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Effective resource management and environmental planning in regions with high climatic variability, such

as Chile, demand advanced predictive tools. The success in these areas heavily relies on accurately

interpreting and forecasting climatic patterns. This study addresses these challenges by employing an

innovative and computationally ef�cient hybrid methodology that integrates machine learning (ML)

methods for time series forecasting with established statistical techniques. The spatiotemporal data

undergo decomposition using time-dependent Empirical Orthogonal Functions (EOFs), denoted as  , and

their corresponding spatial coef�cients,  , to reduce dimensionality. Wavelet analysis provides high-

resolution time and frequency information from the   functions, while neural networks forecast these

functions within a medium-range horizon  . By utilizing various ML models, particularly a Wavelet–ANN

hybrid model, we forecast   up to a time horizon  , and subsequently reconstruct the spatiotemporal

data using these extended EOFs.This methodology is applied to a grid of climate data comprising 6355 points

covering the entire territory of Chile. It transitions from a high-dimensional multivariate spatiotemporal

data forecasting problem (involving 6355 time series) to a low-dimensional univariate time series

forecasting problem (requiring only a few dozen forecasts). Additionally, cluster analysis with Dynamic Time

Warping for de�ning similarities between rainfall time series, along with spatial coherence and

predictability assessments, has been instrumental in identifying geographic areas where model

performance is enhanced. This approach also elucidates the reasons behind poor forecast performance in

regions or clusters with low spatial coherence and predictability. By utilizing cluster medoids, the

forecasting process becomes more practical and ef�cient. This compound approach signi�cantly reduces

computational complexity while generating forecasts of reasonable accuracy and utility.

Signi�cance Statement. The approach outlined in this study facilitates the transition from a high–

dimensional multivariate spatiotemporal data forecasting problem to a low-dimensional univariate time

series forecasting problem. This transition substantially reduces computational complexity while yielding
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reasonably accurate forecasts and enhances our ability to interpret and predict climatic patterns across the

entire territory and over medium-term temporal horizons, despite its high climatic variability.

Corresponding author: Mauricio Herrera, mherrera@udd.cl

1. Introduction

Climate change’s growing complexity and urgency demand re�ned yet practical prediction tools, especially in

vulnerable regions like Chile with high climatic variability. Effective resource management and environmental

planning hinge on our ability to decipher and anticipate climatic patterns, directly impacting agricultural

planning and water management. Additionally, understanding precipitation, temperature, and other climatic

variables shapes crucial policies concerning climate change and environmental protection. Data-driven

analysis guides decision-making towards effective mitigation and adaptation strategies[1][2].

However, the intricate spatial, temporal, and spatiotemporal correlations in environmental data pose a

signi�cant challenge in capturing these dependencies[3]. Understanding and modeling these patterns are

crucial for advancing climate research and prediction. Fortunately, a convergence of interests and expertise is

emerging. Climate researchers, particularly those in numerical weather prediction, atmospheric physics,

extreme events, and climate change, are increasingly turning to Machine Learning (ML) to enhance modeling

and prediction[4]. Similarly, ML researchers recognize the relevance of their work in addressing climate

challenges, especially in numerical weather prediction[5][6][7]. This collaboration has the potential to unlock

ML’s capabilities for modeling complex dynamical systems in climate science.

This study employs a hybrid approach for spatiotemporal climate data analysis and forecasting. We harness

empirical orthogonal functions (EOFs) for dimensionality reduction, wavelet analysis for high-resolution time-

frequency information, and deep neural networks (DNNs) for forecasting. This combined approach capitalizes

on the strengths of each technique to tackle the complexities inherent in climate data analysis.

Pioneered in meteorology by[8], EOF analysis has become a cornerstone for understanding spatiotemporal

climate variability. As explored in seminal works like[9], EOFs reveal orthogonal patterns of variability, each

explaining distinct portions of data variance. Notably, the �rst EOF captures the most signi�cant variance,

followed by subsequent ones with diminishing contributions. This inherent ef�ciency – retaining key

information while minimizing complexity – makes EOFs ideal for empirical climate modeling.

The use of Empirical Orthogonal Functions (EOFs) has limitations, as they often lack clear physical

signi�cance[10]. Despite their utility in capturing dominant variance patterns, EOFs may not inherently
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represent distinct physical processes, making it challenging to distinguish empirical modes from genuine

physical phenomena[11]. Despite these challenges, EOFs remain valuable for making reasonable predictions with

a limited number of data modes. By distilling spatiotemporal variability into a manageable set of orthogonal

patterns, EOFs enable ef�cient empirical modeling and prediction, demonstrating their practical importance in

forecasting massive spatiotemporal data. In our study, we utilize EOF analysis alongside ML and wavelets

mainly for forecasting, without aiming to distinguish data–driven modes from physically meaningful

structures.

This study utilizes a grid comprising 6355 points at a resolution of   degrees, covering the entirety of

Chile. Each point is associated with a time series spanning from 1980 to 2022, encompassing climatic variables

such as daily accumulated precipitation, maximum, mean, and minimum daily temperature,

evapotranspiration, etc.

By employing Singular Value Decomposition (SVD), these datasets undergo factorization into Empirical

Orthogonal Functions (EOFs) that encapsulate temporal information   (note that we use empirical temporal

orthogonal functions, since they are obtained from an empirical temporal covariance matrix) and the

corresponding spatial coef�cients  , which capture spatial information[12].

A Wavelet–ANN Hybrid model for forecasting, constructed upon wavelet transform using the Maximal Overlap

Discrete Wavelet Transform (MODWT) algorithm developed by[13], facilitates the forecasting of EOFs 

  over a horizon  . The spatiotemporal data is then reconstructed utilizing this extended temporal

component over a horizon  .

This methodology facilitates the transition from a high-dimensional multivariate spatiotemporal data

forecasting problem (in this case, entailing forecasting using 6355 time series corresponding to grid points) to a

low-dimensional univariate time series forecasting problem (in this case, up to a couple of dozens of forecasts),

signi�cantly reducing computational complexity while yielding forecasts of reasonable utility.

To account for the extensive climatic variability of Chile, we use cluster analysis based on time series. We group

time series of rainfall with manifest similarities measured by distances based on Dynamic Time Warping (DTW).

The structure of clusters or geographic segmentation of similar rainfall patterns is very stable over time.

To make forecast with the proposed methodology, we use the medoids of each cluster, making forecasting in

each geographic zone more practical and effective. We conduct these forecasting tests to demonstrate that the

proposed methodology has accurately captured the patterns of precipitation behavior over time and space.

Additionally spatial coherence and predictability assessments for each clusters, has been instrumental in

identifying geographic areas where model performance is enhanced. This approach also elucidates the reasons

behind poor forecast performance in regions or clusters with low spatial coherence and predictability.
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2. Materials and methods

a. Data

The data were obtained from ERA5 in[14], which is part of the Copernicus Climate Change Service (C3S) provided

by the European Union and produced by the European Centre for Medium-Range Weather Forecasts (ECMWF).

ERA5 offers reanalyzed climatic and meteorological data, covering the period from 1950 to the present,

providing detailed information on a wide range of atmospheric, terrestrial, and oceanic variables. It is known

for its high spatial resolution and temporal resolution, making it widely used in climate research,

environmental studies, and meteorological modeling applications.

The data used in this study form a grid of 6355 points located between the geographical coordinates - latitude 

  to    and longitude    to    with resolution of    degrees. Each point is

associated with historical data containing time series of climatic variables such as maximum, mean, and

minimum temperature, precipitation, evapotranspiration, etc. Additionally, each point is characterized by its

geographical coordinates – longitude and latitude.

Let   be a data structure for a spatiotemporal variable   (e.g. precipitation, temperature, etc.)

with   and  . Where  , longirepresents longitude, lati represents latitude, and

ei represents elevation of a location   (see Table 1). So,   consists of   locations, each having an associated

time series with   records. In this study, we consider data corresponding to   longitude values and   latitude

values, creating a grid of    spatial points. For each of them, there are    time values,

corresponding to daily records between 1980 and 2022.

Table 1. Tidy structure of spatiotemporal data for analysis.

−17.5∘ −56.0∘ −76.0∘ −66.0∘ 0.25 × 0.25

X(s, t) = {x( , )}si tj x

i = 1...n = ( , ,si longi lati ei i = 1..., n

i X(s, t) n

p 41 155

n = 6355 p = 26665

t1 t2 ⋯ tp

s1 x ,s1 t1 x ,s1 t2 ⋯ x ,s1 tp

s2 x ,s2 t1 x ,s2 t2 ⋯ x ,s2 tp

⋮ ⋮ ⋮ ⋮ ⋮

sn x ,sn t1 x ,sn t2 ⋯ x ,sn tp
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b. Decomposition of spatiotemporal data using EOFs.

Let   be a column matrix with   ones. With this matrix, the time mean is expressed as  .

The empirical temporal correlation matrix with dimensions   is written as

Where   is the so called centering matrix.

We transform the data table 1 by subtracting the time mean from each value using  . So, 

 and:

Introducing   (spatially centered and normalized data)  .

Instead of directly calculating the eigenvalues and eigenvectors of the matrix  , the matrix    is generally

(more ef�ciently) factorized using Singular Value Decomposition (SVD).  . Therefore, 

. Comparing with the spectral decomposition of the matrix  , where    is the

matrix of eigenvectors and    is a matrix with the eigenvalues of    on the diagonal, we have  , 

, and the Principal Components (PCs) are  [15].

The EOFs can be de�ned as the eigenvectors of covariance matrix  .

As   is a nonnegative de�nite square matrix, the eigenvalues   are all nonnegative and the eigenvectors 

  form a complete orthonormal basis. So, the centred and normalized data    can be

represented using a discrete temporal orthonormal basis   as:

Where   and   is the coef�cient corresponding to the   –th basis function   at spatial

location  . It is noteworthy that the scalar coef�cient   depends solely on the location and not on time,

whereas the temporal basis function   is independent of space. The rationale behind this decomposition is

theoretically grounded in the Karhunen-Loève expansion[9].

The coef�cients   in this expansion can be calculated using

Alternatively, using matrices
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So, the expansion coef�cients   are the spatial Principal Components (PCs).

It follows from the fact that the   are orthonormal eigenvectors of   that the PC are mutually uncorrelated

and:

So, considering the SVD, the functions   are given by  , where   represents the  -th column of the matrix 

 in the SVD of  . The normalized spatial coef�cients are  .

The—potentially truncated—EOFs decomposition   returns for each spatial location  , corresponding

to the original observations,    random coef�cients  . These coef�cients can be spatially modelled and

mapped on a regular grid solving an interpolation/regression task[16].

c. Forecasting EOFs

In this study, we forecast the EOFs  , in principle, to an arbitrary horizon    using various forecasting

techniques. Speci�cally, the Wavelet-ANN Hybrid Model, as introduced by[13], consistently yields superior

results in forecasting. Leveraging this model, we generate forecasts to predict    with a horizon  .

Subsequently, utilizing this function and the spatial coef�cients  , we reconstruct the complete

spatiotemporal data. The underlying hypothesis suggests that these spatial coef�cients should undergo

minimal changes since signi�cant alterations in spatial information are not anticipated within the forecast

interval   (see Fig. 4 for an example).

This approximation must consider the uncertainty associated with the temporal forecast of the EOFs.

Additionally, when selecting a number    of EOFs, we must also incorporate errors associated with the

dimensionality reduction.

To reconstruct the original approximated spatiotemporal data, but extended to horizon  ,  , we have:

Where    is obtained from the matrix    in the SVD decomposition by using only    columns and

rows, and   is the matrix  , but taking   rows extended with   new elements from the forecast.
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Note that here we use the same    under the assumption that incorporating more temporal records does not

drastically alter the mean value.

d. Some Considerations for the Application of the Proposed Predictive Model

�. Potential errors in predicting the EOFs    can propagate and impact the reconstruction of

spatiotemporal data. To minimize these propagated errors, it is crucial to achieve accurate predictions

within an appropriate horizon   by using the most suitable predictive model.

�. If the relationship between spatial components    and temporal components    changes

signi�cantly over the chosen prediction horizon, the assumption of using the same spatial coef�cients 

  for both    and the extended    may be invalid. To capture the spatiotemporal

correlations and their stability, we segment the data for the entire territory using clusters. Cluster analysis,

along with its assessment of spatial coherence (and thus predictability), aims to identify geographic areas

where spatial coherence enhances model performance. It also explains poor prediction results in clusters

with low spatial coherence and predictability. For more ef�cient predictions, we use the medoids of the

clusters to apply the model. In clusters with low predictability, results can still be managed by reducing the

prediction horizon.

�. If the original data contains nonlinearities, EOFs decomposition may not be suitable. It is advised to verify,

prior to prediction, the alignment between the real data and the data reconstructed from previously

decomposed EOFs. If the alignment is good, the model can be applied to achieve accurate forecasts.

�. The proposed model’s predictions are valid for short to medium horizons. Using historical data with

extensive records may include complex nonlinear patterns and signi�cant variations in spatiotemporal

conditions that will affect the forecast with this method. For studying historical variations and long-term

changes, it is recommended to use models other than the one proposed here (for example, Non-

Homogeneous Hidden Markov Models).

e. Analyzing Precipitation Pattern Similarities Using Dynamic Time Warping on Time Series

In this section, we compare precipitation time series from 460 strategically selected geographic locations from

the data grid and across Chile in search of similarity patterns. These locations are positioned around actual

meteorological stations nationwide[17].

The objective of time series comparison methods is to produce a distance metric between two input time series.

The similarity or dissimilarity of two time series is typically calculated by converting the data into vectors and

calculating the Euclidean distance between those points in vector space. Traditional time series Euclidean

Matching is extremely restrictive. However, Dynamic Time Warping (DTW)[18] allows the two curves to match

x̄̄̄

(t + h)ϕk

h

(s)αk (t)ϕk

(s)αk (t)ϕk (t + h)ϕk
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up evenly even though the X-axes (i.e., time) are not necessarily in sync. The rationale behind DTW is to stretch

or compress two time series locally in order to make one resemble the other as much as possible. The distance

between the two is then computed, after stretching, by summing the distances of individual aligned elements.

Figure 1. Solution of Seven Clusters Using Hierarchical Method and DTW – Based Distance. Records are segmented

into ten-year intervals to illustrate stability versus slight variations in cluster structure.

We are employing the Dynamic Time Warping (DTW) method for a cluster analysis with two primary

objectives:

�. To demonstrate that the relationship between precipitation patterns and geographical location is

generally stable (stability of spatiotemporal precipitation patterns).

�. For cluster-based forecasting. By focusing on clusters, we can improve forecast accuracy for the region, for

example, by using the representative (medoid) of each cluster for model predictions.

Fig. 1 presents a seven-cluster structure obtained using the hierarchical algorithm with Ward method, and with

DTW-based distance. To demonstrate the stability of spatiotemporal patterns, precipitation data from 460

locations across the territory, with time series records from 1953 to 2022, are segmented into 10 – year

intervals, and clusters were constructed for each interval. Only records from the months of May, June, July, and

August (MJJA), which correspond to the rainy season in Chile, were considered. This segmentation aims to
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capture the stability of rainfall patterns and observe any minor changes in the structure of these precipitation

patterns.

Selecting a structure with seven clusters ensures a segmentation of the data that provides enough records in

each cluster to proceed with EOF analysis and further training of the ML models for time series. This structure

effectively captures the speci�c patterns present in the precipitation data, enabling a detailed and meaningful

analysis.

Figure 2. Cluster–Speci�c Precipitation Patterns from 2018 to 2022

Fig. 2 depicts the characteristic precipitation patterns of each cluster. The time series shown in the �gure

represent the precipitation records from 2018 to 2022 for the medoids, or typical representatives, of each cluster.

f. Spatial coherence and potential predictability.

The spatial coherence provides a measure of potential predictability at the location scale[19]. Two scores are

frequently used to provide empirical estimates of the spatial coherence of seasonal anomalies between

locations:   - the interannual variance of the standardized anomaly index[20], and DOF - the number of

spatial degrees of freedom[21].

var(SAI)
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The SAI is computed by standardizing the interannual time series at each location (subtracting the mean and

dividing by the STD) and then averaging the standardized anomalies spatially across the locations to form an

index; it thus gives each location equal weight in the index. The amplitude of the SAI for a particular year

depends on the size of the correlations between locations, and thus its variance gives a measure of spatial

coherence of the �eld.

where    is the long–term time mean over    years and    is the interannual standard deviation for

location  . The    is a maximum when all locations are perfectly correlated,  , and a

minimum when the locations are uncorrelated, resulting in a  .

The DOF gives an empirical estimate of the spatial coherence in terms of empirical (spatial) orthogonal

functions, with higher values denoting lower spatial coherence:

where    are the eigenvalues of the correlation matrix formed from the location seasonal–mean time series

and   is the number of locations.

var(SA ) = var[ ]Ii
1
n
∑
j=1

n −xij x̄̄̄j

σj

xj i = 1...l σj

j var(SAI) var(SAI) = 1

var(SAI) = 1
n

DOF =
n2

∑
n
j=1 λ2

j

λj

n
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DOF var(SAI)

N° RAm RI RF RAm RI RF

Clusters

1 64 2,70 5,94 2,70 0,52 0,29 0,54

2 64 2,58 5,57 2,47 0,51 0,26 0,53

3 48 1,39 2,58 1,81 0,84 0,59 0,73

4 75 1,20 1,65 1,46 0,91 0,77 0,82

5 53 1,16 1,51 1,21 0,93 0,81 0,91

6 80 1,25 1,81 1,34 0,89 0,73 0,86

7 76 2,05 2,97 1,92 0,64 0,49 0,69

Altitude class

0-500 m 293 3,46 5,78 3,68 0,27 0,21 0,28

500-1500 m 87 2,56 3,66 2,90 0,50 0,39 0,49

1500 m 80 3,41 6,91 3,53 0,42 0,26 0,37

All locations 460 4,11 6,68 4,56 0,24 0,20 0,22

Table 2. Table of Clusters for Degrees of Freedom (DOF) and Variance of the Standardized Anomaly Index (var(SAI))

for Accumulated Rainfall, Rainfall Intensity, and Rainfall Frequency during the MJJA period for the years 1980–2022

Table 2 displays the DOF and   for Accumulated Rainfall (RAm), Rainfall Intensity (RI: calculated as

the total millimeters of rain divided by the number of rainy days. Where daily precipitation exceeds 1 mm), and

Rainfall Frequency (RF: calculated as the number of rainy days divided by the total number of days in the

period) from 1980 to 2022 (considering only MJJA) across 460 locations. Additionally, it considers the cluster

structure based on DTW.

Fig. 3 shows the DOF and   metrics for RAm. The cases “All” (all locations), “0 – 500m” (locations with

elevations between 0 – 500m), and “  500m” (locations with elevations above 1500 m) have the highest DOF

and the lowest var(SAI) values. This indicates that the spatial coherence of these locations is lower than in other

clusters. For “All” and “0-500m”, this can be attributed to the large number of locations considered in the

>

var(SAI))

var(SAI)

>
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calculation (460 and 293, respectively), resulting in a diversity of microclimates. For “   500m”, the lower

coherence is explained by the effect of orographic rainfall at these elevations.

On the other hand, clusters 3, 4, 5, and 6 exhibit values indicating better spatial coherence. The DOF for these

clusters is close to the minimum (DOF = 1) and    is close to the maximum ( ). These

clusters correspond to the central and central–northern regions of Chile. These values indicate that locations

within these clusters have very similar behavior patterns. Given the high spatial coherence in these clusters,

predictive models are likely to capture their precipitation patterns accurately. However, this is not the case for

clusters 1, 2, and possibly 7, which have DOF and   values indicating low spatial coherence. It is worth

noting that the clustering structure found generates groups with signi�cantly lower DOF and higher 

 compared to segmentations based on elevation ranges.

Figure 3. DOF and   metrics for Rainfall amount (RAm) by clusters (1 - 7).

Groups “All”, “0 – 500m”, “500 – 1500m” and “  500m” are included.

Considering RI results in a general decline in both indicators’ values across all clusters, with more signi�cant

effects in some. Clusters 1 and 2, which already had the lowest coherence for accumulated precipitation, show

similar trends in rainfall intensity, aligning more with“All”, “0 – 500m”, and “  500m”. This indicates greater

variability in rainfall intensity within these clusters compared to average precipitation, with worsening effects

>

var(SAI) var(SAI) = 1

var(SAI)

var(SAI)

var(SAI)

>

>
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especially pronounced in clusters 1 and 2. For clusters with higher coherence, cluster 3 deteriorates and diverges

from previously better–performing clusters (4, 5, and 6). This is due to its northern location, adjacent to cluster

1, both situated in the arid regions of North Grande and North Chico in Chile, which experience scarce and

infrequent rainfall.

For RF, clusters 1 and 2 continue to exhibit the worst coherence, while clusters 4, 5, and 6 maintain the best.

In Summary:

Clustering results in groups with lower DOF and higher   compared to separation by altitude ranges,

consistent with capturing micro-climates unique to the clusters.

Clusters 4, 5, and 6 show the best spatial coherence.

The low coherence in rainfall intensity for cluster 1 is due to its location in northern Chile, an area with very

scarce precipitation.

High coherence in clusters 4, 5, and 6 suggests that predictive models can accurately capture their patterns

and perform well.

Low to medium spatial coherence in clusters 1, 2, 3, and 7 implies challenges in using predictive models

effectively.

3. Results

a. Forecasting Precipitation Across the Chile Territory.

To test the forecast using the described method, we will consider precipitation records from a �ve-year period

between 2018 and 2022 for all data grid points covering the country. The �rst four years (2018–2021) are used as

training data to �t the predictive model, and the forecast is made for the entire year 2022, representing a

horizon of   days.

Both training and forecasting are performed independently for all grid points within each cluster’s de�ned

geographic area. Recall that the clusters are constructed from a sample of 460 points (out of a total of 6355 grid

points) near the precipitation measurement stations. The cluster structure segments this data sample by

capturing spatiotemporal correlations. Thus, similar precipitation patterns in the records (similarity de�ned

using DTW distances) are associated with speci�c geographic areas. Moreover, this cluster structure is stable

enough for analysis. Here, “stable enough” means a minimal variability of the cluster structure during the

period chosen for model �tting and the forecast horizon considered. These stable spatiotemporal correlations

allow the use of extended EOFs for forecasting to reconstruct the data. We thus consider the forecast in seven

var(SAI)

h = 365
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geographic regions, including all grid points falling within each cluster-de�ned region, to �t the predictive

model.

Depending on the cluster, the number of data grid points (time series) considered varies, as each cluster has a

different number of locations within its delineated geographic zone. Additionally, the number of EOFs to be

considered also depends on the chosen cluster. The criterion is that this number of EOFs should ensure more

than 80% of the explained variance. Clusters with better DOF and Var(SAI) indicators require fewer EOFs for the

analysis compared to clusters with poorer indices. Thus, clusters labeled 3 to 6, which present better metrics,

require between 3 to 5 EOFs to explain more than 80% of the variance, while clusters 1, 2, and 7 require more

than 5 EOFs to achieve this.

We decomposed the data using Singular Value Decomposition (SVD), obtaining Empirical Orthogonal Functions

(EOFs) and Principal Components (PCs). In practice, this is akin to decomposing the data into a series using

EOFs as basis functions, where the coef�cients represent the PCs. We selected    to    PCs for each

cluster-de�ned geographic region, accounting for more than 80% of the explained variance in each case, and

used their corresponding EOFs to forecast the spatiotemporal data for each region.

The coef�cients   (PCs), which solely depend on spatial coordinates, demonstrate minimal variability when

extending the forecasting horizon to a year (i.e.,to 2022), as supported by empirical evidence. Upon meticulous

examination of EOFs and their associated spatial coef�cients across various temporal intervals in spatio–

temporal data decomposition, it becomes evident that the �rst spatial coef�cients (i.e., the �rst PCs) exhibit

negligible variation across these different studied time intervals. Fig. 4 illustrates this by comparing the �rst 10

spatial coef�cients calculated for the dataset between 2018 and 2021 with those calculated when incorporating

the year 2022.

= 5K
¯ ¯¯̄¯ = 7K

¯ ¯¯̄¯

(s)αk
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Figure 4. Comparison of the top 10 spatial coef�cients from EOF decomposition of precipitation data for 2018–2021

(panel A) and data including 2022 (panel B).

By leveraging decomposition by EOFs, the spatiotemporal forecasting problem transitions into a univariate

time series forecasting problem, as EOFs are inherently uncorrelated time series. This enables the utilization of

various well–developed methodologies for time series forecasting. As a baseline, we employed classical

autoregressive models available in the R package “modeltime”[22] (see Table 3). Additionally, we utilized Deep

Learning autoregressive models, including DEEPAR, which is a DL architecture based on a Long Short–Term

Memory (LSTM) Recurrent Neural Network[23], DEEP STATE, an approach to probabilistic time series

forecasting that combines state space models with deep learning[24], NBEATS, a deep neural architecture based

on backward and forward residual links and a very deep stack of fully–connected layers[25], and Gaussian

Process (GP) Forecast, a DL architecture that automatically selects the optimal kernel in Gaussian process

analysis of time series, while also providing reliable estimation of the hyperparameters[26], for forecasting

purposes.
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Table 3. Accuracy table for some autoregressive models.

While classic autoregressive models exhibited poor performance, DL models produced more accurate results.

Table 4 summarizes the key metrics for comparing the models (MAE: Mean absolute error, MAPE: Mean

absolute percentage error, MASE: Mean absolute scaled error, SMAPE: Symmetric mean absolute percentage

error, and RMSE: Root mean squared error).

Model MAE MAPE MASE SMAPE RMSE

1 WAVELET–ANN[13]

2 DEEPAR[27]

3 DEEP STATE[24]

4 NBEATS[25]

5 GAUSSIAN PROCESS FORECAST[26]

Table 4. Accuracy table comparing different Deep Learning models in forecasting the EOF  .

Fig. 5 depicts a comparison of forecasts for 2022 generated by the Wavelet–ANN Hybrid Model and the DEEPAR

model using the �rst three EOFs. Precipitation records from three years between 2019 and 2021 were utilized as

training data for model training.

In the remainder of this article, we will continue using the Wavelet–ANN Hybrid model for forecasting, which is

built upon the wavelet transform using the Maximal Overlap Discrete Wavelet Transform (MODWT) algorithm

0.015 2.942 2.349 0.019 0.971

0.016 833. 1.25 89.1 0.021

0.014 661. 1.08 83.0 0.018

0.014 813. 1.09 81.3 0.017

0.014 777. 1.04 77.7 0.017

ϕ1
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developed by Anjoy et al.[13].

Figure 5. The �rst three EOF functions (in black) and their predictions (in red). The top three panels display

predictions of the EOFs using a LSTM–Recurrent Neural Network with ten hidden layers, while the bottom three

panels depict predictions using the Wavelet–ANN Hybrid Model.

For EOFs forescast with the Wavelet–ANN Hybrid model, we employed a Haar �lter with 10 wavelet levels (the

level of wavelet decomposition), and the size of the hidden layer = 40. Next, we reconstructed the

spatiotemporal data for all locations within each cluster.

Fig. 6 offers a detailed illustration of the 2022 forecast using this method. By conducting the forecast separately

for each cluster, we ensure similar precipitation patterns and more stable spatiotemporal relationships.
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Figure 6. The precipitation time series for the medoids of clusters C2 to C7 for 2022 are shown. The black curves

represent the actual precipitation records, while the red curves display the forecasts made using the EOF–Wavelet–

ANN hybrid model.

We primarily use the medoid or representative of each cluster to validate the forecast. The medoid captures a

characteristic precipitation pattern for each cluster and, consequently, for the geographic area it represents. The

other points within this geographic area are expected to exhibit similar precipitation patterns. However, in

larger clusters or those with poorer spatial coherence metrics, some time series within the cluster may deviate

from the medoid’s pattern. In these instances, we conduct multiple forecasts at various points within each

cluster to thoroughly assess the model’s performance.

Table 5 shows the forecast performance for each cluster medoid using the decomposition of spatiotemporal

data into EOFs and capturing temporal patterns with Wavelet-ANN. The table shows the number of grid points

(out of a total of 6355 points) within each cluster that were used to train the model.

To illustrate the complexity of applying the described model, the computation time for each data set

corresponding to each cluster is indicated, using a MacBook Pro with a 2.3 GHz Intel Core i9 Eight-Core

processor and 16 GB of 2667 MHz DDR4 memory. Predictions can be made for any grid point within the clusters,

but for visualizing the predictions, the medoid of each cluster is used.
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Cluster Grid points MAE MASE RMSE Medoid(Long,Lat) Expl.Variance(5EOFs) Comput.Time

1 1232 1.423551 1.615929 2.122508 (-68.75,-20.25) 0.8148431(7EOFs) 39.18936 mins

2 1542 1.609527 0.4985094 2.280558 (-71.25,-53.5) 0.8998416 26.27438 mins

3 533 0.4189356 0.444972 1.348227 (-70.5,-29.25) 0.8478964 27.81493 mins

4 448 0.6333704 0.4218802 1.516656 (70.5,-33) 0.8785737 28.12317 mins

5 355 0.7353927 0.2167723 2.263974 (-71.5,-35.75) 0.8933317 27.90131 mins

6 580 2.022632 0.3941201 3.10687 (-72.25,-38.25) 0.8761673 27.94201 mins

7 1661 6.471836 0.6291881 10.05184 (-72.5,-44.25) 0.8931514 28.08024 mins

Table 5. Model Performance on the Precipitation Data for the Medoids of the Clusters.

Fig. 6 shows the precipitation time series for the medoids of clusters C2 to C7 for 2022. The locations of the

medoids are indicated in table 5. The black curves represent the actual precipitation records, while the red

curves show the forecasts made using the previously described method.

It can be observed that the forecasts appear reasonably accurate for these locations, with more precise results

for the medoids of clusters C3 to C6. For the medoids of clusters C2 and C7, the forecasts seem less accurate,

consistent with the indicators shown in Figure 6.

Time series for cluster C1 are not shown, but the results are less accurate. This is due to the low predictability

indicated by the poor DOF and   metrics for these geographic areas.

4. Conclusions and Discussion

In this study, we presented an innovative approach to analyzing and forecasting spatiotemporal climatic

patterns by integrating advanced statistical techniques with machine learning methods. By employing

Empirical Orthogonal Functions (EOFs) for dimensionality reduction, we ef�ciently capture the essential

temporal and spatial information within the climate data. The application of wavelet analysis provides high-

resolution time-frequency information, enhancing the detail and accuracy of the forecasts. Machine learning

methods are leveraged for their powerful predictive capabilities, allowing for the robust forecasting of a

truncated number of EOFs over a medium-range horizon. Speci�cally the Wavelet-ANN Hybrid model, utilizing

the Maximal Overlap Discrete Wavelet Transform (MODWT) algorithm, has proven to be effective in forecasting

var(SAI)
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the selected EOFs, thereby enabling the reconstruction of spatiotemporal data with extended temporal

components.

This methodology not only addresses the complexities inherent in climate data analysis but also facilitates the

transition from a high-dimensional multivariate forecasting problem to a more manageable low-dimensional

univariate forecasting problem. This signi�cant reduction in computational complexity is achieved without

compromising the utility and accuracy of the forecasts.

Moreover, the use of cluster analysis with Dynamic Time Warping (DTW) for de�ning similarities between

rainfall time series, along with spatial coherence and predictability assessments, has been instrumental in

identifying geographic areas where model performance is enhanced. This approach also provides insights into

the reasons behind poor forecast performance in regions or clusters with low spatial coherence and

predictability. By using the medoids of the clusters, the forecasting process becomes more practical and

ef�cient.

Overall, this study underscores the importance of combining statistical and machine learning techniques to

tackle the intricate challenges posed by climate data analysis. The �ndings highlight the potential of this

hybrid methodology to improve resource management and environmental planning, particularly in regions

characterized by high climatic variability like Chile. The robust framework established in this research offers a

pathway for more accurate and reliable climatic forecasts, ultimately contributing to better-informed decision-

making processes in the face of climate change.

The primary motivation behind this study is to use pragmatic, computationally ef�cient models that provide

useful forecasts while accounting for the climatic variability of an extensive and complex region such as Chile.

Given this signi�cant variability, we posit that a single predictive model or tool adaptable to all the intricate

details scattered throughout the region is inherently unreliable.

To address the complexities of this problem, we employ a hybrid approach that combines several tools: (1)

unsupervised classi�cation (cluster analysis) to capture spatiotemporal correlations using Dynamic Time

Warping (DTW)-based distances, (2) Empirical Orthogonal Function (EOF) decomposition on data classi�ed

(segmented) by clusters to reduce the problem’s dimensionality, and (3) the application of machine learning

methods on time series to capture temporal patterns in each geographic zone delineated by the clusters.

This approach yields localized forecasts for geographic regions exhibiting similar precipitation behavior

patterns.

It is important to note that this method can also be applied to the entire dataset for a global forecast of the

territory (i.e., without segmenting into geographic zones delineated by clusters) by increasing the number of

EOFs (20 or more, to achieve more than 80% of the explained variance). However, this would result in reliable
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forecasts in areas with better spatial coherence and predictability, but less reliable predictions in other zones

where the data is not well represented. Segmenting the data into similarity patterns is a preliminary step to

enhance the local nature of the forecast and can be bene�cial for each speci�ed geographic zone.

Furthermore, this approach can be combined with the innovative methodology recently proposed in[16], where

spatial coef�cients can be extended not only across the entire grid but also at any point within the territory

using Deep Learning-based regression (interpolation). A dense Feed–Forward Neural Network (FFNN) captures

local spatial patterns, facilitating the reconstruction of   at any point. By passing the extended   over

a horizon    to the �nal layer (recombination layer) of this FFNN for estimating spatial coef�cients, the

spatiotemporal �elds are not only reconstructed at each grid point (potentially at any point, not limited to the

grid) but also extended in time through the forecast of the associated time series.
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