Review of: "In the immersion method, the nanowires have enough time to transfer from the particles of the nanowires to the holes"

Alain Advich¹

¹ Boston University Academy

Potential competing interests: No potential competing interests to declare.

In the immersion method, the nanowires have enough time to transfer from the particles of the nanowires to the holes; The step of forming uniform nanoparticles is done slowly, and finally, uniform nanowires are formed. Structural investigation with FESEM in the immersion method of uniform nanowires in all pores and in a wide area in nanowire particles. By changing the Sr/Fe ratio, there is no change in the morphology of the nanowires, and in the spectroscopy of nanowires with different Sr/Fe ratios inside the internal nanoparticles (uniform nanowires), the presence of Fe and Sr elements is caused by strontium ferrite. In the spectroscopy of uniform nanowires, it is observed that the ratio of Sr/Fe nanoparticles to the amount of its stoichiometry in the electromagnetic composition of nanoparticles is closer, while, due to the lower solubility of strontium uniform nanowire nanomolecules compared to iron nitrate and the presence of fewer strontium ions in the reaction with the electromagnetic particles of nanowires, there is a higher amount of Fe ion in the final structure.

To separate uniform nanowires, molar electromagnetic active particles are used at ambient temperature. In the application of nanowires in nanoscale electronic devices or some other applications, it is necessary to separate the nanowires from the alumina particles. It is also necessary to separate the uniform nanowires for better nano-electrostatic studies. In the application of uniform ferrite nanowires as absorbers of microwave waves, there is no need to separate the nanowires from inactive electromagnetic nanoparticles because the presence of a dielectric material plays an effective role in wave absorption.

References

possible applications in electronic energy". Qeios. doi:10.32388/i5wrmf.


