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Abstract 

Fluid particles oscillating in compressible fluid field will produce a pressure 
(density) wave. The wave propagates in the field by a finite speed – the 
wave speed of c.  Any function where the x and t dependence is of the 
form (kx - ꞷt) (or of the form f(x-ct) and g(x+ct)) represents a traveling 
wave of some shape. The x and t are no longer independent variables, 
rather, they are inter-dependent. They are related by the wave propagating 
speed of c through a dimensionless scalar function  ̶  wave phase function 
of 𝜙(𝑥	, 𝑡) = 𝑘𝑥 ± 𝜔𝑡, where space and time are nondimensionalized by 
wavelength (wave number) and period (frequency). All the inertial 
observers perceive the same dimensionless wave phase function, 𝜙(𝑥	, 𝑡), 
at a given point in space and time if they have relative motions. If the 
wavelength and period are picked out as a measuring unit to quantify the 
length and time interval, the physical values of the length and time interval 
must be correspondingly enlarged or shortened for different initial frames, 
to ensure the wave phase function to be an invariant dimensionless scalar 
function. The classical compressible Navier-stokes equation contains 
pressure and density terms, if it is non-dimensionalized by the pressure 
wavelength and period in an inertial frame; the resulting equation contains 
a Reynolds number, where the wavelength is its scaling length. Its value 
will change following the fluid particle motion, relative to rest frame (Lab 
frame); The wavelength will be shorter (frequency will be higher) if the fluid 
particle flows toward an observer. The flow will blow up when the flow 
velocity approaches wave propagation velocity. Furthermore, it shows 
mass-energy equivalence can be expressed as 𝑝𝑉 = 𝑚𝑐!   in the co-
moving reference frame (rest frame). 

 

https://doi.org/10.32388/CO4GWB 
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1. Introduction 

The Navier–Stokes equation is very useful because they describe the 
physics of enormous phenomena of scientific and engineering, even of 
cosmology. However, our understanding of them remains minimal. The 
secrets hidden in the Navier-Stokes have not been unlocked. The question 
of whether the Navier–Stokes equations allow solutions that develop 
singularities in finite time remains unresolved. 
 

In the author’s previous work [1], it is shown that the classical Navier-
Stokes equation is a non-relative limit of the relativistic one. The relativistic 
Navier-Stokes equation is derived from the conservation laws of 
momentum-energy and accounts for the effects of viscosity in 3+1 
Minkowski space. It has shown that the classical Navier-Stokes equation 
neglects the “wave energy” changes. Strictly speaking, the classical 
Navier-Stokes equation is an approximated mathematical model for very 
small velocities relative to the Lab frame. It was written out in the 
momentarily co-moving reference frame (MCRF) - the fluid particle and 
observer share the same space-time coordinate point coincidently, in other 
words, the observer and the fluid particle have coincidently no relative 
motion (v<<c).   In the flow field, the propagation speed of the pressure 
wave essentially is the fluid property, which is independent of the frame of 
reference. For different inertial reference frames with relative motion, they 
agree that the pressure wave has the same traveling speed, but different 
wavelength and period. The fundamental physical principle is that the 
traveling wave phase function is invariant, it is a dimensionless function 
and a Lorentz scalar - All inertial observers see the same phase at a given 
point in space-time, even though they do not agree on frequency or 
wavelength. Based on this consideration, if we select the pressure 
wavelength and period as “measuring stick” to measure a space length 
and time interval, we will get different physical values for space and time 
in different reference frames, in order to ensure the wave phase function 
to be invariant. 

 

Getting inspiration from the above consideration, in this paper, we first 
show the traveling wave phase function is an invariant dimensionless 
scalar – which leads to the so-called time dilation and length contraction 
effect as described by the special relativity theory. Then the wavelength 
and period are picked out as the measuring unit (parameter) to scale the 
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linear wave equation, it is shown that we will get a unique mathematical 
description of the plane wave for all inertial reference frames, provided that 
the time and length are covariant in the pace with the wavelength and 
period. In the same manner, the Navier-Stokes equation in the co-moving 
reference frame is then non-dimensionalized, applying pressure 
wavelength and period as its scale parameters; the non-dimensionalized 
Navier-Stokes equation includes a Reynolds number, using the 
wavelength as its length scale and wave speed as its characteristic 
velocity. When the equation is transformed into a stationary frame (Lab 
frame), the corresponding Reynolds number should be transformed, too. 
If the flow velocity approaches the wave traveling speed, the wavelength 
will approach to zero or infinite depending on the flow direction. The flow 
field will blow up or degenerate to an infinite dilute flow.  

 

2. Traveling wave phase is dimensionless invariant function 

Pressure wave in the flow field consists of different frequencies or 
wavelengths. For simplicity, in this paper, let us consider a monochromatic 
plane pressure wave that has one single wavelength or frequency, the 
wave propagates in a homogeneous media. 

 

Suppose in the flow field there is an inertial observer, saying observer SA, 
if observer SA and wave source 𝑆"’ (fluid particle at position A’ oscillating 
to produce a disturbed pressure wave) have no relative motion, or both 
are stationary, this is so-called the co-moving inertial reference frame.  The 
wavelength and period (frequency) perceive by the co-moving observer SA 
are defined to be 𝜆 and 𝑇	(𝑓), respectively, as shown in Fig. 1 (a). 

Suppose observer SA stays on the coordinate origin. For SA, the wave 
function for a plane wave is represented by a complex exponential function. 
The general form of a plane wave function in one dimension can be 
expressed as: 

 

𝜓(𝑥, 𝑡) = 𝐴 ∙ 𝑒𝑥𝑝[𝑖𝜙(𝑥	, 𝑡)], (1) 
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where the argument of the exponential function, 𝜙, is the phase as a 
function of position x and time t; the expression "kx - ωt" is used to 
describe the phase of the wave at a given position (x) and time (t). It's 
often used in wave equations to express the behavior of waves and how 
they vary in space and time. 
 
 

𝜙(𝑥	, 𝑡) = 𝑘𝑥 ± 𝜔𝑡 = 2𝜋 =
𝑥 ± 𝑐𝑡
𝜆

> = 2𝜋 =
𝑥
𝜆
±
𝑡
𝑇
>. (2) 

 

In view of the observer SA, who sits at rest on the coordinate system origin, 
the negative sign represents the wave traveling in the positive x-direction. 
A positive sign means the wave traveling in the negative x-direction.  

 

 
 

Fig. 1. (a) Observer (SA) and wave source (SA’) have no relative motion 
(co-moving), it can be regarded as wave source (SA’) has only 

oscillation motion in Lab frame, without flow; (b) wave source of particle 
C flows to the observer of SA  and wave source of particle B flows away 

from the observer of SA. Observer SA can be regarded as Lab frame. 
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If the wave source has a relative motion to the observer, it results in a 
change in the wavelength (and hence, the period) of the wave as 
perceived by the observer.  

 

As illustrated in Fig .1 (b), if a wave source SC (fluid particle at position c 
oscillating to produce wave) flows towards to observer SA with a velocity 
v, he will perceive a shorter wavelength 𝜆$ and a smaller period 𝑇$ 	 (but a 
higher frequency of 𝑓$), this is so-called blue shift effect (Doppler effect). 
While if the wave source SB (fluid particle at position B oscillating to 
produce wave) flows away from the observer SA with a velocity v, he will 
feel a longer wavelength 𝜆% and a larger period 𝑇%	 (or a lower frequency 
of 𝑓% ), the so-called red-shift effect. However, the wave phase as a 
function itself is invariant for observer SA – he will feel the same wave crest 
and trough “passing through” him, regardless of whether the wave source 
moves or not (particle B or C). 

 

The wavelengths, periods, and wave phase velocity, on all circumstances, 
have the following dispersion relation: 

 

𝜆
𝑇
=
𝜆%
𝑇%

=
𝜆$
𝑇$
= 𝑐. (3) 

 

The wavelength (𝜆) and the combination of phase velocity multiplying the 
period (𝑐𝑇) have the same dimension, both equal each other. If two 
variables are assembled as a vector 

 

𝑤AA⃗ = C𝑐𝑇𝜆 D. (4) 
 

 

It is an eigenvector of Lorentz transformation; in fact, it is a null vector in 
Minkowski space, to be specifically [2]: 
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𝜆! − (𝑐𝑇)! = 0			𝑜𝑟	𝜆 = ±𝑐𝑇. (5) 
 

We will see that if the flow particle and the observer have relative motion, 
the wavelength and period values will change by a contraction or 
expansion factor. 

Taking the wave source SC, for example (Fig. 1(b)), the wavelength and 
period between the SA and relative motion source SC have the following 
relation 

 

I𝑐𝑇$𝜆$
J = I 𝛾 −𝛾𝛽

−𝛾𝛽 𝛾 J C𝑐𝑇𝜆 D, (6) 

 

 

where 𝜆$ and 𝑇$ are the wavelength and period emitted by SC and 
perceived by stationary observer SA. 𝛾 is the Lorentz factor, 𝛽 is the ratio 
of v to c. 

 

Recalling the wave dispersion relation, 𝑐𝑇 = 𝜆, we have 

 

I𝑐𝑇$𝜆$
J = I𝛾

(1 − 𝛽)
𝛾(1 − 𝛽)J 𝑐𝑇 = I𝛾

(1 − 𝛽)
𝛾(1 − 𝛽)J 𝜆, (7) 

 

 

where the eigenvalues of Lorentz transformation are 

 

𝜖&,! = 𝛾(1 ∓ 𝛽) = P
1 ∓ 𝛽
1 ± 𝛽

;				𝜖& ∙ 𝜖! = 1.	 (8) 

 

 

The positive and negative sign depends on the relative velocity direction. 
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Using these eigenvalues, we can define two exponential functions as a 
contraction or expansion factor to describe the change in wavelength 
(and hence, period) of wave, emitted by a moving object as following, 

 

𝑒() = 𝜖& = P
1 − 𝛽
1 + 𝛽

;					𝑒) = 𝜖! = P
1 + 𝛽
1 − 𝛽

	, (9) 

 

 

where u is the rapidity parameter or hyperbolic rotation angle [3],  

 

𝑢 = ln[𝛾(1 + 𝛽)] = − ln[𝛾(1 − 𝛽)]. (10) 
 

In this manner, we can re-write the relationship between both wavelength 
and period: 

 

𝑐𝑇$ = 𝑒()(𝑐𝑇); (11a) 

𝜆$ = 𝑒()𝜆; (11b) 

𝜆$ = 𝑐𝑇$ . (11c) 

 

Similarly, the source SB flows away from the observer, the wavelength 
and period perceived by observer SA will become larger: 

 

𝑐𝑇% = 𝑒)(𝑐𝑇); (12a) 

𝜆% = 𝑒)𝜆; (12b) 

𝜆% = 𝑐𝑇%. (12c) 

 

The shortened or enlarged effect of the wavelength and period (the 
eigenvector or null vector of Lorentz transformation) is illustrated in Fig . 2.  
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Fig. 2 Dispersion relation is a linear function: 𝑐𝑇 = 𝜆. It is an 
eigenvector (null vector) of Lorentz transformation. Wave source of C 
flows towards to observer A, and wave source of B flows away from 

observer A. 
 

As mentioned above, the wave phase function is invariant:  

 

𝜙(𝑥	, 𝑡) = 𝜙%(𝑥	, 𝑡) = 𝜙$(𝑥	, 𝑡). (13) 
 

 

If we write it, e.g. for wave source SC, explicitly: 

 

𝑘𝑥 − 𝜔𝑡 = 2𝜋 =
𝑥
𝜆
−
𝑐𝑡
𝑐𝑇
> = 2𝜋 =

𝑥$
𝜆$
−
𝑐𝑡$
𝑐𝑇$

>. (14) 
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From the equation we can immediately recognize that to ensure the phase 
function is invariant, time duration and length must be proportionally 
shortened in a covariant manner, perceived by the stationary observer SA, 

  

𝑐𝑡$ = 𝑒() ∙ (𝑐𝑡); (15a) 

𝑥$ = 𝑒() ∙ 𝑥. (15b) 

 

In this manner, we can ensure 

 

𝑥$
𝜆$
=
𝑒() ∙ 𝑥			
𝑒() ∙ 𝜆

=
𝑥	
𝜆
; (16a) 

𝑐𝑡$
𝑐𝑇$

=
𝑒()(𝑐𝑡)			
𝑒()(𝑐𝑇)

=
𝑐𝑡	
𝑐𝑇
. (16b) 

 

 

Finally, we get the invariant wave phase function of Eq. (14) 

 

Similarly, for the wave source SB, we have 

 

2𝜋 =
𝑥%
𝜆%
+
𝑐𝑡%
𝑐𝑇%

> = 2𝜋 =
𝑥
𝜆
+
𝑐𝑡
𝑐𝑇
>. (17) 

 

Where 

𝑐𝑡% = 𝑒) ∙ (𝑐𝑡); (18a) 

𝑥% = 𝑒) ∙ 𝑥. (18b) 

 



10 
 

If the wavelength and period are selected as the measuring unit (scaling 
parameters) to measure the length and time, the phase function can be 
expressed as a no-dimensionalized scalar function, as follows: 

 

𝜙(𝑥	, 𝑡) = 2𝜋(𝑥∗ ± 𝑡∗). (19) 
 

where 

 

𝑥∗ =
𝑥
𝜆
=
𝑥$
𝜆$
=
𝑥%
𝜆%
; (20a) 

𝑡∗ =
𝑐𝑡
𝑐𝑇

=
𝑐𝑡$
𝑐𝑇$

=
𝑐𝑡%
𝑐𝑇%

. (20b) 

 

From the above discussion, we recognize that the perceived wavelength 
and period are different for different inertial observers, if they have relative 
motions, the physical length and time interval should also be enlarged or 
shortened by a same factor, correspondingly. This is the so-called time 
dilation and length contraction effect in the special relativity theory [4]. 

 

Actually, by the length and time covariant principle, the linear wave 
equation can be written as a non-dimensionalization form as 

 

𝜕!𝜓
𝜕𝑡!

= =
𝜆
𝑇
>
! 𝜕!𝜓
𝜕𝑥!

			→ 			
𝜕!𝜓
𝜕𝑡∗!

=
𝜕!𝜓
𝜕𝑥∗!

. (21) 

 

 

It should be reminded; Eq. (21) implies the measuring unit will vary for 
different inertial reference frames with relative motions. When the fluid 
particle flows towards the observer, e.g. fluid particle C, the measuring unit 
will be shorter, (the eigenvalue of Lorentz transformation is smaller than 
one). When the fluid particle flows away from the observer, e.g. fluid 
particle B, the measuring unit will become bigger (the eigenvalue is larger 
than one).  Especially, when the flow velocity approaches wave speed, the 
measuring unit will approach zero or infinity, depending on the relative 



11 
 

moving direction. If 𝑥 = ±𝑐𝑡 , the wave fronts will squeeze together 
(wavelength equals zero) or wavelength will stretch infinitely greater. That 
means 𝜙(𝑥	, 𝑡) = 0.  The wave equation is no longer valid. 

With this approach, the non-dimensionalized wave equation of (21) is then 
independent of the coordinate frames, regardless of the relative motions. 
The physical meaning can be obtained from the fact that the phase of the 
wave is an invariant dimensionless quantity.  All observers must have 
counted the same number of wave crests and toughs, whether they have 
relative motion or not [5]. 

 

 

3. Non-dimensionalization of the Navier-Stokes Equation 

 

We begin with the Navier-Stokes equation in the momentarily co-moving 
reference frame (the local observer coordinates origin and the fluid particle 
share the same spacetime point coincidently and not considering the 
relative effect, namely v<<c). As mentioned in the introduction; the 
classical Navier-Stokes equation is the non-relativistic limit of the 
relativistic one and ignores the “wave energy” change.  

 

𝜕(𝜌𝑐𝑢+)
𝜕(𝑐𝑡)

+
𝜕Y𝜌𝑢+𝑢,Z
𝜕𝑥,

= −
𝜕𝑝
𝜕𝑥+

+
𝜕
𝜕𝑥,

𝜎+,; (22a) 

𝜎+, = 𝜇 ]
𝜕𝑢+
𝜕𝑥,

+
𝜕𝑢,
𝜕𝑥+

^ + 𝜉
𝜕𝑢-
𝜕𝑥-

𝛿+, . (22b) 

 

By the inspiration of the above discussion, we define the following 
parameters as non-dimensional variables to scale the classical Navier-
Stokes equation, as listed in Table 1.   
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Table 1. The scaling parameters 

Scale parameters Dimensionless variable 
Length (𝜆) 𝑥∗ =

𝑥
𝜆
 

Time (𝜆/𝑐 = 𝑇) 𝑡∗ =
𝑡
𝑇
=

𝑡
𝜆 𝑐⁄

 

Velocity (𝑣/𝑐) 𝑣∗ =
𝑣
𝑐
= 𝑀 = 𝛽 

Pressure e .
/0!
f 𝑝∗ =

𝑝
𝜌𝑐!

 

Reynolds number e𝑅𝑒1 =
/02
1
f 𝑅𝑒1 =

𝜌𝑐𝜆
𝜇

 

Second Reynolds number e𝑅𝑒3 =
/02
3
f 𝑅𝑒3 =

𝜌𝑐𝜆
𝜉

 

 

With the help of above scale parameters, we can get the following 
differential operator: 

 

𝜕
𝜕𝑡
=
1
𝑇
𝜕
𝜕𝑡∗

; (23a) 

∇=
1
𝜆
∇∗; (23b) 

∇!=
1
𝜆!
∇∗!; (23c) 

𝜕!

𝜕𝑥+𝜕𝑥,
=
1
𝜆!

𝜕!

𝜕𝑥+∗𝜕𝑥,∗
 (23d) 

 

Substitution of the new variables of Table 1 and the differential operators, 
Eq. (23a-d) into Eq. (22a-b), the non-dimensionalized Navier-stokes 
equation is obtained as follows (see appendix for details), 

 

𝜕𝑢!∗

𝜕𝑡∗ + %𝑢#
∗ ∙ ∇∗(𝑢!∗ = −∇∗𝑝∗ +

1
𝑅𝑒$

∇∗%(𝑢!∗) + 1
1
𝑅𝑒$

+
1
𝑅𝑒&

2
𝜕
𝜕𝑥!∗

(∇∗ ∙ �⃗�∗). (24) 
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Here the starred variables are used to represent the dimensionless 
variables, it be recognized that the Reynolds number contains a wave 
length as its characteristic length.  
 
 

3.1 One-Dimensional flow  

 

For one-dimensional flow, the dimensionless form becomes 

 

𝜕𝑢∗

𝜕𝑡∗
+ 𝑢∗

𝜕𝑢∗

𝜕𝑥∗
= −

𝜕𝑝∗

𝜕𝑥∗
+

1
𝑅𝑒1

∂!𝑢∗

𝜕𝑥∗!
+ ]

1
𝑅𝑒1

+
1
𝑅𝑒3

^
∂!𝑢∗

𝜕𝑥∗!
. (25) 

 

 

We can rearrange it into the following form 

 

𝜕(𝑐𝑢∗)
𝜕(𝑐𝑡∗)

=
𝜕
𝜕𝑥∗

j−
1
2
𝑢∗! − 𝑝∗ + ]

2
𝑅𝑒1

+
1
𝑅𝑒3

^
𝜕𝑢∗

𝜕𝑥∗
k. (26) 

 

 

If we assume the system has reached a steady state. Then, the steady-
state 1-D dimensionless Navier-Stokes equation is given by 

 

1
2
𝑢∗! + 𝑝∗ − ]

2
𝑅𝑒1

+
1
𝑅𝑒3

^
𝜕𝑢∗

𝜕𝑥∗
= 𝑐𝑜𝑠𝑡𝑎𝑛𝑡. (27) 

 

 

It is possible to re-write it in dimension form: 

 

1
2
e
𝑢
𝑐
f
!
+

𝑝
𝜌𝑐!

− =
2𝜇 + 𝜉
𝜌𝑐!

>
𝜕𝑢
𝜕𝑥

= 𝑐𝑜𝑠𝑡𝑎𝑛𝑡. (28) 
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If both sides multiply the term: 𝜌𝑐!, then we get 

 

1
2
(𝜌𝑢)! + 𝑝 − (2𝜇 + 𝜉)

𝜕𝑢
𝜕𝑥

= 𝑐𝑜𝑠𝑡𝑎𝑛𝑡. (29) 

 

 

Furthermore, if we ignore the viscosity effect, the classical Bernoulli 
equation was recovered, with a little bit of modification. 

 

1
2
e
𝑢
𝑐
f
!
+

𝑝
𝜌𝑐!

= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡. (30) 

 

3.2 On the essence of pressure energy or mass-energy equivalence 

 

We consider the first law of thermodynamics for a closed system, no 
transfer of the matter in or out the system, in the co-moving frame (the 
observer and fluid have no relative motion).  If the heat transfer between 
the system and its surroundings is ignored, we consider only the 
mechanical energy exchange of the system with its surroundings, thus, 
the change in internal energy of the system is: 

 

𝑑𝐸 = 𝑑𝑊,  (31) 
 

where 𝑑𝑊 is work done on the system by its surroundings.  

 

𝑑𝑊 = 𝑑(𝑝𝑉). (32) 
 

 
In a fluid, recalling the definition of the speed of sound, it depends on the 
bulk modulus and density: 
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𝑐! =
𝐵
𝜌
				→ 		𝐵 = 𝜌𝑐!. (33) 

 
 
The bulk modulus B is defined by the equation 
 

𝐵 = −
𝑑𝑝

e𝑑𝑉𝑉 f
. (34) 

 
 
Substituting Eq. (33) into Eq. (34), we have 
 
 

−
𝑑𝑝

e𝑑𝑉𝑉 f
= 𝜌𝑐!. (35) 

 
 
Recalling the density definition and accordingly, we have 
 

𝑑𝑝 = −𝜌𝑐! =
𝑑𝑉
𝑉
> = −

𝑚𝑐!

𝑉!
𝑑𝑉. (36) 

 

where m is the mass content in the researched closed system.  

Integral from a reference point to present state (𝑝, 𝑉): 

 

𝑝 − 𝑝456 = 𝑚𝑐! ]
1
𝑉
−

1
𝑉456

^. (37) 

 

 

We can choose an infinitely dilute state as the reference point (zero 
point): 

 

𝑧𝑒𝑟𝑜	𝑝𝑜𝑖𝑛𝑡:	 u
𝑝456 → 0
𝑉456 → ∞. (38) 
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where, the fluid volume approaches infinitely large and the pressure 
approaches zero. 

 

The equation (37) becomes: 

 

𝑝 =
𝑚𝑐!

𝑉
= 𝜌𝑐!. (39) 

 

Rearranging it, we have following expression: 

 

𝐸 = 	𝑝𝑉 = 𝑚𝑐!. (40) 
 

That means the mass-energy equivalence represents the “wave potential 
energy content” in the co-moving frame. 

  

4. Discussions 

 
In view of the fluid particle of C, the stationary observer A (the Lab frame) 
can be interpreted to move towards C with a relative velocity of -V.  While 
in view of the fluid particle of B, the stationary observer A can be explained 
to move away from B with a relative velocity of V, as shown in Fig 3.  
 
We want to describe the fluid motion in the Lab frame. In this circumstance, 
we should transform the equation from a co-moving fluid particle to the 
Lab frame, for instance from fluid particle C to the stationary observer 
frame of A. The measuring unit, namely the wavelength and period, will 
become shorter as perceived by the Lab observer. In another word, length 
and time duration should squeeze proportionally smaller by the same 
factor,  

 

[𝜕𝑥$ 𝜕𝑡$] = 𝑒()[𝜕𝑥 𝜕𝑡]. (41) 
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When the velocity of the fluid particle C approaches the speed of the wave, 
the wavelength (and hence, the period) will approach zero,  

 

𝜆$ = 𝑒() ∙ 𝜆		 → 	0; (42a) 

𝑇$ = 𝑒() ∙ 𝑇	 → 	0. (42b) 

 

So that 

[𝜕𝑥$ 𝜕𝑡$] 	→ 	0. (43) 

 
 

 
(c) 

 
Fig. 3. (a) Observer A seems to flow towards C with a relative velocity 
of -v; (b) and flows away from B with a relative of velocity of +v. (c) the 
flow particle C flows towards observer A, the control volume will be 
compressed.  
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The Reynolds numbers will be transformed to  

 

𝑅𝑒1 =
𝜌𝑐𝜆
𝜇
𝑒𝑥𝑝wx

1 − 𝑣𝑐
1 + 𝑣𝑐

y =
𝜌𝑐𝜆
𝜇
𝑒𝑥𝑝 zP

1 −𝑀
1 +𝑀

{ ; (44a) 

𝑅𝑒3 =
𝜌𝑐𝜆
𝜉

=
𝜌𝑐𝜆
𝜉
𝑒𝑥𝑝wx

1 − 𝑣𝑐
1 + 𝑣𝑐

y =
𝜌𝑐𝜆
𝜉
𝑒𝑥𝑝zP

1 −𝑀
1 +𝑀

{. (44b) 

 

where M is Mach number. 

 
Hence the Reynolds number will seem to approach zero, and the resulting 
viscosity terms in the non-dimenalized form will approach infinity, this 
leads the fluid flow to become infinite or "blow up". It can be interpreted as 
the control volume will be compressed in the flow direction, as shown in 
Fig. 3 (c). 
 
 
 
In contrast, when the fluid particle B flows away with a velocity from the 
stationary observer, the wavelength (and hence, the period) will appear to 
become larger. The “measuring unit” will become larger, in this manner, 
the length and time duration seems to stretch proportionally bigger by the 
same factor,  
 
 

𝜆% = 𝑒) ∙ 𝜆		 → 	∞; (45a) 

𝑇% = 𝑒) ∙ 𝑇	 → 	∞; (45b) 

[𝜕𝑥% 𝜕𝑡%] = 𝑒)[𝜕𝑥 𝜕𝑡] 	→ 	∞. (45c) 
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The Reynolds number will proceed toward infinity when the velocity of 
the fluid particle B approaches the speed of the wave. 
 
 

𝑅𝑒1 =
𝜌𝑐𝜆
𝜇
𝑒𝑥𝑝wx

1 + 𝑣𝑐
1 − 𝑣𝑐

y =
𝜌𝑐𝜆
𝜇
𝑒𝑥𝑝zP

1 +𝑀
1 −𝑀

{. (46) 

 

If the flow velocity is very small compared with the wave speed, under 
this circumstance, 

𝑒() ≈ 1	;					𝑒) ≈ 1. (47) 

 

In this case, the relativistic effect can be neglected. As an approximation, 
we can still use the classical Navier-stokes equation to deal with the 
physical phenomenon. 

 

When the flow velocity is bigger than the wave propagation speed –
supersonic flow, the argument of the exponential function (the 
eigenvalue of Lorentz transformation) becomes an imaginary number; 
however, we can decompose this function into an "even part" and an 
"odd part."  

 

𝑒+) = cosh(𝑖𝑢) + sinh(𝑖𝑢) = cos(𝑢) + 𝑖 sin(𝑢) ; (48a) 

𝑒(+) = cosh(−𝑖𝑢) + sinh(−𝑖𝑢) = cos(𝑢) − 𝑖 sin(𝑢). (48b) 

 

The contract or expansion factor for the “measuring unit” – wavelength and 
period – is now split into a “real part” and an “imaginary part”. Under this 
circumstance, if we want to solve the flow problem, the definition domain 
must be extended to the complex domain. 
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5. Conclusion 

The compressible Navier-Stokes equation includes the pressure wave, 
implicitly. The wave phase function is invariant regardless of the relative 
motion of different inertial observers; however, the wavelength and period 
will change, based on the fundamental principle of the invariance of the 
wave phase function.  

The compressible classical Navier-Stokes equation is primarily written out 
in the MCRF (or precisely speaking, the relative effect is ignored , namely 
v<<c or M<<1).  In this co-moving reference frame, we can feel a 
wavelength (and hence, period) for the pressure wave. The equation can 
be non-dimensionalized in this frame, using the wavelength and period as 
its scaling parameters, resulting in a Reynolds number, in which the 
wavelength is its characteristic length scale.  

When this Reynolds number is transformed to an inertial frame (e.g. to the 
stationary Lab. frame), which has a relative motion to the MCRF, the 
transformed Reynolds number will approach zero or infinity, depending on 
the relative motion direction. When the fluid flows toward the observer in 
the Lab frame, the Reynolds number will approach to zero (the Mach 
number approaches one), the flow will blow up. Furthermore, we show that 
the mass-energy equivalence represents the “wave potential energy 
content” or the pressure energy in the rest frame. For supersonic flow, the 
flow problem should be solved in a complex domain. 
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Appendix.  Non-Dimensionalization of the Navier-Stokes equation 

 

 

At first, to non-dimensionalize the material (total) derivative term, for the 
sake of simplification, let us show a 2D case. with the help of the mass 
conservation equation, we have:    

 

𝜕(𝜌𝑢)
𝜕𝑡

+
𝜕(𝜌𝑢𝑢)
𝜕𝑥

+
𝜕(𝜌𝑢𝑣)
𝜕𝑦

= 𝜌 =
𝜕𝑢
𝜕𝑡
+ 𝑢

𝜕𝑢
𝜕𝑥

+ 𝑣
𝜕𝑢
𝜕𝑦
>. (A1) 

 

 

Substitution of the new variables of Table (1) into each term of the Eq. 
(A1), we have:  

 

𝜕𝑢
𝜕𝑡

= =
𝜆
𝑇!
>
𝜕𝑢∗

𝜕𝑡∗
; (A2) 

𝑢
𝜕𝑢
𝜕𝑥

= =
𝜆
𝑇!
> 𝑢∗

𝜕𝑢∗

𝜕𝑥∗
; (A3) 

𝑣
𝜕𝑢
𝜕𝑦

= =
𝜆
𝑇!
> 𝑣∗

𝜕𝑢∗

𝜕𝑦∗
. (A4) 

 

Thus, 
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𝜕(𝜌𝑢)
𝜕𝑡

+
𝜕(𝜌𝑢𝑢)
𝜕𝑥

+
𝜕(𝜌𝑢𝑣)
𝜕𝑦

= 𝜌 =
𝜆
𝑇!
> j
𝜕𝑢+∗

𝜕𝑡∗
+ Y𝑢,∗ ∙ ∇∗Z𝑢+∗k. (A5) 

 

 

Dividing the pressure gradient by the coefficient of material derivative 
term of 𝜌 e 2

7!
f, thus 

𝜕𝑝
𝜕𝑥

=
𝜕𝑝∗

𝜕𝑥∗
. (A6) 

 

 

Finally, we nondimensionalize the viscous forces: 

 

𝜕
𝜕𝑥,

𝜎+, = ∇ ∙ [𝜇(∇𝑢 + (∇𝑢)7) + 𝜉(∇ ∙ 𝑢)𝑰]. (A7) 

 

With the help of the differential operators of Eq. (23c-d) and a bit of 
algebra manipulation, thus 

 

𝜕
𝜕𝑥,

𝜎+, =
𝜇𝑐
𝜆!
∇∗!(𝑢+∗) +

𝜇𝑐
𝜆!

𝜕
𝜕𝑥+∗

(∇∗ ∙ �⃗�∗) +
𝜉𝑐
𝜆!

𝜕
𝜕𝑥+∗

(∇∗ ∙ �⃗�∗). (A8) 

 

 

Dividing it by the coefficient of material derivative term of 𝜌 e 2
7!
f, we have 

𝜕
𝜕𝑥,

𝜎+, =
1
𝑅𝑒1

∇∗!(𝑢+∗) +
1
𝑅𝑒1

𝜕
𝜕𝑥+∗

(∇∗ ∙ �⃗�∗) +
1
𝑅𝑒3

𝜕
𝜕𝑥+∗

(∇∗ ∙ 𝑣∗). (A9) 

 

 

Substitution of the new terms of (A5, A6, and A9) into the Navier-Stokes 
equation, finally we get the non-dimensionalized Navier-stokes equation, 
as described by Eq. (24). 


