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A prior map serves as a foundational reference for localization in context-aware applications such as

augmented reality (AR). Providing valuable contextual information about the environment, the prior

map is a vital tool for mitigating drift. In this paper, we propose a map-based visual-inertial

localization algorithm (NeRF-VIO) with initialization using neural radiance �elds (NeRF). Our

algorithm utilizes a multilayer perceptron model and rede�nes the loss function as the geodesic

distance on  , ensuring the invariance of the initialization model under a frame change within 

. The evaluation demonstrates that our model outperforms existing NeRF-based initialization

solution in both accuracy and ef�ciency. By integrating a two-stage update mechanism within a

multi-state constraint Kalman �lter (MSCKF) framework, the state of NeRF-VIO is constrained by both

captured images from an onboard camera and rendered images from a pre-trained NeRF model. The

proposed algorithm is validated using a real-world AR dataset, the results indicate that our two-stage

update pipeline outperforms MSCKF across all data sequences.

I. Introduction and Related Work

Augmented Reality (AR) [1][2] and Virtual Reality (VR) [3][4] have emerged as transformative technologies,

offering immersive experiences across various domains. One critical aspect shaping the effectiveness of

these experiences is the incorporation of prior maps  [5]. These maps provide essential spatial context,

enabling accurate localization, tracking, and seamless integration of virtual elements into the real world.

To achieve high quality and low latency user experiments, visual-inertial navigation systems (VINS) have
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received considerable popularity in AR/VR applications  [6][7][8][9][10]  through utilizing low-cost and

lightweight onboard cameras and inertial measurement units (IMUs).

Using VINS, the drift of the pose will accumulate and the uncertainty of the estimate will grow

unbounded without global information, such as a prior map, GNSS measurement, or loop closure.

However, GNSS may not be applicable indoors, and loop closure demands both a precise and ef�cient

place recognition algorithm  [11][12][13]  and substantial memory space to store historical features  [14][15].

Consequently, prior map-based approaches have gained signi�cant interest over the past few decades [16]

[17][18][19][20][21].

One of the key challenges that the map-based VINS literature tackles is relocalization based on one image

and a prior map. Typically, descriptor-based methods are employed to establish 2D-3D correspondences

by reprojecting map points to the image frame and matching them with features extracted from the

image[22][23]. Considering the increase in optimization complexity with map size, DBoW[11] represents an

image by the statistic of different kinds of features from a visual vocabulary. Inspired by the DBoW,

keyframe-based loop closure detection and localization are employed in ORB-SLAM[14]  and ORB-

SLAM2[15]. However, DBoW sacri�ces spatial information about features, potentially leading to

ambiguities or inaccuracies.

Recently, Neural radiance �elds (NeRF)[24] introduces a multilayer perceptron (MLP) to capture a radiance

�eld representation of a scene. During training, NeRF estimates the color and density of sampled

particles along each ray, and minimizes the photometric error between the estimated image and the

groundtruth. NICE-SLAM[25]  proposes a dense simultaneous localization and mapping (SLAM) system

that incorporates depth information and minimizes depth loss during training. Subsequently, NICER-

SLAM[26]  further incorporates monocular normal estimators and introduces a keyframe selection

strategy. To expedite the training procedure, Nvidia proposes Instant-NGP[27], which leverages an

innovative input encoding method, allowing the use of a smaller network without sacri�cing quality.

Despite the notable enhancement in training speed, there is no assurance of compatibility with online

visual-inertial odometry (VIO) and NeRF map updates.

Among the NeRF-based localization literature, Loc-NeRF[28] introduces a real-time visual odometry (VO)

algorithm by combining a particle �lter with a NeRF prior map, which is trained of�ine. VO propagates

the state of the pose, while rendered images from NeRF are used for updates. Due to the large number of

particles and rendering costs from the NeRF model, Loc-NeRF operates at a much lower frequency of 0.6
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Hz compared to the normal camera rate. NeRF-VINS[29]  proposes a real-time VINS framework by

integrating OpenVINS[8]  and NeRF[24], utilizing both real and rendered images for updates at varying

frequencies. Nonetheless, none of the approaches above addresses pose initialization at the �rst timestamp. In

other words, they assume the rigid transformation between the prior map frame and the online camera frame is

known. The only map-based relocalization work is iNeRF[30], they invert the NeRF pipeline and propose a

gradient-based pose estimator by inputting a single image and a pre-trained NeRF model, but it heavily

relies on a good initial guess.

Figure 1. An overview of our NeRF-VIO framework. Commencing with the initial captured image, the pre-

trained initialization model (yellow) outputs the �rst pose of the camera frame. Utilizing IMU integration

from the timestamp of the initial IMU measurement to that of the �rst camera measurement, we deduce the

initial IMU state backward. Throughout online traveling, we leverage both the pre-trained NeRF model

(green) and the onboard camera to establish spatial constraints, facilitating the update of poses within the

current sliding window. These updated poses then undergo further IMU propagation, serving as input to the

NeRF model for the rendering of subsequent images.

To tackle the challenges outlined above, this paper proposes a real-time map-based VIO algorithm with

pose initialization as in Fig. 1. Speci�cally, we introduce an initialization model to estimate the �rst IMU

state and a NeRF model to update the poses during traveling. For the initialization, we introduce an MLP-

based model, which establishes the correlations between images and poses without necessitating an

initial guess. We de�ne a novel loss function as the geodesic errors on    and construct a left-

invariant metric on  . Additionally, we train a NeRF model capable of rendering images from new

poses. During online traversal, the onboard camera captures images while the NeRF model renders
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images based on the estimated poses from VIO. These two pipelines operate concurrently but at different

frequencies. Upon receiving a new rendered image, an object removal strategy is deployed to

environmental alterations between the real world and the prior map. Subsequently, both captured and

rendered images are utilized to update the robot’s state. The main contributions of our work include:

We propose a novel pose estimation model to initialize the �rst IMU state of VINS within the prior

map frame. Our approach involves training an MLP to encode the map-pose information, and de�nes

a novel loss function as the geodesic errors on  . Besides, we prove the left-invariant of our

proposed loss function.

We propose an online NeRF-based VIO algorithm by integrating a NeRF-based prior map and the

proposed initialization model. This algorithm utilizes both captured images from an onboard camera

and rendered images from NeRF to update the state.

We validate our proposed method using a real-world AR table dataset[31]. The results demonstrate that

our initialization model surpasses state-of-the-art NeRF-based pose estimation solution in terms of

accuracy and ef�ciency. Besides, our two-stage update pipeline outperforms multi-state constraint

Kalman �lter (MSCKF)[6] across all table sequences.

II. Preliminaries

A. NeRF Map Generation and Image Rendering

NeRF[24] employs a multilayer perceptron (MLP) to capture a radiance �eld representation of a scene and

generate images from new perspectives. The NeRF model can be trained of�ine given a sequence of RGB

images and the corresponding 3D location and the 2D viewing direction, where the 2D viewing direction

can be expressed as a 3D Cartesian unit vector. Once we get the NeRF map  , a new image from a novel

pose can be generated and each pixel on the image is predicted by projecting a ray   from the center of

the camera to the position of this pixel on the image plane. Then some particles are sampled uniformly

within   along the ray and part of them are selected based on the estimated density  . Finally, the

color value of this pixel is rendered based on those selected particles as:

where   denotes the estimated value and   denotes the RGB color to be predicted at one particle. The

accumulated transmittance follows  . Then, the loss function can be

SE(3)

Nθ

r

[ , ]tn tf σ

(r) = (r, t) (r, t) (r, t)dt,Ĉ ∫
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de�ned as:

where   denotes the set of rays. For a more comprehensive description, readers are referred to[24].

III. Problem Formulation

The goal of the NeRF-VIO is to estimate the 3D pose of the IMU frame { } in the global frame { } given

an initialization model   and a prior map  . Speci�cally, the prior map is encoded by a NeRF model,

which is trained of�ine using the image-pose pairs from a different trajectory in the same environment.

As illustrated in Fig.  2, the initialization model is designed to relocalize a captured image from a prior

map, while the NeRF model renders an image based on the current pose. The initialization model runs

only once before online traversal. Note that the NeRF map resides within its own world frame { }, which

is not coincident with the global frame { } before initialization. During online traveling, the robot

updates its state using both images rendered from the NeRF map and the captured images from the

onboard cameras in the camera frame { }. We assume the sensor platform is pre-calibrated, ensuring

that the relative transformation between the IMU frame and camera frame, denoted as  , is already

determined.

A. NeRF-VIO State Vector

To perform the NeRF-VIO, we include the IMU state, cloned IMU state, SLAM feature state, calibration

state, and camera and IMU time-offset in the robot’s state vector as:

where   denotes the time-offset between the camera clock and the IMU clock, which treats

the IMU clock as the true time. The state vector of IMU at time step   can be written as:

where   denotes the JPL unit quaternion from the global frame to the IMU frame.   and   are the

position and velocity of IMU in the global frame.   and   represent the gyroscope and accelerometer

biases. During inference, the robot maintains a sliding window with    cloned IMU poses at time step 

 written as:
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In addition to the IMU state, the historical SLAM features are also stored in the state vector as:

and spatial calibration between its IMU frame and camera frame will also be estimated as:

B. IMU Dynamic Model

The measurement of the IMU linear acceleration   and the angular velocity   are modeled as:

where    and    are the true linear acceleration and angular velocity.    and    represent the

continuous-time Gaussian noises that contaminate the IMU measurements.    denotes the gravity

expressed in the global frame. Then, the dynamic system of each IMU can be modeled as in [10].

After linearization, the continuous-time IMU error-state can be written as:

where    is the    continuous-time IMU error-state Jacobian matrix,    is the    noise

Jacobian matrix, and   is the system noise with the covariance matrix  . Then, a

standard EKF propagation is employed to mean and covariance[32].
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Figure 2. Comparison of input and output during model inference. The Init model estimates the camera pose

in the world frame of a prior map based on a captured image. Conversely, the NeRF model renders an image

when provided with a speci�c camera pose.

C. Initialization Model

The purpose of the initialization model is to restore the IMU state at the �rst timestamp   from a prior

map  . In iNeRF[30], a 6 Degrees of Freedom (DoF) pose estimation is proposed, leveraging gradient

descent to reduce the residual between pixels generated from a NeRF and those within an observed

image. However, this approach heavily depends on a good initial guess.

In this work, we introduce a novel MLP-based initialization model that directly maps images to poses

without needing an initial estimate. Speci�cally, we pre-collect images and groundtruth data from the

same environment and train a 7-layer MLP. This MLP encodes prior environmental knowledge, taking a

sequence of images as input and outputting 6-DoF poses. Working with pose estimation in the context of 

 requires careful consideration of the underlying Lie group structure. The lack of invariance in the

standard inner product on    has a potential drawback, as it can lead to discrepancies when

comparing poses in different coordinate frames. Hence, our contribution goes beyond just initialization,

as we de�ne our loss function using geodesic distance on    with a left-invariant metric. This

ensures consistent and invariant pose comparisons, addressing the limitations tied to inner product-

based metrics.
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In the establishment of a left-invariant metric on  , the de�nition involves specifying the inner

product on the Lie algebra    and subsequently extending it to a Riemannian metric through left

translation[33]. The left-invariant metric is established when the following equation holds[34]:

where    represents the inner product within the tangent space    at an arbitrary element 

,  ,   denotes the identity, and   denotes the inverse operation in the Lie

group  .

Inspired by the de�nition of bi-invariant metric in  , the metric in    can be constructed

similarly. We de�ne

where  . The eigenvalues of    are  , and the condition    ensures all

eigenvalues are positive. Then, the metric on   is de�ned as:

Lemma 1. Left-invariant: The metric de�ned in (12) is left-invariant.

Proof. For  , let  ,  , be  , we have

Then, according to (12), we have

which means that the metric is left-invariant. 
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As  , it can be written as:

and the corresponding twists at time   can be expressed as :

With the de�nition of the metric in (12), the inner product can be reformulated as:

The left-invariant metric on   allows us to de�ne the geodesic loss on   as follows:

where  ,   represents Lie logarithm at  ,   and   denote the rotational velocity and

translational velocity from    to  , respectively. Since the original data naturally lies in  , this

metric formulation offers computational advantages over the standard left-invariant metric on  .

Speci�cally, it eliminates the need for mapping between    and  , while maintaining

mathematical rigor through the use of the canonical inner product structure on  . This approach

both simpli�es computation and preserves the geometric interpretation of the distance measure.
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Figure 3. IMU pose initialization. From the init model, the relative pose between the

�rst camera frame and the prior map frame can be determined. With the camera-IMU

calibration parameters and the timestamps, the transformation between the �rst

camera frame and the �rst IMU frame can be found.

With this loss function, we train an MLP-based initialization model to relocalize the pose of the �rst

captured image in the prior map  . Based on the IMU integration in (10), and the

calibration parameters in (7), the relative transformation from the �rst IMU pose to the �rst camera pose 

  can be obtained. Now, the �rst IMU frame can be relocalized in the prior map

frame as:

To further initialize  , we collect a window of IMU readings from timestamp   to the time

received the �rst image, and initialize using the average of velocities and bias within this window.

D. Robustness to Environmental Alterations

To address dynamic objects and minor environmental alterations between the previous map and the

current scenario, we introduce the grid-based Structural Similarity Index (SSIM)  [35]  algorithm. This

method involves partitioning both the captured and rendered images into numerous small grids and

computing the SSIM similarity for each grid pair across the two images as:
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where  ,  , and   denote the local mean (luminance), standard deviations (contrast),

and cross-covariance (structural) similarity between two images.  ,  , and   denote the weights for three

terms. If the similarity of a grid pair surpasses a predetermined threshold, feature extraction will be

applied to both grids. Conversely, regions where the similarity falls below the threshold are deemed to

contain dynamic objects, and consequently, no feature will be extracted within those areas on the

rendered image.

E. Measurement Update using Captured Images

The feature measurements captured from an onboard camera can be described by:

where   denotes the position of this feature in the camera frame, and   denotes the corresponding

measurement noise. Based on the estimated relative transformation between IMU and the global frame,

and the estimated calibration parameters,   can be expressed as:

where   is the exact camera time between the global and IMU frame.

To update a particular captured feature, we �rst gather all measurements of this feature within the

current sliding window. Then, the measurement residuals are computed between each observation and

the registered feature. By stacking all measurement residuals, we linearize them at the estimated IMU

pose as follows:

where    and    denote the state and measurement Jacobians of captured features, respectively. 

  denotes the noise vector corresponding to the captured feature. Then, the standard MSCKF

update [6] is applied using left-nullspace projection for  .
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Figure 4. The three timelines denote data received from different sensors and the NeRF model. We de�ne the

closest camera frame { } as the frame closest in time to when the NeRF model begins rendering.

F. Measurement Update using Rendered Images

To incorporate the observations from the rendered image and update the state vector, we aim to update

the state corresponding to the pose at which the image was rendered. However, due to factors such as

rendering delay and the fact that the camera pose has already been updated based on captured features,

we opt for the closest camera frame { } relative to the original rendered one as shown in Fig. 4. The

measurement function of rendered features can be formulated as:

where   denotes the rendered noise, and

The error state Jacobians w.r.t. the pose of IMU can be expressed as:

where   denotes the Jacobian of perspective model.

Note that the rigid transformation   from the initialization model is not perfect, but (24) has not

modeled the initialization noise into it. Thus, we in�ate the noise term as:
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where

Then, the linearized model can be expressed as:

and an EKF update[6] will be employed.

iNeRF (a) iNeRF (b) NeRF-VIO

Table 2 20.33 / 23.39 2.81 / 5.49 2.02 / 1.48

Table 3 9.95 / 38.37 2.70 / 4.79 2.71 / 2.04

Table 4 10.61 / 22.95 3.35 / 6.55 3.16 / 1.90

Table 5 - 5.47 / 8.09 5.21 / 4.76

Table I. The   norm of the orientation / position (degrees / centimeters) of the initialization pose, utilizing

iNeRF and our NeRF-VIO across AR table sequences 2-5. For iNeRF, we use different initial guesses: (a) a  -

degree rotational error and a  -centimeter translation error for each axis. (b) a  -degree rotational error and

a  -centimeter translation error for each axis.

Table 2 Table 3 Table 4 Table 5

iNeRF 15.46 15.55 15.64 -

NeRF-VIO 0.11 0.12 0.13 0.11

Table II. The latency (seconds) of pose generation, utilizing iNeRF and our NeRF-VIO across AR table

sequences 2-5.
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IV. Experiments and Results

In this section, we validate the performance of NeRF-VIO initialization and localization using a real-world

AR table dataset[31]. The dataset comprises AR table sequences 1-4, recorded around a table adorned with

a textured tablecloth. Table sequence 5 introduces minor alterations by incorporating additional objects

onto the table (minor environment change), while table sequences 6-8 place an additional large

whiteboard to simulate the large environment change. Throughout the training process, sequence 1 is

utilized to train both the initialization model and the NeRF model on an RTX 4090 GPU. In Sec. IV-A, we

compare the accuracy and latency of initialization with iNeRF[30]. Rendering performance and VIO

localization accuracy are evaluated and compared with MSCKF[6]  in Sec.  IV-B. Additionally, Sec.  IV-C

showcases an instance of grid-based SSIM.

Figure 5. Testing results of NeRF model. (a) Groundtruth of test image. (b) Rendered image at iteration 1000.

(c) Rendered image at iteration 50000. (d) Rendered image at iteration 200000.

Figure 6. Comparison of NeRF-rendered images to ground truth under normal / minor-change / large-change

environments. The top row displays captured images from the closest camera frame, while the second row

showcases rendered images at the same positions and orientations. Columns correspond to Table 3-6,

progressing from left to right.
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Table 2 Table 3 Table 4 Table 5 Table 6 Table 7 Average

MSCKF 1.142 / 0.034
0.750 /

0.065

2.095 /

0.077

0.656 /

0.047
0.961 / 0.049 1.161 / 0.069 1.128 / 0.057

NeRF-VIO
0.686 /

0.023

0.651 /

0.049

0.886 /

0.038

0.519 /

0.028
0.737 / 0.036

0.982 /

0.049

0.744 /

0.037

NeRF-VIO (GT

Init)

0.750 /

0.024

0.517 /

0.046

0.766 /

0.040

0.534 /

0.031

0.564 /

0.028

0.896 /

0.043

0.671 /

0.035

Table III. The ATE of the orientation / position (degrees / meters) of three VIO methods in different AR Table

sequences.

A. Initialization Performance

The initialization model is trained as a 7-layer MLP using AR table sequence 1. RGB images are extracted

from a Rosbag, which records from an Intel RealSense D455 camera[36]. The IMU groundtruth are

captured from the Vicon system[37], and camera intrinsic and camera-IMU extrinsic parameters are

calibrated using Kalibr[38]. Before forwarding the images to MLP, the corresponding camera poses are

determined using 4th-order Runge-Kutta interpolation[39]. RGB images are then converted to grayscale,

normalized to a range between 0 and 1, and processed through the MLP.

To compare our initialization model with iNeRF, we leverage our pre-trained NeRF model from NeRF-

PyTorch1. as a prior map. Pose estimation of the �rst images in sequences 2-5 is conducted using iNeRF2.

and our initialization model. Speci�cally, we initialized iNeRF with two different initial guesses: (a) a  -

degree rotational error and a  -centimeter translation error for each axis. (b) a  -degree rotational error

and a  -centimeter translation error for each axis. We evaluate the   norm of position and orientation

between estimated values and groundtruth of those two models in Table. I, while latency is provided in

Table.  II. We can �gure out that our NeRF-VIO initialization model demonstrates superior performance

over iNeRF across all four trajectories, exhibiting signi�cantly lower latency. This can be attributed to

iNeRF’s reliance on gradient-based optimization, which needs to converge to local minima iteratively.

Notable that we preload all models before initialization, thus the model loading time is not contained in

Table.  II. Additionally, iNeRF relies on a NeRF prior map, which renders it vulnerable to signi�cant

10

20 2

5 L2
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environmental changes, leading to relocalization failures as observed in Table 5. In contrast, our model

exhibits robustness to minor environmental alterations and retains the capability to reconstruct images

even when a large environment changes.

B. VIO Performance

The NeRF model is constructed with 8 fully connected layers, followed by concatenation with the viewing

direction of the camera, and passed through an additional fully connected layer. In addition to the image

preprocessing outlined in Sec.  IV-A, we further rotate the camera by 180 degrees along the x-axis to

maintain consistent rendering direction. Fig. 5 illustrates the testing results of the NeRF model at various

iterations during training. To evaluate the capability of NeRF-VIO to adapt to small or large

environmental changes, a comparison of rendered images and ground truth is presented in Fig.  6,

utilizing data from AR Table 3-6.

In assessing the impact of rendered image updates and initialization models on VIO performance, we

compare our NeRF-VIO with MSCKF[6] and NeRF-VIO (GT Init), which same as NeRF-VIO but initialized

from ground truth. To ensure a fair comparison, we employ the same seed and an equal number of KLT

features[40]  for all three methods. For NeRF-VIO, we run the NeRF rendering at 2Hz and the onboard

camera at 30Hz on an Intel 9700K CPU. Table. III presents the absolute trajectory error (ATE) from Table

2-7, while Fig.  7 displays the relative pose error (RPE) of AR Table 4. It is evident that our NeRF-VIO

outperforms MSCKF across all sequences and achieves performance nearly on par with the groundtruth

initialization.
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Figure 7. The RPE of MSCKF[6], NeRF-VIO (ours), and NeRF-VIO (GT Init) using AR Table 4. NeRF-VIO

initializes from the pre-trained model, while NeRF-VIO (GT Init) initializes directly from groundtruth.

C. Robust to Environment Changes

To further classify the mechanics of the grid-based SSIM, we provide an example in Fig. 8 to illustrate

both pixel-level and grid-level similarity. Contrasting with the third column of Fig. 6, the presence of dark

pixels in Fig. 8(a) signi�es a high similarity computed between the rendered and captured images. In our

implementation, we assign a weight of    to the exponent term in (19), and the SSIM for each

grid is shown in Fig. 8(b). Then, only grids exhibiting a similarity that is larger than   are utilized for

FAST[41]  feature extraction. This methodology ensures consistency between the NeRF map and the real

map while maintaining robustness against environmental changes.

[1, 0.5, 0.1]

0.8
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Figure 8. Comparison of pixel-level and grid-based SSIM. (a) A dark region denotes a high

similarity, while the white region denotes a huge luminance, contrast, and structural

difference weighted by  . (b) A grid-level similarity map is used in our algorithm.

The red text denotes the similarity of each small grid.

V. Conclusions

In this paper, we have proposed a map-based visual-inertial odometry algorithm with pose initialization.

We de�ne a novel loss function for the initialization model and train an MLP model to recover the pose

[1, 0.5, 0.1]
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from a prior map. Besides, we proposed a two-stage update pipeline integrated into the MSCKF

framework. Through the evaluation on a real-world AR dataset, we demonstrate that our NeRF-VIO

outperforms all baselines in terms of both accuracy and ef�ciency. In the future, more attention will

focus on online prior map and IMU state optimization.

Footnotes

1 https://github.com/yenchenlin/nerf-pytorch

2 https://github.com/salykovaa/inerf

References

�. ^Google ARCore.

�. ^Apple ARKit.

�. ^Meta Quest 3.

�. ^Apple Vision Pro.

�. ^Wang J, Qi Y (2022). "A Multi-User Collaborative AR System for Industrial Applications". Sensors. 22 (4): 131

9. [Online]. Available: https://www.mdpi.com/1424-8220/22/4/1319. PMID 35214221.

�. a, b, c, d, e, f, gMourikis AI, Roumeliotis SI (2007). "A Multi-State Constraint Kalman Filter for Vision-aided In

ertial Navigation." In: Proceedings 2007 IEEE International Conference on Robotics and Automation. pp. 35

65-3572. doi:10.1109/ROBOT.2007.364024.

�. ^Qin T, Li P, Shen S (2018). "VINS-Mono: A Robust and Versatile Monocular Visual-Inertial State Estimator".

IEEE Transactions on Robotics. 34 (4): 1004–1020. doi:10.1109/TRO.2018.2853729.

�. a, bGeneva P, Eckenhoff K, Lee W, Yang Y, Huang G (2020). "OpenVINS: A Research Platform for Visual-Inerti

al Estimation." In: 2020 IEEE International Conference on Robotics and Automation (ICRA). pp. 4666-4672.

doi:10.1109/ICRA40945.2020.9196524.

�. ^Zhu P, Yang Y, Ren W, Huang G (2021). "Cooperative Visual-Inertial Odometry." In: 2021 IEEE International

Conference on Robotics and Automation (ICRA). pp. 13135-13141. doi:10.1109/ICRA48506.2021.9561674.

��. a, bZhang Y, Zhu P, Ren W (2023). "PL-CVIO: Point-Line Cooperative Visual-Inertial Odometry." In: 2023 IEE

E Conference on Control Technology and Applications (CCTA). pp. 859-865. doi:10.1109/CCTA54093.2023.10

253266.

qeios.com doi.org/10.32388/VAM5O9 19

https://github.com/yenchenlin/nerf-pytorch
https://github.com/salykovaa/inerf
https://developers.google.com/ar
https://developer.apple.com/augmented-reality/arkit
https://developer.oculus.com/meta-quest-3
https://www.apple.com/apple-vision-pro
https://www.mdpi.com/1424-8220/22/4/1319
https://pubmed.ncbi.nlm.nih.gov/35214221
https://doi.org/10.1109/ROBOT.2007.364024
https://doi.org/10.1109/TRO.2018.2853729
https://doi.org/10.1109/ICRA40945.2020.9196524
https://doi.org/10.1109/ICRA48506.2021.9561674
https://doi.org/10.1109/CCTA54093.2023.10253266
https://doi.org/10.1109/CCTA54093.2023.10253266
https://www.qeios.com/
https://doi.org/10.32388/VAM5O9


��. a, bGalvez-López D, Tardos JD (2012). "Bags of Binary Words for Fast Place Recognition in Image Sequence

s." IEEE Transactions on Robotics. 28 (5): 1188–1197. doi:10.1109/TRO.2012.2197158.

��. ^Siam SM, Zhang H (2017). "Fast-SeqSLAM: A fast appearance based place recognition algorithm." In: 2017

IEEE International Conference on Robotics and Automation (ICRA). pp. 5702-5708. doi:10.1109/ICRA.2017.79

89671.

��. ^Chen Z, Jacobson A, Sünderhauf N, Upcroft B, Liu L, Shen C, Reid I, Milford M. "Deep learning features at sc

ale for visual place recognition." In: 2017 IEEE International Conference on Robotics and Automation (ICR

A); 2017. p. 3223-3230. doi:10.1109/ICRA.2017.7989366.

��. a, bMur-Artal R, Montiel JMM, Tardf3s JD (2015). "ORB-SLAM: A Versatile and Accurate Monocular SLAM Sy

stem". IEEE Transactions on Robotics. 31 (5): 1147–1163. doi:10.1109/TRO.2015.2463671.

��. a, bMur-Artal R, Tardós JD (2017). "ORB-SLAM2: An Open-Source SLAM System for Monocular, Stereo, and

RGB-D Cameras". IEEE Transactions on Robotics. 33 (5): 1255–1262. doi:10.1109/TRO.2017.2705103.

��. ^Kasyanov A, Engelmann F, Stfcckler J, Leibe B (2017). "Keyframe-based visual-inertial online SLAM with r

elocalization." In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). pp. 66

62-6669. doi:10.1109/IROS.2017.8206581.

��. ^Schneider T, Dymczyk M, Fehr M, Egger K, Lynen S, Gilitschenski I, Siegwart R (2018). "Maplab: An Open Fr

amework for Research in Visual-Inertial Mapping and Localization." IEEE Robotics and Automation Letter

s. 3 (3): 1418-1425. doi:10.1109/LRA.2018.2800113.

��. ^Sarlin P-E, Cadena C, Siegwart R, Dymczyk M (2019). "From Coarse to Fine: Robust Hierarchical Localizati

on at Large Scale." In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognitio

n (CVPR), June 2019.

��. ^Geneva P, Huang G (2022). "Map-based Visual-Inertial Localization: A Numerical Study." In: 2022 Internat

ional Conference on Robotics and Automation (ICRA). pp. 7973-7979. doi:10.1109/ICRA46639.2022.9811829.

��. ^Cramariuc A, Bernreiter L, Tschopp F, Fehr M, Reijgwart V, Nieto J, Siegwart R, Cadena C (2023). "maplab 2.

0 – A Modular and Multi-Modal Mapping Framework". IEEE Robotics and Automation Letters. 8 (2): 520–

527. doi:10.1109/LRA.2022.3227865.

��. ^Zhang Z, Jiao Y, Huang S, Xiong R, Wang Y (2023). "Map-Based Visual-Inertial Localization: Consistency a

nd Complexity." IEEE Robotics and Automation Letters. 8 (3): 1407–1414. doi:10.1109/LRA.2023.3239314.

��. ^Liu L, Li H, Dai Y (2017). "Ef�cient Global 2D-3D Matching for Camera Localization in a Large-Scale 3D Ma

p." In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), Oct 2017.

qeios.com doi.org/10.32388/VAM5O9 20

https://doi.org/10.1109/TRO.2012.2197158
https://doi.org/10.1109/ICRA.2017.7989671
https://doi.org/10.1109/ICRA.2017.7989671
https://doi.org/10.1109/ICRA.2017.7989366
https://doi.org/10.1109/TRO.2015.2463671
https://doi.org/10.1109/TRO.2017.2705103
https://doi.org/10.1109/IROS.2017.8206581
https://doi.org/10.1109/LRA.2018.2800113
https://doi.org/10.1109/ICRA46639.2022.9811829
https://doi.org/10.1109/LRA.2022.3227865
https://doi.org/10.1109/LRA.2023.3239314
https://www.qeios.com/
https://doi.org/10.32388/VAM5O9


��. ^Geppert M, Liu P, Cui Z, Pollefeys M, Sattler T (2019). "Ef�cient 2D-3D Matching for Multi-Camera Visual L

ocalization." In: 2019 International Conference on Robotics and Automation (ICRA). pp. 5972-5978. doi:10.11

09/ICRA.2019.8794280.

��. a, b, c, dMildenhall B, Srinivasan PP, Tancik M, Barron JT, Ramamoorthi R, Ng R (2020). "NeRF: Representing

Scenes as Neural Radiance Fields for View Synthesis." In: ECCV.

��. ^Zhu Z, Peng S, Larsson V, Xu W, Bao H, Cui Z, Oswald MR, Pollefeys M. "NICE-SLAM: Neural Implicit Scalab

le Encoding for SLAM." In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog

nition (CVPR); 2022 June. p. 12786-12796.

��. ^Zhu Z, Peng S, Larsson V, Cui Z, Oswald MR, Geiger A, Pollefeys M. "NICER-SLAM: Neural Implicit Scene En

coding for RGB SLAM." In: 2024 International Conference on 3D Vision (3DV); 2024. p. 42-52. doi:10.1109/3D

V62453.2024.00096.

��. ^Müller T, Evans A, Schied C, Keller A (2022). "Instant neural graphics primitives with a multiresolution has

h encoding". ACM Transactions on Graphics (ToG). 41 (4): 1–15.

��. ^Maggio D, Abate M, Shi J, Mario C, Carlone L. "Loc-NeRF: Monte Carlo Localization using Neural Radiance

Fields." In: 2023 IEEE International Conference on Robotics and Automation (ICRA); 2023. p. 4018-4025. do

i:10.1109/ICRA48891.2023.10160782.

��. ^Katragadda S, Lee W, Peng Y, Geneva P, Chen C, Guo C, Li M, Huang G (2024). "NeRF-VINS: A Real-time Neu

ral Radiance Field Map-based Visual-Inertial Navigation System." In: 2024 IEEE International Conference o

n Robotics and Automation (ICRA). pp. 10230-10237. doi:10.1109/ICRA57147.2024.10610051.

��. a, b, cYen-Chen L, Florence P, Barron JT, Rodriguez A, Isola P, Lin T-Y (2021). "iNeRF: Inverting Neural Radian

ce Fields for Pose Estimation." In: 2021 IEEE/RSJ International Conference on Intelligent Robots and System

s (IROS). pp. 1323-1330. doi:10.1109/IROS51168.2021.9636708.

��. a, bChen C, Geneva P, Peng Y, Lee W, Huang G (2023). "Monocular Visual-Inertial Odometry with Planar Reg

ularities." In: 2023 IEEE International Conference on Robotics and Automation (ICRA). pp. 6224-6231. doi:1

0.1109/ICRA48891.2023.10160620.

��. ^Trawny N, Roumeliotis SI (2005). "Indirect Kalman �lter for 3D attitude estimation". University of Minnes

ota, Dept. of Comp. Sci. & Eng., Tech. Rep. 2: 2005. Citeseer.

��. ^Petersen P. Riemannian geometry. Springer; 2006. Vol. 171.

��. ^Gallier J. Geometric methods and applications: for computer science and engineering. Springer Science & B

usiness Media; 2011. Vol. 38.

qeios.com doi.org/10.32388/VAM5O9 21

https://doi.org/10.1109/ICRA.2019.8794280
https://doi.org/10.1109/ICRA.2019.8794280
https://doi.org/10.1109/3DV62453.2024.00096
https://doi.org/10.1109/3DV62453.2024.00096
https://doi.org/10.1109/ICRA48891.2023.10160782
https://doi.org/10.1109/ICRA57147.2024.10610051
https://doi.org/10.1109/IROS51168.2021.9636708
https://doi.org/10.1109/ICRA48891.2023.10160620
https://doi.org/10.1109/ICRA48891.2023.10160620
https://www.qeios.com/
https://doi.org/10.32388/VAM5O9


��. ^Wang Z, Bovik AC, Sheikh HR, Simoncelli EP (2004). "Image quality assessment: from error visibility to str

uctural similarity". IEEE Transactions on Image Processing. 13 (4): 600-612. doi:10.1109/TIP.2003.819861.

��. ^Intel RealSense D455. Available from: https://www.intelrealsense.com.

��. ^Vicon.

��. ^Rehder J, Nikolic J, Schneider T, Hinzmann T, Siegwart R (2016). "Extending kalibr: Calibrating the extrinsi

cs of multiple IMUs and of individual axes." In: 2016 IEEE International Conference on Robotics and Autom

ation (ICRA). pp. 4304-4311. doi:10.1109/ICRA.2016.7487628.

��. ^Butcher JC (1996). "A history of Runge-Kutta methods". Applied Numerical Mathematics. 20 (3): 247–260. d

oi:10.1016/0168-9274(95)00108-5.

��. ^Lucas BD, Kanade T (1981). "An Iterative Image Registration Technique with an Application to Stereo Visio

n." In: IJCAI'81: 7th international joint conference on Arti�cial intelligence, vol. 2, Vancouver, Canada, Aug. 1

981, pp. 674-679. PDF. HAL hal-03697340.

��. ^Viswanathan DG. "Features from accelerated segment test (fast)". In: Proceedings of the 10th workshop on

image analysis for multimedia interactive services, London, UK; 2009. p. 6-8.

Declarations

Funding: No speci�c funding was received for this work.

Potential competing interests: No potential competing interests to declare.

qeios.com doi.org/10.32388/VAM5O9 22

https://doi.org/10.1109/TIP.2003.819861
https://www.intelrealsense.com/
https://www.vicon.com/
https://doi.org/10.1109/ICRA.2016.7487628
https://doi.org/10.1016/0168-9274(95)00108-5
https://hal.science/hal-03697340/file/Lucas1981.pdf
https://hal.science/hal-03697340
https://www.qeios.com/
https://doi.org/10.32388/VAM5O9

