST==TRUE){
if(jout==3){

print(Eab)
}

}
#
}
if (nTel%%100 ==0){
print(Bout)
}
if (Bout==99999){

blCtd<-FALSE
}

}
print(Bout)
print(jout)
print(nMax)
print(nTel)
#
Eqm<-matrix(0,2,2)
Eqm[1,1]=cos(2*(setA[1]-setB[1]))
Eqm[1,2]=cos(2*(setA[1]-setB[2]))
Eqm[2,1]=cos(2*(setA[2]-setB[1]))
Eqm[2,2]=cos(2*(setA[2]-setB[2]))
if(jout==3){

Bqm=Eqm[1,1]-Eqm[1,2]+Eqm[2,1]+Eqm[2,2]
}else{

Bqm=Eqm[1,1]+Eqm[1,2]+Eqm[2,1]-Eqm[2,2]
}
print(Eqm)
print(Bqm)
print(sum(abs(sA)<1))
print(sum(abs(sB)<1))
#stop("end")


