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Recovery rate prediction plays a pivotal role in bond investment strategies, enhancing risk

assessment, optimizing portfolio allocation, improving pricing accuracy, and supporting e�ective

credit risk management. However, forecasting faces challenges like high-dimensional features,

small sample sizes, and over�tting. We propose a hybrid Quantum Machine Learning model

incorporating Parameterized Quantum Circuits (PQC) within a neural network framework. PQCs

inherently preserve unitarity, avoiding computationally costly orthogonality constraints, while

amplitude encoding enables exponential data compression, reducing qubit requirements

logarithmically. Applied to a global dataset of 1,725 observations (1996–2023), our method achieved

superior accuracy (RMSE 0.228) compared to classical neural networks (0.246) and quantum models

with angle encoding (0.242), with e�cient computation times. This work highlights the potential of

hybrid quantum-classical architectures in advancing recovery rate forecasting.

Corresponding author: Paolo Recchia, paolo_re@nus.edu.sg

1. Introduction

Recovery rate prediction is a pivotal element of credit risk management, complementing other key

metrics such as Exposure at Default (EAD) and Probability of Default (PD)[1]. While EAD and PD assess

the likelihood and extent of credit losses, recovery rates uniquely quantify the proportion of funds

recoverable following a default. This metric is particularly valuable for risk assessment, portfolio

optimization, and pricing strategies. Despite its critical role, recovery rate prediction has not received

commensurate attention in practice. A common approach is to assume a constant recovery rate,
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typically around 40%, even though empirical data often exhibit a wide range from 0% to 100%,

frequently bimodal near 10% and 100%[2][3][4][5]. Such oversimpli�cations can lead to inaccurate risk

evaluations, suboptimal investment decisions, and �awed pricing models, especially in distressed or

lower-rated bonds. This lack of focus partly stems from the technical challenges associated with

accurate recovery rate modeling.

The technical challenges in forecasting recovery rates are substantial. High-dimensional feature

spaces combined with limited datasets often lead to over�tting, a common pitfall in predictive

modeling. Classical machine learning approaches have attempted to mitigate this issue through

techniques such as Orthogonal Neural Networks (OrthNNs) and Unitary Neural Networks (UNNs)[6][7]

[8][9][10], which constrain weight matrices to orthogonal or unitary forms. These methods have

demonstrated improved generalization and stability in training. However, maintaining orthogonality

during gradient-based training is computationally expensive, often requiring additional steps to re-

orthogonalize weights, with time complexity scaling as    for input size  . Such limitations

underscore the need for novel approaches that can e�ectively address these challenges.

Quantum Machine Learning (QML) presents a promising alternative to addressing complex

computational challenges by integrating Parameterized Quantum Circuits (PQC) as quantum nodes

within neural network frameworks. PQCs, which are quantum circuits with tunable parameters,

inherently preserve unitarity due to the fundamental principles of quantum mechanics. This intrinsic

property eliminates the need for computationally intensive constraints required in classical neural

networks to maintain orthogonality or unitarity. By embedding PQCs into neural networks, the

resulting models bene�t from enhanced generalization and stability, particularly for high-

dimensional, small-sample-size datasets prone to over�tting[11]. This unitarity-preserving feature

not only simpli�es model training but also reduces computational burdens, positioning PQCs as a

highly e�cient and e�ective alternative to traditional neural network layers—o�ering signi�cant

potential for advancing machine learning applications.

Quantum Neural Networks (QNNs) have become a prominent tool with applications in quantitative

�nance among QML approaches. For instance, QNNs have been applied to portfolio optimization,

where Quantum Circuit Born Machines outperform classical Restricted Boltzmann Machines[12], and

to market forecasting, where Quantum Elman Neural Networks have proven e�ective for sequential

data tasks[13]. Additionally, hybrid QNN models have shown advantages in time series forecasting
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when implemented on Quantum Processing Units (QPUs)[14][15]. The Quantum Amplitude Estimation

(QAE) algorithm[16], known for its quadratic speedup over classical Monte Carlo techniques[17],

presents a promising alternative for probabilistic modeling tasks, such as those encountered in option

pricing. Building on the foundations of QAE, other QML approaches, including Quantum Generative

Adversarial Networks (qGANs)[18], have gained traction for probabilistic modeling, demonstrating

their e�ectiveness in applications like option pricing. Furthermore,[19]  introduced Variational

Quantum Amplitude Estimation (VQAE), which combines classical variational optimization with QAE.

This approach ensures that the circuit depth remains below a desired threshold, highlighting its

potential for practical applications in �nancial pricing tasks. In fraud detection, QNNs have also

demonstrated superior performance, achieving better precision and lower false-positive rates

compared to classical methods[20][21]. Our choice of QNNs for recovery rate forecasting is motivated

by their ability to model complex relationships in high-dimensional datasets and their proven

versatility across various �nancial applications.

A critical aspect of QNN is the encoding of classical data into quantum states. A recent study

by[22]  utilized a QNN integrated with a classical neural network for credit scoring of Small and

Medium Enterprises (SMEs), achieving comparable performance to classical models with fewer

training epochs. The model employed Angle Data Encoding, which simpli�es data preparation and

enables shallow circuits suitable for Noise Intermediate Scale Quantum (NISQ) hardware but scales

linearly with the feature space, limiting its e�ciency for high-dimensional datasets. Angle encoding

maps classical data to rotation angles of single-qubit gates[23][24][25][26], requiring a number of

qubits proportional to the input size, namely, we need as many qubits as the input size. While this

approach simpli�es circuit preparation and is feasible for current noisy quantum computers, it lacks

scalability. In addition to the Angle Encoding, there is another encoding technique, Amplitude

Encoding[23][27][24][25]. The key advantage of the Amplitude Encoding approach is its exponential

data compression compared to classical requirements, as the number of required qubits increases only

logarithmically with the input size. Speci�cally, the number of qubits decreases from    to  ,

where    indicates the number of input features. For instance, as illustrated in Figure 1a and 1b, a

dataset with four features requires four qubits when using Angle Encoding. In contrast, Amplitude

Encoding requires only two qubits to encode the same four features. As the number of features in the

dataset increases, the advantage of Amplitude Encoding becomes even more pronounced, enabling

N Nlog2
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e�cient scaling for higher-dimensional datasets. Moreover, fewer qubits lead to fewer trainable

parameters in the PQC, enhancing computational e�ciency.

Figure 1. Two common approaches to encode an example of four classical data features 

. In Figure 1a, the four classical features are mapped into the rotation angles of the

four one-qubit   rotation gate (Angle Encoding). In Figure 1b, the features are mapped into the

amplitude of the two-qubits state   (Amplitude Encoding). To prepare this quantum state, one-qubit 

 rotation gates and CNOT gates must be applied[28], where the angles   depend on the four

classical data  .

In this paper, we propose a hybrid Quantum Machine Learning model that integrates Parameterized

Quantum Circuits (PQC) into a neural network framework. PQCs inherently preserve unitarity due to

quantum mechanical principles, eliminating the need for computationally intensive orthogonality

constraints. Moreover, we leverage amplitude encoding in PQCs for exponential data compression,

reducing the number of required qubits logarithmically with input size. Compared to Angle Encoding,

this approach minimizes trainable parameters, enhances e�ciency, and maintains accuracy in high-

dimensional settings.

The proposed method demonstrated superior performance using a global dataset of 1,725

observations with 256 features spanning 576 �rms from 1996 to 2023. It achieved a Root Mean Square

Error (RMSE) of 0.228, lower than the RMSE of 0.246 for classical Neural Networks and 0.242 for

quantum models with Angle Encoding (see the Results section below for more details). Additionally,

the QML model with Amplitude Encoding has fewer trainable parameters, leading to a faster training

X = { , , , }x1 x2 x3 x4
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time of 0.73 seconds per epoch compared to the 0.81 necessary for the QML with Angle Encoding. The

lower qubit requirements and reduced computation time underscore the practical applicability of our

method for recovery rate forecasting.

The remainder of this paper is organized as follows: Section 2 presents the data and its features.

Section 3 details the hybrid QML approach and amplitude encoding. Section 4 discusses the numerical

analysis, and Section 5 concludes with insights and directions for future research.

2. Data

We consider a dataset comprising 256 features and 1,725 observations covering 576 �rms from 1996

to 2023. The data is obtained through the NRF Research Project UP5 of the National University of

Singapore. The UP5 data contains Macroeconomic and market-related features obtained from FRED

and Re�nitiv; �nancial statement features of �rms sourced from Bloomberg (BBG); and bond-level

features, as well as �rm-level or market-level credit product features provided by the Credit Research

Initiative (CRI) of the National University of Singapore.

The recovery amount of each bond in this study is de�ned as the bond’s price 30 days after the default

date. This is the most common way used in the literature.[29] uses a price “roughly” 30 days after the

default event. Early S&P reports use the average price 30 to 45 days post-default, while more recent

S&P reports focus on exactly 30 days afterward.[30] use average prices of the �rst 30 default days. We

follow the literature and use the 30-day period.

Table 1 summarizes the characteristics of recovery rates. It has a mean value of 48%, a median value of

42%, and a standard deviation (STD) of 0.33. Figure 2 displays the histogram of recovery rates. In the

Figure, the y-axis represents the frequency of each bar, whereas the x-axis the recovery rate. It

reveals a broad range of recovery rates. They are almost all distributed between 0 and 1 and

occasionally exceed 1. The histogram also exhibits a bimodal pattern with primary and secondary

peaks around 10% and 100% respectively. Although recovery rates tend to cluster around 40 1  they

exhibit signi�cant variability, with a large standard deviation. This wide distribution highlights the

limitations of assuming a �xed recovery rate (such as 40 ) in pricing models, which oversimpli�es

the complex and dynamic nature of actual recovery rates and can be misleading. Assuming a �xed

recovery rate leads to inaccurate risk assessments, �awed pricing strategies, and miscalculated credit

risk metrics.

%
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   Obs. Mean STD Min 25% 50% 75% Max

Recovery Rate 1,725 0.4845 0.3317 0 0.1811 0.4170 0.7896 1.0996

Table 1. Summary Statistics of Recovery Rate

Figure 2. This histogram with a kernel density estimate (smooth blue line) shows the

distribution of recovery rates ranging from 0 to 1.1 for defaulted bonds.

The relationship between various features and recovery rates of defaulted bonds is highly complex and

nonlinear, which makes traditional linear models inadequate for accurate predictions. Previous

studies have highlighted the intricate interactions between di�erent factors in�uencing recovery

rates. For example,[31]  �nds that industry-speci�c characteristics, such as public utilities and

chemicals, in�uence recovery rates signi�cantly.[32]  note that macroeconomic variables like GDP

growth and stock market returns have weak correlations with recovery rates, while factors like default

rates, seniority, and collateral levels play a more direct role.[33] further documents that recovery rates

are lower in distressed industries, emphasizing the importance of industry-speci�c dynamics.

N
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Additionally, models based on mixtures of Gaussian distributions, as introduced by[34], show superior

out-of-time forecasting accuracy compared to traditional parametric models. Similarly,

nonparametric approaches like regression trees and support vector machines, as demonstrated

by[35]  and[36], outperform linear regression in terms of prediction accuracy, especially in out-of-

sample scenarios. These studies indicate that nonlinear relationships, including interactions between

bond characteristics, market conditions, and macroeconomic factors, are better captured by more

�exible machine learning models. Thus, a neural network capable of modeling such complex and

nonlinear relationships is well-suited for predicting recovery rates of defaulted bonds.

Our own data also reveals the complex nature of recovery rate prediction. For instance, when we

examine the relationship between recovery rate, coupon rate, and maturity, we observe no clear linear

relationship. A 3D plot of the recovery rate against these features, as shown in Figure 3, implies that

the recovery rate is in�uenced by multiple factors in non-linear ways, further emphasizing the

inadequacy of traditional linear regression models. Additionally, we observe considerable variability in

average recovery rates across di�erent years in Figure 4, which re�ects the impact of changing market

conditions. These patterns suggest that forecasting recovery rates using traditional statistical

regression models would be ine�ective. Thus, we adopt neural networks, which are better equipped to

handle the nonlinearity and complexity of the data.
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Figure 3. The plot visualizes how the recovery rate varies with changes in the coupon rate

and maturity. The surface is generated through cubic interpolation to provide a smooth

representation of the underlying trend. The color gradient of the surface indicates the

magnitude of the recovery rate, with darker shades corresponding to lower recovery rates

and lighter shades indicating higher recovery rates.
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Figure 4. The plot illustrates the trend of recovery rates over time, with each data point

representing the average recovery rate for a given default year. The x-axis shows the

default year, while the y-axis represents the corresponding average recovery rate. This

visualization highlights any changes in recovery rates across di�erent years, which can

provide insights into how recovery behavior evolves over time.

3. Methodology

Our Quantum Machine Learning (QML) model integrates a classical master layer and a Quantum

Neural Network (QNN) to predict recovery rates, similar to the QML frameworks in[22]. The classical

master layer comprises an input layer and a hidden layer of equal size, using a LeakyReLU activation

function. This architecture o�ers two advantages. First, it extracts meaningful internal

representations from high-dimensional, redundant input data. Second, it introduces non-linearity,

enabling the model to capture complex relationships. Building on this classical layer, the QNN

combines a Parameterized Quantum Circuit (PQC) and quantum data encoding to process the data.
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3.1. Parameterized Quantum Circuit (PQC)

The PQC is a quantum circuit with adjustable parameters embedded in the rotation angles of single-

qubit gates. To enhance expressiveness—the ability to represent diverse quantum states and span the

Hilbert space[37]—entanglement between qubits is introduced using controlled gates, typically CNOT

gates. A common PQC consists of:

1. A layer of   single-qubit rotation gates,  , applied to each qubit. The angles   are

the trainable parameters of the PQC.

2. A layer of   two-qubits controlled gates to introduce entanglement. Speci�cally, we employ the

CNOT gate with a range of one, where the  th qubit acts as the control and is connected to its

adjacent  th qubit, which serves as the target.

This con�guration, referred to as a strongly entangling circuit[11], provides the PQC with entangling

power while maintaining a manageable number of parameters. Speci�cally, it requires   trainable

parameters for   qubits. After the PQC computation, the expectation values of   Pauli observables are

measured and passed to the classical output layer. A classical optimizer minimizes the loss function,

Root Mean Squared Error (RMSE) in this case, and updates the network parameters via

backpropagation.

3.2. Amplitude Encoding

Before the PQC processes input, classical data is encoded into quantum states, represented as 

 (Figure 5). For the high-dimensional feature space in recovery rate prediction, we adopt Amplitude

Data Encoding[28][23][11]. This technique maps    classical features to the amplitudes of an  -qubit

quantum state:

where   are normalized amplitudes, calculated from the input data, satisfying:

n G(α, β, γ) α, β, γ

n

i

(i + 1)

O(3n)

n Z

|ψ⟩

2n n

|ψ⟩ = |x|∑
x∈{0,1}n

αx (1)

αx

| = 1.∑
x∈{0,1}n

αx |2 (2)
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Figure 5. The Strongly Entangling Layer PQC (Parameterized Quantum Circuit) begins with

the quantum state input, denoted as  . Each rotation gate in the circuit is represented as 

, where  ,  , and   are the rotation angles around the  ,  , and   axes of

the Bloch sphere, respectively. These angles are the trainable parameters of the PQC.

A key advantage of Amplitude Encoding is its exponential compression of input data. The number of

qubits required grows only logarithmically with the number of features, resulting in fewer trainable

parameters in the PQC, improving the model’s scalability and e�ciency. For instance, the number of

trainable parameters in the strongly entangling PQC used in this study scales as  , making it

well-suited for handling high-dimensional data.

Though some limitations due to noise and decoherence might a�ect the computation in real quantum

hardware, in this work, we train the QML model in a fault-tolerant quantum simulator where

decoherence or gate errors are not concerns. The complete PQC structure and data encoding process

are illustrated in Figures 5 and 6.

|ψ⟩

R( , , )αi βi γi αi βi γi X Y Z

O(3 N)log2
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Figure 6. The QML model with Amplitude Encoding. We encode a set of   classical data into the

amplitude of the input quantum state denoted as  . After the application of the Strongly Entangling PQC,

a measurement is performed. These measurement results are then sent to the classical output layer and

post-processed in the classical optimizer.

3.3. Alternative Quantum and Classic Model

To comprehensively evaluate the performance of our proposed QML model, we compare it against two

alternative models: a classical feedforward neural network (FNN) and another QML model utilizing

Angle Encoding, inspired by [22].

Angle Encoding[23][24][25][26] maps classical data onto the rotation angles of single-qubit gates. This

method requires one qubit per input feature, making it computationally demanding and impractical

for high-dimensional datasets like those used in our recovery rate prediction due to the limited

availability of logical qubits in current quantum hardware and classical simulator. To address this

challenge, we follow the approach outlined in[22], incorporating a classical preprocessing layer (called

auxiliary layer hereafter) to reduce the dimensionality of the input data. This auxiliary layer extracts

key features and ensures that the number of features aligns with the number of available qubits. The

outputs of this classical layer are then encoded into the quantum circuit using Angle Encoding. This

architecture, illustrated in Figure 7, enables scalability by allowing �exibility in selecting the number

of qubits while maintaining the model’s expressiveness. The number of trainable parameters in the

additional auxiliary layer and the PQC scales as  , where   is the number of input features, and 

 is the number of selected qubits.

N = 2n

|ψ⟩

O(3Nn) N

n

qeios.com doi.org/10.32388/VDZ7JK 12

https://www.qeios.com/
https://doi.org/10.32388/VDZ7JK


Figure 7. The QML model with Angle Encoding. Starting from a set of   input features, we introduce an

auxiliary layer to reduce the number of inputs as the amount of   qubits. The outputs of the auxiliary layer

are classical data encoded into the angle of the single qubit rotation gate  . After the application of

the Strongly Entangling PQC with Angle Encoding, a measurement is performed. These measurement

results are then sent to the classical output layer and post-processed in the classical optimizer.

The classical feedforward neural network (FNN) serves as another benchmark for comparison. In the

FNN, a hidden layer is appended to the master input layer, with the number of hidden nodes carefully

chosen to ensure a comparable number of trainable parameters to the QML models. This setup not

only provides a fair basis for comparison but also allows us to assess the e�ectiveness of the classical

model and its susceptibility to over�tting. By tuning the number of hidden nodes, we balance the

trade-o� between model complexity and predictive performance.

Through these comparisons, we aim to evaluate the strengths and limitations of our QML model

relative to classical neural networks and alternative quantum approaches, particularly in handling the

intricate, high-dimensional relationships present in recovery rate prediction.

4. Results

In this section, we present the results produced by our models, based on the methodologies and

parameter settings outlined in Sections 3 and 2. These �ndings o�er insights into the predictive

performance of both classical and quantum machine learning approaches on the chosen dataset. The

evaluation of the models is conducted using standard metrics, such as RMSE calculated through k-fold

cross-validation.

N

n

( )Rx xi
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4.1. Parameter Settings and Experimental Setup

In our proposed QML architecture, the number of qubits is �xed, with 256 classical features encoded

into 8 qubits. While additional qubits could theoretically be utilized with Amplitude Encoding, doing

so introduces added complexities and challenges. These include an increase in trainable parameters,

the need to handle padding during initialization to accommodate the extra qubits, deeper circuits for

state preparation, and potential redundancy in the input data. In this study, since the simplest

con�guration with 256 features encoded in 8 qubits yielded satisfactory results, we opted to focus on

this straightforward setup, leaving the exploration of more complex con�gurations for future

research.

The parameters used in the regression models are optimized to minimize RMSE on the training data

selected in a cross-validation setting. The optimization process utilized the Adam optimizer[38], with

speci�c hyperparameters such as learning rate and batch size detailed in Table 2. These parameters

were selected through a systematic grid search to ensure optimal model performance. Table 2 also

lists the computational resources used for training and evaluation, including both classical and

quantum setups.

Deep learning practitioners commonly utilize neural network models optimized with the Adam

optimizer. These models have well-established, high-performing implementations across various

frameworks. For our implementation, we employ Python (version 3.12.3) and the PyTorch framework

(version 2.4.1) with CUDA (version 12.1) to enable GPU acceleration. All experiments presented in the

following sections were conducted on an NVIDIA GeForce RTX™ 4050 Laptop GPU.

The quantum machine learning (QML) models were implemented using PennyLane (version 0.38.0),

an open-source framework for quantum programming and di�erentiable PQCs. All QML models with

PQCs were executed on a state-vector quantum simulator. Speci�cally, the built-in PennyLane device

called default.qubit[39][40]. The default.qubit device, written in Python with Autograd and

PyTorch backends, simulates quantum operations and performs measurements on quantum systems

using a classical CPU. In particular, we conducted our quantum experiments on the 13th Gen Intel®

Core™ i9-13900H CPU.

It is worth noting that alternative quantum devices could be employed[39], including those with GPU

acceleration, tensor network implementations, or density matrix simulators for noisy environments.

However, our experiments focused on fault-tolerant PQCs with a limited number of qubits (no more

qeios.com doi.org/10.32388/VDZ7JK 14

https://www.qeios.com/
https://doi.org/10.32388/VDZ7JK


than 14). In this context, the default.qubit state-vector simulator proved to be the most e�cient

and e�ective choice.

Regarding gradient computation for PQC parameters, all quantum experiments were performed on a

classical computer, allowing gradient calculation via automatic di�erentiation and backpropagation.

This was achieved with the built-in functionality of the PennyLane default.qubit simulator. It is

important to emphasize that backpropagation is not feasible on real quantum hardware, where

alternative methods, such as parameter-shift or adjoint di�erentiation[41][42], must be used.

Table 2 summarizes the devices used for training the classical and quantum layers together with the

hyperparameters of the Adam optimizer.

Layer Device Gradient Optimizer
Learning

Rate

Batch

size

Classical GPU Backpropagation Adam 64

Quantum

(PQC)

default.qubit state vector simulator

on CPU
Backpropagation Adam 64

Table 2. Speci�cation of the devices, the gradient calculation methods, the optimizer, and the

hyperparameters for the classical and quantum layer.

4.2. Model Comparison and Evaluation

In this section, we evaluate the e�ectiveness of our proposed QML model using Amplitude Encoding

(QML Amp), comparing it against a QML model with Angle Encoding (QML Ang) based on[22]  and a

classical feedforward neural network (FNN). The speci�cations of the models’ hyperparameter and

architecture are reported in Table 3.

1×10−3

1×10−3
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Model Input Layer I Hidden Layer Auxiliary Layer II Hidden Layer

FNN 256 256 LeakyRelu with slope = -0.3 No 8 LeakyRelu with slope = -0.3

QML Ang 256 256 LeakyRelu with slope = -0.3 8 8 Qubits Strongly Entangling PQC

QML Amp 256 256 LeakyRelu with slope = -0.3 No 8 Qubits Strongly Entangling PQC

Table 3. The speci�cation of the model’s architecture.

To benchmark the proposed models, we conduct k-fold cross-validation by dividing the dataset into

four folds, each consisting of 75% training data and 25% test data. To ensure a fair comparison, all

models and experiments are executed on the same four-fold splits for a �xed number of one hundred

epochs. During training, we record the RMSE calculated on the test data of each fold. To achieve

comparable trainable parameter counts across models, the number of qubits in the QML Ang the

number of hidden nodes in the classical FNN are selected to approximate the parameter count of the

QML Amp. A detailed discussion of how the performance of the FNN and the QML Ang evolves as the

number of hidden nodes (for the FNN) and qubits (for the QML model) increases is provided in

Appendices A and B.

Figure 8 presents the average RMSE (solid line) and the standard deviation of RMSE values (shaded

area) achieved by the proposed models. Table 4 reports the best average RMSE on test data achieved

during training, the average RMSE standard deviation, alongside the average execution time per

epoch.
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Figure 8. Average test RMSE and standard deviation (shaded area) calculated over four

di�erent cross-validation folds for the FNN, QML Ang, and QML Amp.

Model # Parameters Best Average RMSE At epoch # Average STD Average Time per Epoch (s)

FNN 67,857 0.246 90 0.018 0.03

QML Ang 67,873 0.242 78 0.009 0.81

QML Amp 65,825 0.228 55 0.73

Table 4. Summary of the trainable parameters and key outputs for the selected FNN and QML models,

including the best average RMSE, the epoch at which the lowest average RMSE is achieved, the average

standard deviation of the RMSE, and the average execution time per epoch. All values are calculated over

four cross-validation folds with one hundred epochs.

The results, summarized in Figure 8 and Tables 4, provide several key insights. First, the QML models

0.008
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(using Amplitude Encoding and Angle Encoding) outperform the classical FNN model, showcasing

superior generalizability. They achieve lower average RMSE on test data with fewer epochs (see

columns two and three of Table 4). Moreover, their stability is evidenced by the smaller standard

deviation observed across the four cross-validation folds (column four of Table 4). These �ndings

underscore the e�ectiveness of replacing a classical layer with a parameterized quantum circuit (PQC)

in reducing over�tting, particularly in tasks such as recovery rate prediction.

Second, the QML model with Amplitude Encoding (QML Amp) demonstrates the best overall

performance. Despite its simplicity and minimal number of trainable parameters, it achieves the

lowest average RMSE, requires the fewest epochs, and exhibits the smallest average standard

deviation.

When comparing the QML models, the Amplitude Encoding model shows more remarkable

advantages over Angle Encoding in both stability and accuracy, as detailed in Table 4 and Figure 8.

While both models outperform the classical FNN with a comparable number of trainable parameters,

the Amplitude Encoding model consistently achieves lower RMSE values and smaller standard

deviations across multiple runs. This superior performance highlights the e�ectiveness of Amplitude

Encoding in capturing and utilizing input information more e�ciently. Its enhanced stability and

accuracy can be attributed to its ability to represent input data compactly without requiring additional

auxiliary layers to reduce input dimensions. By avoiding this added complexity, the Amplitude

Encoding model minimizes the risk of over�tting, particularly with limited data. In contrast, the Angle

Encoding model relies on an auxiliary classical layer to align the input size with the number of PQC

qubits, which can introduce unnecessary complexity and negatively impact performance.

Furthermore, the compactness of Amplitude Encoding enables it to encode a larger amount of

information into the quantum state using fewer qubits, giving it a signi�cant advantage over Angle

Encoding, which scales less e�ciently. These attributes make Amplitude Encoding a compelling

choice for tasks demanding high accuracy and strong generalization, as re�ected in our results.

Finally, we evaluate the computational e�ciency of the proposed models. Given the experimental

setup—using GPUs for the FNN and a CPU-based quantum simulator for the QML models—direct

comparisons of execution times between classical and quantum models are not meaningful. Instead,

we focus on the relative performance of the QML models. As shown in the seventh column of Table 4,

the QML model with Amplitude Encoding exhibits slightly better time e�ciency than the Angle

Encoding model, primarily due to the absence of the auxiliary classical layer in the former.
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5. Conclusion and Discussion

In this work, we proposed and evaluated a quantum machine learning (QML) model with Amplitude

Encoding for recovery rate prediction, comparing its performance with a QML model using Angle

Encoding and a classical feedforward neural network (FNN). Our experiments demonstrate that the

QML model with Amplitude Encoding outperforms both the QML model with Angle Encoding and the

classical FNN in terms of accuracy, stability, and generalization. The Amplitude Encoding model’s

lower RMSE and smaller standard deviation across multiple training runs highlight its superior ability

to avoid over�tting, making it a promising approach for prediction tasks involving complex data.

Although the QML model with Angle Encoding shows improvements over the classical FNN, this is not

as signi�cant as the one achieved by the QML with Amplitude encoding. The performance of the QML

Ang is hindered by the added complexity of the auxiliary classical layer, which increases the risk of

over�tting. In contrast, the simplicity of the Amplitude Encoding model, with fewer layers and

parameters, allows it to achieve better results with a more stable training process.

From a computational perspective, our results indicate that the QML model with Amplitude Encoding

is slightly more time-e�cient than the Angle Encoding model in simulation. However, the practical

implementation of Amplitude Encoding on real quantum hardware faces challenges due to the need

for deeper quantum circuits, which are more susceptible to noise and decoherence. These factors

highlight the importance of ongoing advancements in quantum hardware to fully leverage the

potential of Amplitude Encoding in practical applications. Despite these challenges, the superior

simulation performance and scalability of Amplitude Encoding underscore its promise as a robust

approach for quantum machine learning tasks.

Overall, our study provides valuable insights into the potential of quantum-enhanced machine

learning and demonstrates the advantages of Amplitude Encoding for certain prediction tasks. In

future work, we aim to explore two key directions. First, to improve the scalability and robustness of

quantum models, adding more qubits in QML with Amplitude Encoding can enable the handling of

exponentially higher-dimensional datasets. However, when the dataset dimension is not a perfect

power of two, challenges such as data padding with appropriate schemes must be addressed. Second,

regarding the practical deployment of quantum hardware, while it has the potential to achieve more

time-e�cient training compared to classical models, it is crucial to study the impact of noise and
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decoherence. Understanding and potentially leveraging these phenomena could lead to more reliable

and e�cient training processes.

Appendix A. The Classical FNNs and over�tting

In this section, we evaluate the performance of various FNN models, by increasing the number of

hidden nodes. Figure A1 illustrates the average RMSE and standard deviation on test data across ten

experiments for two extreme con�gurations: one with 8 hidden nodes and another with 8192 hidden

nodes. Additionally, the table presents the lowest RMSE and corresponding standard deviation

observed over ten experiments for each con�guration.

Figure A1. The average test RMSE and STD calculated over ten di�erent experiments of the

two extreme FNN con�guration; speci�cally the one with 8 hidden nodes and the one with

8192.
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 Hidden  Parameters Best Average RMSE # Average STD

8 67,857 0.246 0.018

16 69,921 0.244 0.017

128 98,817 0.244 0.023

512 197,889 0.246 0.021

2048 594,177 0.246 0.024

8192 2,179,329 0.250 0.031

Table A1. The total number of trainable parameters and some relevant outputs related to the di�erent FNN

con�gurations, speci�cally the best average RMSE, and the best STD calculated over the four cross-

validation folds with one hundred epochs.

From Figure A1 and Table A1, it is evident that increasing the number of hidden nodes does not

improve the FNN’s prediction accuracy or stability, as indicated by both the RMSE and standard

deviation. In fact, further increasing the number of hidden nodes worsens both prediction

performance and stability. As discussed in Section 2, the recovery rate prediction problem is

particularly susceptible to over�tting, and adding more complexity to the model is counterproductive.

Appendix B. Performance increasing the number of qubits in the

QML model with Angle Encoding

In the architecture proposed in Section 3, the number of qubits can be adjusted to identify the optimal

con�guration for the QML model using Angle Encoding. Figure B2 presents the average RMSE and

standard deviation on the test data for two con�gurations: one with six qubits and another with

fourteen qubits in the PQC. As in the previous section, Table B2 summarizes the best RMSE and

corresponding standard deviation values observed across ten experiments for di�erent qubit

con�gurations.

n #
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Figure B2. The average test RMSE and STD calculated over four corss-validation folds of the

QML with Angle Encoding for seven and fourteen qubits in the PQC.

 Qubits  Parameters Best Average RMSE Average STD

6 67,353 0.241 0.012

7 67,613 0.241 0.009

8 67,873 0.242 0.009

10 68,393 0.242 0.011

12 68,913 0.242 0.010

14 69,433 0.242 0.013

Table B2. The total number of trainable parameters and some relevant outputs related to the QML models

with angle encoding and di�erent numbers of qubits in the PQC (speci�cally the best average RMS and the

average STD calculated over four cross-validation folds with one hundred epochs).

n #
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From Table B2 and Figure B2, we can draw two key conclusions. First, the QML model with Angle

Encoding does not demonstrate improved predictive performance with an increasing number of

qubits. While there is a slight improvement with six and seven qubits, this e�ect saturates after eight

qubits. Second, a comparison of Tables A1 and B2 reveals that the QML model with Angle Encoding

o�ers a slight improvement over the classical FNN. In all reported cases, the QML Ang outperforms

the classical FNN model in both stability (lower standard deviation) and e�ectiveness (lower average

RMSE).

As a �nal remark, Figure B3 shows that the average execution time per epoch of the QML model with

Angle Encoding increases exponentially with the number of qubits, consistent with the resource

demands of the state-vector default.qubit simulator. For illustration purposes, in the same Figure

B3, we also mark the execution time of the QML with Amplitude Encoding proposed in the current

work, highlighting the slight advantage performance.

Figure B3. Average execution time per epoch in the QML with angle encoding (blue line)

and amplitude encoding (orange marker).
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Footnotes

1 [30] �nd an average recovery rate of 38.6% for 2002-2010, while The average ultimate recovery rate

for US corporate bonds reported by [43] is 37% for defaults between 1987 and 2006. In general, market

participants tend to assume constant recovery rates of around 40% within the pricing models [44].
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