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The aim of this article is to introduce the Ekeland variational principle (EVP) and some results in fuzzy
quasi metric space (FQMS) under the non-Archimedean ¢-norms. In this article, the basic topological
properties and a partial order relation are defined on FQMS. Utilizing the Brézis-Browder principle on
a partially ordered set, we extend the EVP to FQMS as well. Moreover, we derive Takahashi’s
minimization theorem, which ensures the existence of a solution to an optimal problem without
taking the help of compactness and convexity properties on the underlying space. Furthermore, we
give an equivalence chain between these two theorems. Finally, two fixed point results, namely the

Banach fixed point and the Caristi-Kirk fixed point theorems, are described extensively.
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1. Introduction

In 1972, Ekeland introduced an approximate minimizer of a bounded below and lower semi-continuous
function on a complete metric space, named the Ekeland variational principle (EVP). The EVP, an
enthralling theory, has some comprehensive applications in optimization theory, game theory, optimal
control theory, non-linear analysis, and dynamical systems, etc. In 2010, Q. H. Ansarilll developed several
versions of EVP, Takahashi’s minimization theorem (TMT), Banach contraction principle (BCP), and
Caristi’s fixed point theorem (CFPT) with some applications to equilibrium problems. Because of its wide
research interest, several authors have introduced EVP in various directions. Alleche et al2l gave a new
version of EVP for countable systems of equilibrium problems on a complete metric space, Khanh et al.

B3] defined three types of Ekeland points and their existence based on an induction theorem in a partial
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metric space, Baol4l derived an exact and approximate vectorial version of EVP based upon Dance-Heged

us-Medvegyv’s fixed point theorem for a dynamical system on a complete metric space,

Iqball51 presented a variational principle without assuming the completeness property and solved some
minimization problems by taking a non-lower semi-continuous function in the metric space. On the
other side, Cobzasl® provided EVP on a complete quasi-metric space as an extension of the Brézis-
Browder maximality principle, Ai-Homidan[Zl gave a new version of Takahashi’s minimization theorem
with two different types of conditions in the setting of a complete quasi-metric space, and further, they
constructed error bound solutions and weak sharp solutions for equilibrium problems. Recently, Zao et al.

[8] extended Lin-Du’s abstract maximal element principle to generalize EVP for essential distance in the
environment of a quasi-ordered set. Furthermore, a broad extension of EVP involving set perturbations

attracted many researchers to work in this direction. Some multi-objective optimization problems and

vector variational inequality problems were analysed by Haill based on EVP relating to set perturbations.

Moreover, many researchers have a lot of attraction to work on different fuzzy versions of EVP. In 1975,
Kramosil and Michalek2% introduced an idea of a fuzzy metric space, which indicates the uncertainty of
distance functions. This idea was extended in 1994 by George and Veeramanillll. They defined a fuzzy
metric space in a different way, called the GV fuzzy metric space. Several research works on EVP have

been done in various types of fuzzy metric spaces in different directions. In the setting of the GV fuzzy

metric space, Abbasi et all12l extended EVP, Caristi’s fixed point theorem, Takahashi’s minimization

theorem, and described an equivalence relation on EVP and TMT in 2016. The Caristi type mapping was
developed by Martinez-Moreno et a3l in an Archimedean-type fuzzy metric space. Qiu et al.l4l also

extended the above theorems in GV fuzzy metric spaces subsequently.

However, the variational principle and fixed point results have also been discussed in the setting of a
fuzzy metric spacell2l, The set-valued EVP has been established incorporating a set-valued map on a
locally convex fuzzy metric spacell®l. Some related works about EVP on a fuzzy metric space were

presented by Pei—jun“—51, in which the author has defined a fuzzy metric space as a quadruple
(X,d, L, R) and discussed EVP on a a-level set. Removing the symmetric property, several authors have
generalised the fuzzy metric as a fuzzy quasi metric space and have established multiple results. Gregori
et al. 7l have generalised the KM-fuzzy metric space and the GV-fuzzy metric space to the KM-fuzzy
quasi metric space and the GV-fuzzy quasi metric space respectively and claimed that every fuzzy quasi

metric induces a quasi metrizable topology and vice-versa. Similarly, Romaguerafﬁ1 introduced the bi-
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completion and D-completion of fuzzy quasi metric spaces via quasi uniform isomorphism. At the same

time, Romaguera et.all’® constructed some contraction mappings to establish the existence and
uniqueness of a fixed point result on a preordered complete fuzzy quasi metric space. Recently, an

extension of EVP, TMT, and CFPT on a fuzzy quasi metric space under an Archimedean t-norm has been

studied extensivelyl20l,
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Table 1. Major literature review over the related topic

From the above literature study, it is seen that none of the researchers has discussed EVP in the light of
FQMS utilizing a non-Archimedean t-norm. Thus, in this study, we present EVP, TMT, BCP, CFPT, and
related results in the setting of FQMS under the presence of non-Archimedean t-norms. This article has
been organised as follows: section 2 includes the formation of FQMS from Quasi Metric Space and defines
three types of Cauchy sequences, three types of convergences, and seven types of completeness
properties on it. Section 3 contains the EVP of the Fuzzy Quasi version, section 4 develops Takahashi’s
minimization theorem and an equivalent chain between EVP and TMT. Section 5 represents two types of
fixed point results, namely Banach contraction fixed point and Caristi’s fixed point theorems. Finally,

section 6 ends with the conclusion of the proposed study followed by the scope of future research.

2. Preliminaries

In this section, we introduce some basic definitions and properties over the fuzzy quasi metric spaces

which will be used to develop the proposed study.

Definition 2.1. 2 Let X be a non-empty set. A function d, : X x X — [0, 00) is called quasi metric if the

following properties hold for all z,y, z € X:

(M1): dy (2, )

0
0 = =y
d(y, z)

(M4): dy(z,y) < d(z,2) +d(z,y).

(M2): dy(z,y)

(
(M3): dy(z,y)
(

Then the ordered pair (X, d) is called quasi metric space.
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Generally, a metric is defined by means of a distance function, but if the distance function itself assumes

fuzzy flexibility, then the subject under study is a part of a fuzzy metric space (12211231),

Definition 2.2. 241 A binary operation x : [0,1]2 — [0,1] is said to be a continuous ¢t-norm if it satisfies the

following conditions for all a, b, c,d € [0,1]:

iax(bxc)=(axb)*c
iLaxl=a

iili.,a*xb < cxd whenevera < cand b < d.
Moreover, the basic t-norms; minimum, product, and Lukasiewicz continuous t-norms are defined by
a *, b = min{a,b};a-b = ab; and a *x, b = max{a +b— 1,0}

respectively.

Definition 2.3. A structure which has a pair of non-zero elements, one of which is infinitesimal with respect to
the other, is said to be non-Archimedean. It is easy to see that the t-norm” *,, ” is not Archimedean, while the

other two t-norms are Archimedean.

Definition 2.4. 20 Let X be an arbitrary non-empty set, * being a continuous t-norm and a mapping
M, : X? x (0,00) — (0,1] be a fuzzy membership function. Then a 3-tuple (X, My, *) is said to be a fuzzy

quasi metric space (FQMS) if it satisfies the following conditions forall z,y,z € X andt > 0:
(FQMS 1): My(z,y,t) > 0

(FQMS 2): My(z,y,t) = lifand only ifz = y

(FQMS 3): My(z,y, s +t) > My(z, 2,t) * My(2,y,s)

(FQMS 4): My(z,y,.) : (0,00) — (0, 1] is continuous
(FQMS 5): tlg})lo My(z,y,t) = 1.

The function M, is called the Fuzzy Quasi Metric (FQM), and it denotes the degree of closeness between

x and y with respect to ¢.

The conjugate FQM M, corresponding to each FQMS (X,M,*), is defined as

My(z,y,t) = My(y,z,t) forallz,y € X and t > 0.
Also, we define the mapping M} : X2 x (0,00) — (0,1] as
M{(z,y,t) = min{M(z,y,t), My(z,y,t)},Yz,y € X and t > 0,

which is a fuzzy metric on X.
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In the rest of the article, we shall use the "minimum” ¢-norm (*,,) to express the triangle inequality, and

we redefine FQMS as (X, M, *p, ).

Example 2.5. 22l Let (X, d,) be a quasi-metric space, let ¢ : (0, 00) — (0, 00) be an increasing left-continuous
function with ¢(t + s) > ¢(t) + ¢(s) andlet g : [0,00) — [0, 1] be a decreasing left-continuous function such
that g(0) = 1. Then (X, My, *,) is a fuzzy quasi metric space, where the fuzzy set M, : X x X x (0,00) is
given foreach z,y € X andt € (0, 00) by

dq(w,y)>

Mq(il:,y,t) :g( ¢(t)

Definition 2.6. Let (X, My, *, ) be a fuzzy quasi metric space. A set A(C X)) is called

i. left bounded (I-bounded) if and only if there exists t > 0 and 0 < r < 1 such that My(z,y,t) > 1 — r for
allz,y € A.
ii. right bounded (r-bounded) if and only if there exists t>0 and 0 <7 <1 such that

My(z,y,t) >1—rforalz,y € A

Definition 2.7. Let us consider a FQMS (X, My, *, ). For any given parameter of fuzziness 0 < e < 1, center
z and radius a > 0, we can define the left open ball (I-open ball) B;(z, a,€) and the left closed ball (I-closed
ball) B[z, a, €] respectively as:

Bi(z,a,¢e) ={y € X : My(z,y,a) > 1— €}

and Bi[z,a,¢] = {y € X : My(z,y,a) > 1—¢€}

and similarly, we may define the right open ball (r-open ball) B,.(z,a,€) and the right closed ball (r-closed
ball) B, [z, a, €] respectively as:

B.(z,a,¢) = {y € X : M,(z,y,a) > 1 — ¢}

and B,[z,a,¢e] = {y € X : M (z,y,a) > 1 — ¢}

Definition 2.8. Let (X, M, *, ) be a FQMS. A sequence < x,, >nen is said to be

i.l-Cauchy if and only if for each €€ (0,1),t>0 3IngeN such that
My(zn, zm,t) > 1 — e for any m > n > ny.

ii. -Cauchy if and only if for each €€(0,1),t>0 dngeN such that
My(2p,n,t) > 1 — e for any m > n > ny.

iii. Cauchy if and only if for each €€ (0,1),t>0 dng € N such  that

Mg (2, 2y, t) > 1 — € for any n,m > ny.
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Definition 2.9. Let X be a non empty set. A sequence (x,, )nen in a FQMS (X, My, *, ) is said to be

i.l-converges to a€ X, if and only if nhj& My(a,zn,t) =1forallt >0, ie. for each
€€ (0,1) and t > 0,3ny € Nsuchthat My(a,z,,t) > 1 — € for alln > ny.

ii. r-converges to a € X, if and only if 71113010 Mgy(xn,a,t) =1forallt >0, ie for each
e € (0,1) and ¢t > 0,3ny € Nsuchthat My(z,,a,t) > 1 — eforalln > ny.

iii. converges to a € X, if and only l'fr}glolo Mg (a,zn,t) = 1forall¢ > 0, ie. for each e € (0,1) and ¢ > 0,

dng € Nsuchthat M$(a,zn,t) > 1 —eforalln > ng.
Definition 2.10. The FQMS (X, My, %, ) is

i. ll-complete if every [-Cauchy sequence is l-converges to a point in X.
Similarly we can define rr, lr, rl-completeness in FQMS.
ii. [-complete (r-complete) if every I-Cauchy (r-Cauchy) sequence converges to a point in X.

iii. complete if every Cauchy sequence converges to a point in X.

Example 2.11. Let us consider X =[1/2,1) as a non-empty set. Consider the fuzzy quasi metric

(Mg, *m,) defined in example 2.5, and we define a quasi metricd : X x X — (0, c0) by

d(z,y)= 0,z<y
= 1, z>y

Then every [-Cauchy sequence in X is [-convergent. Therefore, (X, My, *,,) is ll-complete fuzzy quasi metric

space

Remark 2.12.

i.Let < z,, >, be a sequence in a FQMS (X, My, ). If (x,,) is I-convergent to x and r-convergent to y,
thenwe get x = y.
ii. Let < x,, >, be a sequence in a FQMS (X, My, *, ). The sequence (z,,) is [-convergent in (X, M), if

every I-Cauchy sequence (x,,) in (X, M) has a -convergent subsequence in (X, M,).

3. Ekeland Variational Principle in Complete Fuzzy Quasi Metric Space

We shall establish Ekeland’s Variational Principle on complete FQMS using an extension theorem of the Brézis-

Browder principleﬂ@l on a partially ordered set. This theorem ensures that a partially ordered set has a
minimal (dually maximal) element by choosing a strictly increasing function on it. So first, we recall the Brézis-

Browder principle on an ordered set. Then we construct a partial order relation on X and then we apply the
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Brézis-Browder principle to establish the EVP on FQMS.
Let (Z,<) be a partially ordered set. For x € Z, put
Si(z)={z€Z:z2<ztand S_(z)={z€ Z:z<z} Here, the notation

z < yimples (z < y) A (z # y) and for the dual formulation, we just reverse the order of  and y.

Lemma3.1. 27l Let (Z, <) be a partially ordered set.

i. Suppose that vy : Z — R is a function satisfying the conditions:
1. the function v is strictly increasing;
2.foreachz € Z, (S_(z)) is bounded below;
3. for any decreasing sequence (x,,) in Z there existsy € Z suchthaty < z,,n € N.
Then for each x € Z there exists a minimal element z € Z such that z < x.
ii. Dually, let ¢ : Z — R be a function satisfying the conditions:
1. the function ¢ is strictly increasing;
2.foreachz € Z, $(S;(x)) is bounded above;
3. for any increasing sequence {(x,,) in Z there existsy € Z such thatz, < y,n € N.

Then for each x € Z there exists a maximal element z € Z suchthat z < z.

Theorem 3.2. Let (X, M, *, ) be a FQMS and a function # : X — R on X. Define a relation on X by

z<ye HF@)+1- My(a,yt) < 1= 2(y).

Then the relation ” <” is a partial order.
Proof. Reflexive: It is obvious that x < z holds,
Anti-symmetric: Let z < y and y < x hold. Then

%Hy(w) +1- Mq(xay7t/2) <

F(y)and 75 F(y) + 1 — My(y, z,t/2) < 15 F(x)

t
1+t +t

hold respectively. From these two relations, we get

)

{Mq(a:’ya t/2) + Mq(yawat/2)} <2 = Mq($7ya t/2) = MQ(y7mat/2) =1 = z=y.
Transitive: Let ¢ < yandy < zhold. Then

ﬁy(m) +1- Mq(w,y,t/Z) < ﬁy(y) and ﬁy(y) +1- M‘](y7 2, t/2) <

Z(2)

t
1+t

hold respectively. Now,
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L Z@)+1- M, at) < L F(@) + 1 - (M (2, 9,t/2) * M, (v, 2 /2)}

L+t 1+¢
< —1it5?(:c) + 1 — min{M,(z,y,t/2), M,(y, 2,t/2)}
< —litf(x)+1—Mq(z,y,t/2)+1_Mq(y,z,t/2)
t
= Tz 1- t/2
= T 7w 1 Moy, 2 1/2)
t
= Ly
- e

Thus = < z holds. Hence, the proof. [

Theorem 3.3. Let (X, My, *,,) be a FQMS and consider a function # : X — R on X. Consider the partial order

relation given in theorem 3.2,

z<y& My(z,yt) 21— (17)[F ) — F(2)]

i.If X is a ll-complete FQMS and % : X — R is bounded below and lower semi-continuous on X, then
every element x of X is minored by a minimal element z in X.
ii. If X is a rr-complete FQMS and % : X — R is bounded above and upper semi-continuous on X, then

every element x of X is majored by a maximal element z in X.
Proof.

i. From the definition of FQMS, we know that if  # y, then M,(z,y,t) < 1. Consequently,
z<ye= @<y Aoy = 1> Mzyt)>1-(75)F0) - F@).
This shows that .Z is strictly increasing; therefore, condition (a)(lemma 3.1,()) holds.
Since % is bounded below, therefore (b)(lemma 3.1,(i)) holds.
Now we consider a decreasing sequence {z,) € N in X. Then #(z,11) < Z(z,),Vn € N. Since Z is
bounded below, then (#(z,,)) has an infimum, say b and the sequence is convergent. Consequently, it is
Cauchy, so that, for a given € > 0, there exists ny € N such that
F(Tnip) — F(zn) < eforalln >mngandp € N.
This implies that My(zy, €n1p,t) > 1 — (7)€ > 1 — €
This claims that < x,, > is a [-Cauchy sequence. Since X is ll-complete, then from the definition 2.10, it [ -
converges to some pointy € X, ie. }fli% M,(y, zn,t) = 1.
Again, since xp11, < x, = My(Tpik, Tn,t) > 1— (l%_t)[f(mn) — Z(znti)]-

Now,

)
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Mq(ya mn7t) > min{Mq(y, mn+kat - 3)7Mq($n+k7mna 3)}

> Mq(mn+k7mnat)

> L= ()P @)~ F@n)
t ..

> 1- (1—+t)[f($n) — lim inf F(zn )]

> - (—)[ (zn) — Z(y)]

1+t
which shows that y < z,, for alln € N.

ii. To prove the second assertion, we can apply the first assertion on (X, < My z)- Then we get
t

T SMq,ff Yy <~ Mq(wayat) >1- (1_—|—t)[y(y) - f(ac)]
= M) 21— (1) F @)~ (-FW)
< Y quﬁy T

forallz,y € X. The space (X, M) and the function —.& satisfy all the conditions of the first assertion of
this theorem. So, for every x € X there exists a minimal element z in (X, < _z), Le. z is the maximal

elementin (X, <y, #)andz <p, 7 z.

O

Theorem 3.4. (Ekland Variational Principle)
Suppose that (X, My, x,) is a ll-Complete FQMS and a mapping % : X — R U {400} is a proper bounded

below and lower semi-continuous function. Given any € € (0,1), let z € X be such that
F(z) <inf #(X) + e (1)

Then for every A € (0,1 + t), there exists an * = z(e, ) € X such that

(@)(F5)Z (@) +1 - $M,(2,,1) < (75) (@)

)

(B)My(3,3,8) > AL - ()
(Ve € X\(@}, (15) (@) +1 - <My(2,5,1) > (1) F(@).

Proof. ConsiderasetY = {y € X : ({)Z(y) < 1 — £ M,y(%,y,t) + (5)F(2)}

1+t 1+t

The set Y is non-empty as z € Y. Now we have to show that Y is a closed subset of X. Suppose < Yy, >nen is a

sequence in'Y and that it is [-convergent to some y in X i.e. li_r)n My(y,yn,t) = 1 forallt > 0. Then we have
n—0o0

t t ~
(m)y(yn) < 1- XM (s Ynst) + (1—H)y($)
< 1= S min{My(@,9, ), Moy 9t~ 5)} + (75) F (@)

for all n € N. Since .Z is lower semi-continuous, then we get
(1) 2 W) < 153 im F(ya) < 1— $My(@,9,t) + ({5)F(@).

1+t 00 1+t

This showsthaty € Y.
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Since X is ll-Complete FQMS and Y is a non-empty closed subset of X, then Y is also ll-Complete FQMS, i.e.,
every [-Cauchy sequence inY is [-convergent to somey € Y.

Now we consider an equivalent FQM M,(z,y,t) = < ~ M, (z,y,t),z,y € Y,t > 0. Defining an order relation

<onY by
sy Mot 2 1- (7)IP6) - )
€ t
e XMq(w’yvt) >1- (I_—O—t)[y(y) - y(dt)]

for all z,y €Y, it follows that all the hypotheses of theorem 3.3 are satisfied by this FQMS (Y, My, *,,,) and

with ¢ = Z|y.. Consequently, there exists a minimal element z € Y such that z < z. Since

e - t

P SMEED) 21— (1)1 P (@) - 2(@)
= ()@ +1- $MEED < (1) 2 (@)
It follows that Z satisfies the condition (a).
By equation (1) and (a),
(£) 2@ +1- $M,(5.3.) < (+5)2@
< (i 1[mf54‘< ) +¢
< ()lP@ e

t

1-(—)e
implies, M,(z,z,t) > A—=1t— > A(1 — (1+t)) showing (b) holds too.

Now, if we consider a z € Y\ {z}. By the minimality of z, the inequality x < Z does not hold, so that

t € _ t _
(1—+t)9($) +1- XMq(l',w,t) > (1—H)?(w)

which shows that (c) is satisfied for such an z. Now, if x € X\\Y, then

(m)y( z) > 1- M3, t)+(1—+t)y(:z).

Now, if possible, let condition (c) not hold, then we have

(T)7@) = (1) % (@) +1- S M,(@,3,9)
> (1+t)f(x)+1—XM(wwt)+1—XM(w:rt)
> %Hﬁ(:i:) 1= S min{M,(3,2,t — )M, (2,3, 9)}, for 0 < s < ¢
> (%H)y(:i)—i-l— < M,(3,5,1)
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which contradicts the fact that £ € Y. Consequently, the condition (c¢) holds for x € X\Y, as well as

z € X\{z}. Hence the proof. (J

Corollary 3.5. Suppose that (X, My, *,,) is a rr-Complete FQMS and a mapping # : X — R U {+oo} is a

proper bounded above and upper semi-continuous function. Given any ¢ € (0,1), let z € X be such that
F(z) <inf#(X)+e

Then for every A € (0,1 + t), there exists an * = z(e, ) € X such that

(@)(77)Z(2) +1 - $My(2,2,t) < ({5)F(2)
(b)M,(7,2,8) = A1 — (5))

(c)Vz € X\{i},(%ﬁ)ﬂ(i) +1— $My(z,2,t) > (%H)?(w).

Theorem 3.6. (Ekeland Variational Principle-weak form): Suppose that (X, M, *, ) is a ll-Complete FQMS and

a mapping # : X — R U {+oo} is a proper bounded below and lower semi-continuous function. Given any

e € (0,1),let z € X be such that
F(z) <inf#(X) +e.
Then there exists an z = Z(e, A) € X such that

t ~ t ~
—F(x)+1- X < — 2
—P(@) 41— M (3,8,0) < T F (@) @)

Proof. It can be easily proved by putting A = 1 in theorem 3.4. ]

Next, we are to show that the validity of the weak version of the Ekeland variational principle ensures the

completeness of the space.

Example 3.7, Let us consider X = [0, 1) as a non-empty set and M, as a fuzzy quasi metric defined in example

2.5.Then (X, My, *,, ) is ll-complete FQMS. Now consider # : X — R defined by

F(x) = 2,z #0

= 0, otherwise

which is lower semi-continuous at 0 and bounded below. Then there exists a point (= 0) € X which satisfies

the EVP.

Let (X, My, *,,,) be FQMS and F : X x X — R be a bifunction. If there exists x € X such that F(z,y) > 0 for

ally € X, then z is called the solution of the equilibrium problem (EP)Z,

Theorem 3.8. (Equilibrium version of EVP)

Let (X, My, *p, ) be ll-complete FQMS and F : X x X — R be a bifunction. Assume that there exists a proper
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bounded below and lower semi-continuous function & : X — R U {400} such that
F(z,y) > F(y) — F(z) forallz,y € X (3)

Then for any given e € (0,1),let £ € X be such that infF(z,z) > —oo and for every A > 1,t > 0, there exists

anz = &(e, \) € Xsuchthat

a TS F(Z, &) + £ My(%,&,t) > 1

b.vz € X\ {z}, My(z,z,t) - #F(i,x) <1

Theorem 3.9. (Converse of EVP): Let (X, My, *,,) be a FQMS. If for every lower semi-continuous function

Z : X — Rand for every e > 0 there exists y. € X such that

Vr € X, (%H)ﬂ'(ys) +1—eMy(ye,z,t) <(

¢
)7 (@)
then the FQMS X is ll-complete.

Proof. Suppose that (z,,) is a [-Cauchy sequence in X. Consider a well-defined function & : X — R, given by
F(z) =1 —limsup My(z, z,, t).

First, we shall show that the function % is lower semi-continuous. Let x € X be fixed and =’ € X arbitrary.

Then, as per definition,

M, (2, zn,t) > min{ M,(z,z',t — s), M (', @n, )}
> min{l — €, M(z', zn,$)}
> My(z' zn,s) — €

= 1— Mz, zn,t) > 1— My(%,2n,8) — €

holds for every n € N, which yields
F(z') > F(z) — ¢

implying the lower semi-continuity of the function .Z at the point x.
Now, we have to prove that lim,, o, Z#(z,) = 0.

We have for every e > 0, there exists n. € N such that
My(zp, Znik,t) > 1—¢€,Yn > n,,Vk € N.
Now, #(z,) = 1 — lim,, sup My(zn, Znik,t) < € = lim, F(z,) = 0.

Again, from the given condition (— y)+1—e€ Y, Tp,t) < (=— Zn), taking lim, sup of bot
in, fi he gi diti 1;? 1—-eM, lit,? king 1i f both

sides, we get
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1+t
- (+ﬁ).9z(y)<e—1
= f(y)<;1<e
6+(1_+t)

This gives lim,, sup My(y, z,,t) > 1 — ¢ which implies that (xy,) is -convergent. Hence X is ll-complete. [J

Corollary 3.10. Let (X, M,) be a FQMS. If for every upper semi-continuous function % : X — R and for every

€ > 0 there exists y. € X such that

t

T F @) + 1 - Mye,ye) < () F (), Va € X

( 1+1¢

then the FQMS X is rr-complete.

4. Applications on Optimization Theory

Theorem 4.1. (Takahashi’s minimization theorem): Let (X, M, ) be a ll-complete FQMS and a mapping
Z : X - RU{+oo} be a proper bounded below and lower semi-continuous function. Assume that there

exists p > 0 and for each z € X with inf,cx Z(z) < Z(&), there exists z € X(z # &) such that

then there exists ¢ € X such that #(z) = inf,cx Z(z).

Proof. On the contrary, suppose inf,cx Z#(z) < Z(y) for all y € X, and let z € dom(%). We define

inductively a sequence (x,,) in X starting with z; = . Suppose that z,, € X is known. Put

t t
= ceX: —Fxn) > —F 1-— ,Tn,t)},
Swr = {2 € X: = Pla) = = F(@) + 1 M (o201}

and choose x,, 1 € Sy such that

Flonr) < 5 int F(@) + F(a,)).

TESn 11

Now we have to verify that the definition of x,, ., is correct. To do this, let us first show that

y(wn) > infzes

n+1

Z(x). Suppose  that  F(x,)=inf,cg  F(x). Then, by  hypothesis,

F(zy) > inf,c x Z () such that, by the given condition, there exists y € S,,.1\{n }, yielding a contradiction

t t
]._Hy(y) S ]._-i-ty(xn) - [1 - qu(:‘/?wnat)]
t
< 1—_H3‘7(93n)
= Z(y) < F(z,) = 61};1f F(z)
TEOn+1
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which contradicts y € Sp1\{x,}. Consequently, #(x,) > infycg,, and F(z,11) < F(zn).

Therefore, we may claim that (z,,) is a I-Cauchy sequence. Since 11 € Sp+1 for alln € N, then we have

t .
pPMy(zji1,2),t) > 1 — I_H[y(mjﬂ) — Z(z;)]; forallj € N (4)

If n > m then, using equation (4), we obtain

1- qu(-’Em,SL‘n,t) < 1- min{qu(wm7mm+l7t1)a s 7qu(mnfl7mnatn7m)}
< l_qu(wmva:mflatl)?"'vl _qu(mnle?mn?tmfn)
¢ n
< Tt Z (F (1) — F(z))]
j=m—1
t
< —[F () — F(zn 5
< —(Flon) - F@)] )

Since the sequence (#(x,)) is decreasing and the function % is bounded below, so (#(x»)) is convergent in

R and hence it is Cauchy. Now, given € > 0 there exists N € N such that

|Z(xm) — F(@n)| < —;forallm,n > N

1+t

Then, by equation (5),
1 — pM (@, 0, t) < ~=[F(2m) — F(20)] < € foralln >m > N,

1+t

which shows that the sequence (z,,) is [-Cauchy.
Since (X, My, *,,) is ll-complete, then 3z € X such that z, l-convergent to z. Since % is lower semi-

continuous, then

lim My(m,zn,t) < My(z,zn,t).

n—oo

By taking the limit as m — oo in equation (5) and using the lower semi-continuity of .#, we obtain

qu(aE,acn,t) > Jg(r)lo qu(acm,mn,t)
t

> t I_—H[y(xn) — F(zm)]

> A= FE)-F@) (6

On the other hand, by the given condition, there exists z € X such that z # x and we get

. t -
PMy(23,8) 21 = = [F (@) = F(2)] (8)

From the definition of FQMS, we have

My(z,2n, s) min{My(z,z,t), Mg(Z,zn,s — t), for 0 <t < s

>
> Mq(z,:i,t)
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From equations (6), (7), and (8), we obtain

— Z(2) < —F(x)-[1- , T, t
iGN RIEATACER))
< TP - [ My 9)
Consequently, z € S,41 foralln € N.
Now, since
2F(Tn1) — Flan) < inf F(z) < F(2). (9)
TESn41
Then, as per equations (7) and (9), we have
Sy P O S YACER))
1+t 1+t e
< 2@
1+t
< ¢ lim Z(z,)
1+¢n—
t .
= T Jim {25 (z011) — F (@)}
t
< —F
= 7@

which is a contradiction. Therefore, there exists & € x such that Z(z) = inf( Z(z). Hence the theorem. [J
ze

Corollary 4.2. Let (X, My, *,) be a rr-complete FQMS and % : X — R U {+oo} be an upper semi-
continuous function, proper and bounded above. Assume that there exists p > 0 and for each z € X with

infyex ZF(z) < F(2),there exists z € X(z # &) such that

R t -
Mq(:c,z,t) >1-— 1—+t[3z(z) - F(z)],

then there exists ¢ € X such that #(z) = infyex F(z).
Remark 4.3. Theorems 3.4 and 4.1 are equivalent.
Proof. First, we prove theorem 34 by using theorem 4.1. Assume that theorem 4.1 and all the hypotheses of

theorem 34 hold. Let & € X, consider asetY = {y € X : (%H)ﬂ(y) +1— $My(y,z,t) < (%H)ﬂ(i)}

Y is non-empty as £ € Y and Y is closed (see the proof of theorem 3.4), hence the statement (a) in theorem 3.4

holds.

Now, foreach z € Y, we get

geios.com doi.org/10.32388/VJGGST.2 17


https://www.qeios.com/
https://doi.org/10.32388/VJGGST.2

t t

(o)) +1- My (530 < (1)7(@)
< ( — )[mfﬁz(X)—i—e}

t
< (T7)1F ) +d

implies My(z, Z,t) > A(1 — %H) Hence, the statement (b) in theorem 3.4 holds. If possible, let the statement (c)

in theorem 3.4 not be true; therefore, there exists y € X(y # z) such that

t € t
v _ £ < - .
1+tf(y)+1 )\Mq(y,z,t)i 1+t§(z)

Now, from the definition of FQMS, we have,

- XM (yam) ) < 1- %mln{M (y,z,t - 3)7Mq(27§773)}

€
< 1- XMq(yazat )+1_ XM( 71177 )

IN
X
O

- Z(y) + F(2) - #(2)]

IA
—~~
8>
|
—~~
S
=

1+¢
Therefore, y € Y. Then, by theorem 4.1, there exists z € X such that #(z) = inf,cy Z#(z), which contradicts

the fact that there exists yo € Y with #(yo) < Z(z).
Hence, the statement (c) in theorem 34 is true.

Conversely, we have to prove theorem 4.1 by using theorem 3.4. Let theorem 34 hold and consider all the
hypotheses of theorem 4.1. Put A = 1 and € = p in the statement (c) of theorem 3.4, then for each x € X we

have,

t _ t _ _
_ — wi 10
] tﬁ(m)—ﬁ—l pMy(z,z,t) > . ty(:c), ithz £z (10)

If possible, let &#(z) > inf,cx & (x). By the hypothesis of theorem 4.1, there exists z € X, z # & such that we
get the following inequality,

%Hf()+17pM(zact)§l—+tf() (11)

which contradicts equation (10) for p = § Hence, #(z) = infyex F(z).O
Theorem 4.4. (Equilibrium version of TMT)

Let (X, My, *,,) be a ll-complete FQMS and F : X x X — R be a bifunction. Assume that there exists a proper

bounded below and lower semi-continuous function & : X — R U {400} such that

F(z,y) > F(y) — F(x) forall z,y € X. (12)
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Assume that there exists p > 0 and for each & € X withinf,cx F(z) < Z(&), there exists z € X(z # &) such

that

t

1—HF(Z,£') + qu(Z,ii',t) > 1

then there exists ¢ € X suchthatF(z,y) > 0forally € X.

Theorem 4.5. (Converse of Takahashi’s Minimization Theorem):
Let (X, My, *,,) be FQMS and . : X — R U {oo} be a bounded below, lower semi-continuous function. If for

eachz € X withinf,cx #(x) < F(z),there exists z € X (z # z) such that the following inequality holds:

- t ~
pMy(z,z,t) > 1 — TT: [(F(z) — F(2)].

Therefore there exists z € X such that #(z) = infyex Z(z), then (X, M) is ll-complete FQMS.

Proof. Let (x,,) be a [-Cauchy sequence in X and consider the function & : X — R U {oo} defined by
F(z) =1 —limsup My(z, z,, t).

Then Theorem 3.9 shows that lim,, ., & (x,,) = 0. This implies inf,c x Z(z) = 0.
Let us consider € X with inf,ex #(z) =0 < Z(z), then there exists a n €N such that

F(z) < %ﬁ(mn) and 1 — My(z,zp,t) < 2(1t+t) Z(x,,). Therefore, for x,, # x, the condition of this theorem

is represented by (for p = 1),

t - -
- — < .
1+t<97(x)+1 My(z,zn,t) < F(zn)

Thus, there exists & € X such that #(z) = infyex F(z) = 0.
This implies F#(z) =0 = lim,_,oc My(Z,2,,t) = 1. Therefore, (x,) is l-convergent to z. Hence,

(X, M) is ll-complete. []

5. Applications on Fixed Point Theory

By using the notion of the fuzzy metric space in the sense of Kramosil et al.ml, George and Veeramanillll proved
the Banach contraction principle (BCP) in a fuzzy metric space. However, Cobzas!®l established another type of
fixed point result, named the Caristi-Kirk Fixed Point Theorem, by using EVP in the setting of a quasi metric
space. Here, we shall prove these two fixed point results on the basis of FQMS by using EVP (Theorem 3.4).

Theorem 5.1. (Banach Contraction Theorem): Let X be a ll-Complete FQMS and T : X — X be a contraction

mapping@ satisfying
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M(Tz, Ty,kt) > My(z,y,t), forallz,y € X,0 <k <1, (13)
then T has a unique fixed point in X.

Proof. Consider the function # : X — R U {+o0} defined by
F(x) = My(z, T (z),t) forallz € X.

Then, as per definition, .% is bounded below and lower semi-continuous on X. Now we choose € (0 < € < A)
such that, as per theorem 34, there exists z € X satisfying

Kt
1+ kKt

F(z)+1-— %Mq(z,m,/ﬁt) <

Now, putting z = T (z) in the above, we have

Kt Kt

€
F 1-—M, ,x, Kkt) < F
T (Tz)+ 3 o Tz, z,kt) < Tt (x)

Kt € Kt
M (Tz, TTz,kt)+1— =M, (Tz,z,t) < M, (z,Tz,t
1+ kt q( ) A q( ) 1+ wt q( )
i M(:rth)+1—£M(T:cwt)< i My(z,Tz,t)
14+kt 07707 A R T

%Mq(Tx,:c,t) >1
M (Tz,z,t) =1<= Tz ==z

[

Therefore, T has a fixed point. Now we are to show that this fixed point is unique. If possible, there exists another

fixed point y(# x) € X suchthat Ty = y.

1> Mq(m,y, t) = Mq(T:E,Ty, t)
t t
> Mq(wyya E) = Mq(Tw7Tya E)
t
> Mq(w,y,k—Q):...
> Mq(:z:,y,]:—n)—>1, asn — 0o

This implies x = y. Hence, the proof. []

Theorem 5.2. (Caristi-Kirk Fixed Point Theorem): Let (X, M, *,,) be ll-complete FQMS. Consider a bounded
below, lower semi-continuous function % : X — R and a fuzzy function f : X — X satisfy the following
condition

t t
T 7@ + 1= My(f@)2,1) < 7 2 (@)

then f has a fixed point in X.
Proof. We define an order relation on X for z,y € X as

z<y = Myz,yt) 21— ({7)[F) — F(2)]
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Then the hypothesis of the theorem shows that
f(z) <zforallz € X.

Now, from theorem 3.3, we can say that there exists a minimal element z € X. Then, from equation (14), we have

f(2) < z,50 f(z) = zas z is the minimal element. Hence, the theorem. [

6. Conclusion

In this paper, the Ekeland variational principle is developed by using the Brézis-Browder principle on a partial
order set over FQMS under a non-Archimedean t-norm. The existence of a solution to the optimization problem
in the sense of Takahashi’s minimization theorem has been established without compactness and convexity
assumptions. Also, an equivalence relation between these two theorems and two types of equilibrium solutions is
established here. Based on EVP, the Banach fixed point theorem and the Caristi-Kirk fixed point theorem are
employed in this FQMS.

Moreover, these results can further be developed in several optimization theories, game theory, differential
equations, and non-linear analysis, etc., in the setting of a fuzzy quasi-metric space. Indeed, this approach can be
extended to some other fuzzy environments such as lock fuzzy set, dense fuzzy set, cloudy fuzzy set, fuzzy

reasoning, and hesitant fuzzy set as well.
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