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We present a  -means-based clustering algorithm, which optimizes the mean square error, for

given cluster sizes. A straightforward application is balanced clustering, where the sizes of each

cluster are equal. In the  -means assignment phase, the algorithm solves an assignment problem

using the Hungarian algorithm. This makes the assignment phase time complexity  . This

enables clustering of datasets of size more than 5000 points.

1. Introduction

Euclidean sum-of-squares clustering is an NP-hard problem[1], which groups    data points into 

 clusters so that intra-cluster distances are low and inter-cluster distances are high. Each group is

represented by a center point (centroid). The most common criterion to optimize is the mean square

error (MSE):

where    denotes data point locations and    denotes centroid locations.  -Means[2]  is the most

commonly used clustering algorithm, which provides a local minimum of MSE given the number of

clusters as input.  -Means algorithm consists of two repeatedly executed steps:

Assignment step: Assign the data points to clusters speci�ed by the nearest centroid:

Update step: Calculate the mean of each cluster:
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These steps are repeated until the centroid locations do not change anymore.  -Means assignment

step and the update step are optimal with respect to MSE: The partitioning step minimizes MSE for a

given set of centroids; the update step minimizes MSE for a given partitioning. The solution therefore

converges to a local optimum but without guarantee of global optimality. To get better results than in

the  -means, slower agglomerative algorithms[3][4][5]  or more complex  -means variants[6][7][8]

[9] are sometimes used.

In balanced clustering[10][11], there are equal or more equal number of points in each cluster than in

traditional clustering. Balanced clustering is desirable, for example, in divide-and-conquer methods,

where the divide step is done by clustering.

Balanced clustering, in general, is a 2-objective optimization problem in which two goals contradict

each other: to minimize MSE and to balance cluster sizes. Traditional clustering aims to minimize

MSE without considering cluster size balance. Balancing, on the other hand, would be trivial if we did

not care about MSE; simply by dividing points to equal size clusters randomly.

We next review some articles that have size constraits on clusters. Constrained  -means[12]  allows

putting lower bound on cluster sizes. Data clustering with size constraints[13] transforms the problem

into a binary integer linear programming problem. The biggest dataset in their experiments is of size

625 points, indicating that the algorithm is not suitable for bigger datasets. Data Clustering with

Cluster Size Constraits[14] allows putting upper bounds on cluster sizes. Their biggest dataset tested is

2000 points that also indicates that bigger datasets take too much time. Our proposed algorithm

allows clustering up to circa 5000 points.

2. Fixed-sized clusters  -means

To describe Fixed-sized clusters  -means, we need to de�ne what is an assignment problem. The

formal de�nition of assignment problem (or linear assignment problem) is as follows. Given two sets (

  and  ), of equal size and with a weight function  . The goal is to �nd a bijection 

 so that the cost function is minimized:

In the context of the proposed algorithm, sets   and   correspond respectively to cluster slots and to

data points, see Figure 1.
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In Fixed-sized clusters  -means, we proceed as in  -means, but the assignment phase is di�erent:

Instead of selecting the nearest centroids we have    pre-allocated slots, and datapoints can be

assigned only to these slots; see Figure 1.

Figure 1. Assigning points to centroids via cluster slots.
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Figure 2. Minimum MSE calculation with �xed-sized clusters. Modeling with bipartite graph.

To �nd an assignment that minimizes MSE, we solve an assignment problem using the Hungarian

algorithm[15]. First we construct a bipartite graph consisting    datapoints and    cluster slots, see

Figure 2. We then partition the cluster slots in clusters in �xed sizes.

We give centroid locations to partitioned cluster slots, one centroid to each cluster. The initial centroid

locations can be drawn randomly from all data points. The edge weight is the squared distance from

the point to the cluster centroid it is assigned to. Contrary to standard assignment problem with �xed

weights, here the weights dynamically change after each  -Means iteration according to the newly

calculated centroids. After this, we perform the Hungarian algorithm to get the minimal weight

pairing. The squared distances are stored in a   matrix, for the sake of the Hungarian algorithm.

The update step is similar to that of  -means, where the new centroids are calculated as the means of

the data points assigned to each cluster:

The weights of the edges are updated immediately after the update step. The pseudocode of the

algorithm is in Algorithm 1. In calculation of edge weights, the cumulative sum of cluster sizes is
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where  :s are cluster sizes and the number of cluster slot is denoted by   and

is used in calculation of cluster where a cluster slot belongs to. So the edge weights are calculated by

After convergence of the algorithm the partition of points  ,  , is

There is a convergence result in  [12]  (Proposition 2.3) for Constrained  -means. The result says that

the algorithm terminates in a �nite number of iterations at a partitioning that is locally optimal. At

each iteration, the cluster assignment step cannot increase the objective function of Constrained  -

means (3) in [12]. The cluster update step will either strictly decrease the value of the objective function

or the algorithm will terminate. Since there are a �nite number of ways to assign   points to   clusters

so that cluster   has at least   points, since Constrained  -means algorithm does not permit repeated

assignments, and since the objective of Constrained  -means (3) in [12]  is strictly nonincreasing and

bounded below by zero, the algorithm must terminate at some cluster assignment that is locally

optimal. The same convergence result applies to Fixed-sized clusters  -means as well. The

assignment step is optimal with respect to MSE because of pairing and the update step is optimal,

because MSE is clusterwise minimized as is in  -means.
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3. Time Complexity

Time complexity of the assignment step in  -means is  . The assignment step of the proposed

Fixed-sized clusters  -means algorithm can be solved in   time with the Hungarian algorithm.

4. Application: Seating plan

As an application we present calculating a seating plan, where compatibility of persons within tables is

optimized. First we need a compatibility matrix, where compatibility distance is given for every pair of

persons. This has to be done manually.

Then we need to do multidimensional scaling[16] giving   as argument and the result is the data   in

higher dimensional space, but distances preserved. Then we do Fixed-sized k-Means giving data  ,

sizes of tables   and number of tables   as arguments. The output is the seating plan.

4.1. Experiments

We tested the algorithm by creating a seating plan for Mikko I. Malinen’s doctoral dissertation

evening party in 2015. There were 22 persons invited. In compatibility distance matrix there were 

 distances. Sizes of tables were   and   was 5. Data   became 10-dimensional. We

repeated the algorithm 1000 times. This took only few seconds. People were happy with the seating

plan. The software for both Fixed-sized clusters  -means and Seating plan are available from

http://cs.uef.�/~mmali/software/.

5. Conclusions

We presented an algorithm for clustering giving cluster sizes as constraints. The algorithm is practical

up to 5000 points data. As an application we presented creating a seating plan for f.eg. parties.
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