

Review of: "Assessment of COVID-19 from Features Extraction of Exhaled Breath Using Signal Processing Methods"

Shokhan M. Al-Barzinji¹

1 University of Anbar

Potential competing interests: No potential competing interests to declare.

Dear Editor

The research paper titled "Assessment of COVID-19 from Features Extraction of Exhaled Breath Using Signal Processing Methods" provides a comprehensive analysis of using exhaled breath waveforms to identify COVID-19 infection. The study develops an algorithm for segmenting and computing features from exhaled breath patterns, aiming to distinguish between COVID-19 and non-COVID conditions.

The paper presents a promising alternative for COVID-19 detection through the analysis of exhaled breath. The method's non-invasive nature and the potential for rapid screening make it a valuable tool in clinical settings. However, further research with larger, more diverse populations and comparative studies against existing diagnostic methods is necessary to fully establish its efficacy and reliability.

Strengths of this paper:

- 1. **Clinical Relevance:** The study's focus on a practical, quick, and reliable method for early detection at the point of patient admission has strong clinical implications, especially in reducing the workload on healthcare systems.
- 2. **Detailed Methodology:** The study meticulously outlines the process, including data collection, signal preprocessing, feature extraction, and statistical analysis. This transparency allows for reproducibility and validation of results.
- 3. **Innovative Approach:** The paper explores a novel, non-invasive method for COVID-19 detection using breath analysis, which is a significant advantage over traditional methods like RT-PCR.
- 4. **Statistical Rigor:** The statistical significance of various features in distinguishing COVID-19 is well-established, with clear metrics such as p-values and ROC curves presented.

Weaknesses of this paper:

- Feature Selection: While several features were identified as significant, the paper could benefit from a more detailed discussion on why specific features (e.g., slope, area, intersection angle) were chosen and their physiological relevance.
- 2. Limited Sample Size: The study's sample size of 40 COVID-19 patients and 20 non-COVID participants is relatively

small. Larger studies are necessary to validate the findings and ensure broader applicability.

3. **Exclusion Criteria:** The exclusion of patients with other respiratory conditions like asthma or COPD might limit the generalizability of the results, as these conditions are prevalent and can affect breath analysis outcomes.