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In the detection of gravitational waves in space, during the science phase of the mission, the point

ahead angle mechanism (PAAM) serves to steer a laser beam to compensate for the angle generated by

the relative motion of the two spacecrafts (SCs) during the approximately 10 seconds of �ight time a

laser beam will take from one SC to reach a distant SC of three million kilometers away. The common

practice for pointing stability control of a laser beam is to �rst do a coarse tracking by the PAAM to

steer a laser beam to compensate for the relative motion between two SCs, to be followed by a �ne

pointing stability control. In the present work, by exploiting the near-circular orbit structure of

individual SC in the triangular constellation, the feasibility of inserting an adaptive Kalman �lter

(AEKF) into the PAAM control loop is investigated. By adopting a colored measurement noise model

that closely resembles the prospective on orbit situation, numerical simulation suggests that the

dynamic range of the PAAM may be reduced to the level of nano-radians using the prediction of the

pointing head angle (PAA) by the AEKF. This will cut down on the TTL coupling noise and the position

noise budget allocated to the PAAM. This in turn reduces the dynamic range of the �ne pointing

control and leaves room to improve its accuracy, thereby offers the prospect of reduction of the

position noise budget allocated to the laser pointing instability as a whole.

Corresponding authors: Jianjun Jia, jjjun10@mail.sitp.ac.cn; Yun Kau Lau, lau@amss.ac.cn

I. Introduction

In detecting gravitational waves in space, the PAAM serves different functions at different stages of the

mission. During the scienti�c phase of a mission, due to the million kilometers apart between two SCs, a
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laser beam emanating from one SC will take about ten seconds to reach a distant one. Between this time

interval, the distant SC moves, and the PAAM serves to steer a laser beam to compensate for the distance

traversed during this interval. At the same time, it also serves to compensate for the breathing angle

generated by solar gravity at the annual level.

In the present work, we shall address problems related to the laser pointing control in relation to the

PAAM stability during the scienti�c phase. We will con�ne our attention to the triangular constellation

with heliocentric orbit[1][2]. It is conceivable that the analysis may be applicable to triangular

constellation in near earth orbit as well[3]. The conventional practice for pointing stability control of an

inter-satellite link is partitioned into two stages. The PAAM performs coarse pointing, to be followed in

the second stage by a more accurate �ne pointing control to achieve the accuracy of nano-radian

pointing. The micro-radian angular jitter together with the piston noise of PAAM, when coupled with the

position noise of the steering mechanism and the phase center offset from the center of mass of a SC, will

generate position noise for the gravitational wave measurement.

Given the simple near-circular orbit of each SC in the triangular satellite formation in the detection of

gravitational waves in space, it is natural to inquire whether an AEKF based on the orbital dynamics may

be incorporated into the PAAM control loop so that the pointing accuracy may be improved and the

dynamic range of the PAAM is reduced at the same time. This will cut down on the position noise budget

for the PAAM and mitigate at least partially the TTL noise generated by the PAAM. As a preliminary step

to explore this line of thought, the aim of the present work is to study this problem more in-depth by

means of simulation. The work to be presented in what follows suggests that AEKF does have the

potential to play an instrumental role in the PAAM control loop.

The structure of this paper is organized as follows. Some background materials concerning PAA and

AEKF with colored noise are introduced in sections 2 and 3, respectively. Section 4 presents the design of

the control loop for the PAAM with the insertion of AEKF. We begin to enter the core of our work in

section 5 and set up the AEKF framework for the PAAM. The system noise model to be employed in the

AEKF is worked out in section 6. Section 7 discusses the measurement noise model in the AEKF and the

generation of random time-domain noise signals with prescribed PSD used in the simulation. Section 8

presents the simulation results and conducts an in-depth analysis of the �ltering results obtained from

AEKF. In the �nal section, some remarks that look to the future of this work are made to conclude our

work.

qeios.com doi.org/10.32388/VPP8SM 2

https://www.qeios.com/
https://doi.org/10.32388/VPP8SM


II. PAAM—some basics

In this section, we shall review some basics of the PAAM. This serves to provide background for

subsequent discussions and at the same time �x notations and conventions.

Figure 1. De�nition of in-Plane and out-of-Plane PAAs

PAA is the angle formed between the direction of the transmitted beam between the local SC and the

remote SC and the direction of the received beam between the remote SC and the local SC, as shown in

Fig. 1. The angle varies annually with the orbit of the triangular constellation. Throughout this work, we

shall adopt the J2000.0 coordinate system to describe the position and velocity of SCs. The J2000.0

coordinate system is based on the North Celestial Pole and the Vernal Equinox of epoch J2000.0, with the

Z axis pointing to the North Celestial Pole, the X axis pointing to the Vernal Equinox, and the X, Y, and Z

axes forming a right-handed rectangular coordinate system. The positions and velocities of SCi (i=1,2,3) at

a certain epoch may be expressed respectively as  , and  . The relative position

and velocity of two SCs are then given by vector addition or subtraction with respect to the J2000.0

reference frame.

[ , ,Xi Yi Zi]T [ , ,VXi VY i VZi ]T
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II.1. Calculations of PAA

Figure 2. Dynamic range of PAAs.

Fig. 1 illustrates the in-plane and out-of-plane PAAs. Fig. 2 displays the dynamic range of PAAs. Denote

by    the beam vector linking a local SC to a remote SC.    is the beam vector linking

remote SC to the local SC. The PAA may be calculated to be

Take   as example,    is the time taken for a laser beam originating from SC1 to reach

SC2 and   is the time taken for a laser beam from SC2 to reach SC1 upon receiving the laser beam

from SC1. We have

Numerical calculations with our orbit integrator enable us to infer that the variation in light time

propagation between two SCs is   seconds in one year, and the resulting change in PAA angle

may be neglected[4]. Therefore, we will adopt the approximation that 

 in the calculations that follow.

We shall divide the PAA into two parts in the calculations: in-plane and out-of-plane, as shown in Fig. 1.

De�ne

R⃗ 
t,ij i, j = 1, 2, 3 R⃗ 

r,ij

PAA = arcsin × .
∣

∣

∣
∣
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t,ij

| |R⃗ 
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| |R⃗ 
r,ij
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∣
∣ (1)

(i, j) = (1, 2) Δtr,12

Δtt,12

= − Δ ⋅ = cΔ ,Rr,12
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12 tr,12 V ⃗ 

12
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∣ tr,12 (2)

= + Δ ⋅ = cΔ ,Rt,12
∣
∣R⃗
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12
∣
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10 ± 0.013

Δ = Δ = Δt ≈ 10 secondstr,12 tt,12
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Which are the unit direction vectors pointing along the X, Z, and Y axes, respectively.

Figure 3. The angle variation between the constellation plane and the Heliocentric Ecliptic

Coordinate System of J2000.0.

Fig.  3 shows the variation of the inclination angle between the triangle constellation plane and the

ecliptic plane, with an annual variation range of around 0.08 degrees[4]. This prompts us to approximate 

 as a constant vector. The error of the in-plane and out-of-plane PAAs due to this approximation is

around 0.45 nrad, which is negligible compared to the half-angle of the beam (  1.43  )[5].

The in-plane PAA is then given by

The out-of-plane PAA may be expressed as

e ⃗ x,12

e ⃗ z,12

e ⃗ y,12

= , (4)
R⃗ 

t,12

| |Rt,12

= , (5)
×R⃗ 

t,12 R⃗ 
t,13

×∣
∣R⃗

 
t,12 R⃗ 

t,13
∣
∣

= × , (6)e ⃗ z,12 e ⃗ x,12

e ⃗ z,12

≈ μrad

= ⋅ ≈ ⋅ .PAAin,12 sin−1
⎛

⎝
⎜

×R⃗ 
r,12 e ⃗ z,12

×∣
∣R⃗

 
r,12 e ⃗ z,12

∣
∣

e ⃗ x,12

⎞

⎠
⎟

×R⃗ 
r,12 e ⃗ z,12

×∣
∣R⃗

 
r,12 e ⃗ z,12

∣
∣

e ⃗ x,12 (7)

= ( ) ≈ .PAAout,12 sin−1 ⋅e ⃗ z,12 R⃗ 
r,12

| |R⃗ 
r,12

⋅e ⃗ z,12 R⃗ 
r,12

| |R⃗ 
r,12

(8)
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In Eq.  (7) and Eq.  (8), we have used the approximation that  , given that both    and 

 are of the order of  .

In the next step, we shall express the relative position and velocity vector between SCs in terms of the

coordinate components in the J2000.0 frame. Let

represent the laser link directed from SC1 to SC2. Likewise,

is the relative velocity vector from SC1 to SC2.   is the current position information of SCi with 

, and   is the current velocity information of SCi. The beam vector   and beam

vector   linking SC1 to SC2 may be expressed as

The beam vector   linking SC1 to SC3 may be expressed as

According to Eq. (4)-Eq. (6), the X-axis directional vector of the SC1 may be expressed as

Write   in terms of the coordinate components of J2000.0 as

The Y-axis direction vector of SC1 may also be be expressed in terms of the coordinate components of

J2000.0 as

Then the expression of in-plane PAA is given by

with

sinx ≈ x PAAout,12

PAAout,12 μrad

= [ , , ] = [ − , − , − ],R⃗ 
12 x12 y12 z12 X1 X2 Y1 Y2 Z1 Z2 (9)
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The out-of-plane PAA is expressed as

with

III. Adaptive extended Kalman Filter

In this section, we shall introduce the AEKF method, on the basis of which we develop a new control

algorithm for the PAAM. The material presented in this section is not new[6], but to render the present

article self-contained, we will describe the AEKF framework and then apply it to the PAAM in the next

section.

Based on the standard EKF[7][6], we can treat the measurement noise as a state quantity and include it in

the state equation[8][9]. The state equation of the Kalman �lter, which includes the extended system noise

and the measurement noise, is obtained as Eq. (21).

Where   is an identity matrix. Based on the original measurement equation(??), make

It is obtained by substituting the expression 

We de�ne    as  .    is de�ned as  . Thus, a new

measurement equation is established.

Where   is zero mean white noise and its variance is

In this case, the covariance matrix of the measurement noise and the process noise is
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The expression for the posterior estimation equation is

The expression of new Kalman gain is

The process noise covariance matrix is

The formula of EKF algorithm subject to colored measurement noise is given by Eq. (26)-Eq. (29).

IV. PAAM Control Loop Design

In a LISA-type mission, unlike the EKF considered before for clock synchronization purposes in the pre-

TDI data post-processing[10], the AEKF for PAAM will be carried out on orbit. In our design of the PAAM

control, the FPGA control chip receives the feedback signal from the four-quadrant detector demodulated

by the phasemeter and the capacitance sensors of PAAM. It combines the information of the SC orbit

integrator for feedforward control. Fig 4 shows the block diagram design of the control system of the

PAAM. In this control system, a theoretical model is established by AEKF and SC orbital integrator to

control the PAAM. The output value controlled by the PID is weighted with the system noise as the state

input to AEKF, and the measurement noise is added to simulate the actual situation on the SC. The whole

control loop is closed-loop controlled by a phasemeter demodulated four-quadrant detector and

capacitance sensors. Taking into account the creep and hysteresis of piezoelectric ceramics in the PAAM,

nonlinear compensation, and notch �lters are added to the control loop to improve the stability of the

whole control loop.

= + .Sk QkΓT
k
HT

k+1 ξk (26)

= + ( − − ).X̂k+1 ϕk+1,kX̂k K̄k+1 Zk+1 Ψk,k−1Zk H ∗
k
X̂k (27)

= ( + )( + .K̄k+1 ϕk+1,kPkH
∗T
k

ΓkSk H ∗
k
PkH

∗T
k

R∗
k
)−1 (28)

= + − ( + ).p∗
k+1 ϕk+1,kP ∗

k
ϕT
k+1,k ΓkQkΓT

k
K̄k+1 H ∗

k
P ∗
k
ϕT
k+1,k ST

k
ΓT
k

(29)
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Figure 4. PAAM control framework.

The sampling frequency is chosen to be one per day, for the reason that the PAA varies slowly with the

orbit. Further, in every manoeuvre of the PAAM, the piston noise couples with spacecraft attitude jitter

and possibly other noise sources and generate position noise for gravitational wave measurement. A low

sampling frequency will minimise the disturbance in the laser interferometry measurement.

Unlike the EKF considered before for clock synchronization purposes in the pre-TDI data post-

processing[11], the AEKF for PAAM will be carried out on orbit, and input of measurement data from the

precision orbit determination of SCs is required. As the distance between the Earth and the triangle

constellation is very similar to that between Mars and the Earth, the experience for the precision orbit

determination of the Martian mission Tianwen I[12]  will serve as a useful reference guide. As the

sampling frequency is one data per day, a straightforward way will be for the ground tracking station to

upload the orbit data once per day. The delay for communication between the ground tracking station

and SC (around half an hour) will be negligible due to the adiabatic, very slow change in the orbit of the

triangle constellation. However, from the viewpoint of autonomous navigation and from the experience

of the Tianwen I mission, it is feasible to use orbit prediction data for a month in the measurement model

of the AEKF, provided the required precision in orbit determination on the position and velocity of SC

orbit are respectively within the margins of 20km and 2cm/s[13]. We can also update the orbit

determination error by ground tracking during data transmission between the spacecraft and the ground

station.

qeios.com doi.org/10.32388/VPP8SM 9

https://www.qeios.com/
https://doi.org/10.32388/VPP8SM


V. Adaptive extended Kalman Filter Model for PAAM

First, we de�ne a 18-dimensional column state vector, which includes the position and velocity

information of three SCs.

The dynamics of a single SC is described by Keplerian equation for planetary motion given by

Where   is the position of one SC,  ,   are the mass and the coordinates of the ith celestial

body (the Sun and the planets) in the solar system,   is a vector pointing from that SC to the 

 th celestial body. In designing the orbit used in our study, we considered only the gravitational forces

given by the Sun and the major planets of the solar system when constructing the equations of motion

for SC. The major planets include Mercury, Venus, Earth+Moon, Mars, Jupiter, Saturn, Uranus, and

Neptune[4]. The dynamic equation can be written in a different form.

We de�ne  , then we have

Here,   is the   zero matrix,   is the   identity matrix, and the expression of the   matrix A

is given as:

For the entire system, the dynamic matrix   is  . We omit its explicit expression here, as it

can be obtained in a straightforward way from the above formulae. In our work that follows, we simulate

the PAA data of 3 years. Since the PAA changes very slowly with one year periodicity, we set the sampling

frequency of the AEKF to 1 day. A longer time span up to a few days is also feasible. In the initial design

process, we have considered the in�uence of SCs displacement, velocity, and acceleration on PAA, but in

our subsequent simulation, we �nd that the relative acceleration of the SC is irrelevant to the PAA

calculations.

= [ , , , , , , , , , , , , , , , , , .Xk X1 Y1 Z1 VX1 VY1 VZ1 X2 Y2 Z2 VX2 VY2 VZ2 X3 Y3 Z3 VX3 VY3 VZ3 ]T (30)

= G ,X ⃗ 
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¨
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| −X ⃗ 
k Rplanet |

3
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−X ⃗ 
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i
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dt
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k
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⎡

⎣
⎢
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−X ⃗ 
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3

⎤

⎦
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k v ⃗ k

T

ϕ = = [ ] .
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O3 3 × 3 I3 3 × 3 3 × 3

A = − ∑
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| −X ⃗ 
k Rplanet|

3
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Next, we shall present the two-dimensional measurement equation. The measurement equation which

links up the positions and velocities of the three SCs and the in-plane and out-of-plane PAAs and may be

written as

where    and    are respectively the in-plane PAA and the out-of-plane PAA.    is the

measurement nosie.    is a 2×18-dimensional observation matrix. We omit the explicit of the 36

components in  . The element   in the matrix   may be expressed as:

As an example, the [1,1] and [2,1] components of  , with the step index    omitted, may be given as

follows.

 is given in Eq. (20).

with

with   being given in Eq. (18).

In standard practice, the coef�cient transfer matrix   of colored measurement noise is determined

by the ARMA model. In the present context, the de�nition of    is relatively simple and can be

considered as a special case of the ARMA model in which the autoregressive parameter is 1, and the

moving average parameter is 0[14]. We have also tried to use more sophisticated ARMA model to estimate

the value of the    matrix, but the results are not as good as the methods used here. As shown in

Eq.  (21), we only consider the colored noise component in the measurement noise and did not include

white noise. Therefore, the   term can be directly ignored. As shown in Eq. (39), we approximately take

the ratio of the measurement noise amplitudes at the previous moment and the current moment as input

= ( , ) = [ , ] ,Zk hk Xk vk PAAout,12 PAAin,12 (35)

PAAin,12 PAAout,12 vk

Hk

Hk [i, j]Hk Hk

[i, j] = .Hk
∂ [i]Zk

∂ [j]Xk
(36)

Hk k

H[1, 1] = = .
∂PAAout,12

∂X1

| − ( ⋅ ) ( − Δt)ezx R⃗ 
r,12|2

e ⃗ z,12 R⃗ 
r,12 x12 Vx12

|R⃗ 
r,12|3

(37)

⋅e ⃗ z,12 R⃗ 
r,12

H[2, 1] = = .
∂PAAin,12

∂X1

− 2 (( × ) ⋅ )
∂( × )⋅R ⃗ 

r,12 e ⃗ 
z,12 e ⃗ 

x,12

∂X1
x12 R⃗ 

r,12 e ⃗ z,12 e ⃗ x,12

| || |R⃗ 
r,12 R⃗ 

t,12

∂ × ⋅R⃗ 
r,12 e ⃗ z,12 e ⃗ x,12

∂X1

= ( − Δt) − ( − Δt)y12 Vy12 ezz z12 Vz12 ezy

− ( + Δt) + ( + Δt) ,ezz y12 Vy12 ezy z12 Vz12
(38)

× ⋅R⃗ 
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to the coef�cient transfer matrix    of the colored measurement noise. The simple choice here is

likely due to a very slow variation of the colored measurement noise in the time domain at an annual

level. This colored measurement noise is a linear superposition of all colored noise, which we will discuss

in detail in a moment.

In a standard adaptive Kalman �lter, the size of the    and    matrix is automatically adjusted by

observing the prediction error and its mean square error matrix and introducing the fading factor to

obtain a good estimation state[15]. The AEKF designed in this paper is slightly different from the

traditional AEKF. In the AEKF designed by us, the covariance matrix of measurement noise   is updated

in real-time according to the magnitude of measurement noise, while the covariance matrix of system

noise   is updated every month or so, based on the accuracy of orbit prediction. It can also be updated

by ground tracking during data transmission between the spacecraft and the ground station.

Figure 5. PAA calculation �ow chart.

In this study, the �owchart for PAA adjustment computation is illustrated in Fig. 5. During the �rst step

of data preprocessing, we rely on orbit prediction to acquire the SC’s position and velocity information.

The error in orbit prediction within this system is linearly superimposed onto the orbit prediction data as

system noise to form the system data. The orbit prediction data, linearly superimposed with noise

Ψk,k−1

= / .Ψk,k−1 vk vk−1 (39)

Qk Rk

Rk

Qk
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generated by the FFT-based Monte Carlo random noise generation method, constitutes the measurement

data input into the AEKF. The system data and measurement data are generated using different orbital

prediction data, each based on different points of the orbital determination error as input. At the same

time, the orbital determination error can also be obtained without orbital prediction. During data

transmission between the spacecraft and the ground station, ground tracking can also be used to update

it. In the second step, during the AEKF process, the orbit prediction information needs to be updated

every month. In the third step, we conduct an error analysis on the data �ltered by AEKF, using four

independent methods: SSE (Sum of Squared Errors), RMSE (Root Mean Squared Error), R-square, and

adjusted R-square for error �tting. Finally, the results are analyzed and discussed.

VI. System Noise Model

To work out a system model for AEKF, consider

where   and   are the errors in respectively the position and velocity in the orbit prediction. We take

the SC’s position and velocity data generated by the orbit integrator as input into the AEKF while

incorporating the orbit prediction error in the form of system noise. Accordingly, we express the SC

position coordinates    and velocity coordinates 

, Eq.  (1) - Eq.  (8) are then employed to calculate the PAA with orbital

prediction errors taken into account. The position coordinates    and velocity coordinates 

 of the SC, free of orbital prediction errors, will be used to compute the true value of PAA

by substituting them into Eq. (1)-(8). The difference between these two values represents the PAA error

generated by the orbital prediction. This error is input as the source of system noise for the AEKF. We

then transform this orbit prediction error into both in-plane and out-of-plane PAA errors, resulting in an

error margin of approximately 0.2 nrad. The system noise is linearly superimposed onto the genuine PAA

value provided by the orbital integrator in the form of white noise. Additionally, the covariance matrix 

 is con�gured in accordance with the system noise.

VII. Measurement Noise Model

This section primarily elaborates on the PAA noise model, serving as the foundation for quantifying

measurement noise in our subsequent simulations. During the simulation process, position and velocity

{
δX = [δx, δy, δz ,]T

δV = [δ , δ , δ .Vx Vy Vz ]T
(40)

δX δV

[ + δx, + δy, + δzXi Yi Zi ]T

[ + δ , + δ , + δVXi Vx VY i Vy VZi Vz ]T

[ , ,Xi Yi Zi]T

[ , ,VXi VY i VZi ]T

Qk
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of SCs are generated by an the orbit integrator to mimic orbit prediction. We consider this to be the true

value and linearly superimpose it with the measurement noise data, which serves as the input of the

measurement value for AEKF. To better simulate the actual conditions on orbit, we adopt an FFT-based

Monte Carlo method to generate random time-domain noise signals with speci�ed PSD. Speci�cally, the

colored noise generated by this method is produced using the LISA noise PSD in the time domain with

the help of the LTPDA toolkit[16]. At the same time, the covariance matrix  , which characterizes the

measurement noise within the AEKF, is dynamically computed from the generated noise and updated in

real-time[17] as

The noise model accounts for various sources, and we add a total of   measurement noise,

taking into account mainly piston noise of PAAM, directional jitter noise, SC attitude jitter noise, readout

noise among others. In AEKF, since the measurement noise is much larger than the system noise, the size

of its prediction error mainly depends on the size of the system noise. Therefore, increasing the

measurement noise does not signi�cantly affect the prediction results. Then, we use the LTPDA toolbox

to generate time-domain noise based on the noise power spectral density function. The sum of the

measurement noise can be expressed as Eq. (42), and f is the frequency.

Rk

= cov[ , ].Rk vk vk (41)

10 × 10−12 m

Hz√

(f) = 10 × .x~noise 10−12 1 + ( )
2.8mHz

f

4− −−−−−−−−−−−−

√
m

Hz
−−−

√
(42)
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Figure 6. Flow chart of time domain noise acquisition.

The distribution of noise in the time domain is obtained by backpropagating the noise expression in the

frequency domain using the LTPDA toolbox in with the �owchart shown in Fig.  6[16]. Fig.  7 is the PSD

curve of noise. The total displacement noise PSD is a linear superposition of a number of individual noise

PSDs.
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Figure 7. PAA noise model.
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VIII. Simulation results.

Figure 8. PSD curves of the out-of-plane PAA between SC1 and SC2.

Fig.  8(a) is the PSD curves of the out-of-plane PAA between SC1 and SC2 before �ltering and after

�ltering. Fig. 8(b) is the PSD curves of the out-of-plane PAA errors between SC1 and SC2 before �ltering

and after �ltering. Both �gures show that the AEKF effectively �lters high-frequency noise signals and

low-frequency noise between 1 mHz and 10 Hz. The �ltering effect of the AEKF in the high-frequency

band is better than that at low frequency. In the band from 1 mHz to 0.01 Hz, the PSD of the out-of-plane

PAA before �ltering SC1 to SC2 is about  , and it is reduced to about 

 after �ltering. In the band from 1 mHz to 0.01 Hz, the PDS of the out-of-plane PAA

before �ltering is about  , and it is reduced to about    after

�ltering. In the frequency window 1 Hz-10 Hz, The AEKF’s noise PSD rejection ratio is about -3.9 dB near

1mHz, -48 dB near 0.01Hz, and close to -39 dB at 0.01Hz-10Hz.

1.51 × rad/10−4 Hz
−−−

√

4.69 × rad/10−5 Hz
−−−

√

3.76 × rad/10−6 Hz
−−−

√ 5.88 × rad/10−11 Hz
−−−

√
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Figure 9. PSD curves of the in-plane PAA between SC1 and SC2

Fig. 9(a) is the PSD curves of the in-plane PAA between SC1 and SC2 before �ltering and after �ltering.

Fig.  9(b) is the PSD curves of the in-plane PAA errors between SC1 and SC2 before �ltering and after

�ltering. Both Figures show that the AEKF effectively �lters high-frequency noise signals and low-

frequency noise between 1mHz and 10 Hz. The �ltering effect of the AKEF in the high-frequency band is

better than that at low frequency. In the band from 1mHz to 0.01Hz, the PSD of the in-plane PAA before

�ltering is about  , and it is reduced to about   after �ltering. In

the band from 0.01 Hz to 10 Hz, the PSD of the in-plane PAA before �ltering is about 

, and it is reduced to about    after �ltering. The noise PSD

rejection ratio of the AEKF is about -24.5dB near 1 mHz, -50.4dB near 0.01Hz, and close to -42dB at

0.01Hz-10Hz.

1.06 × rad/10−4 Hz
−−−

√ 3.57 × rad/10−7 Hz
−−−

√

3.76 × rad/10−6 Hz
−−−

√ 3.48 × rad/10−11 Hz
−−−

√
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Figure 10. Out-of-Plane PAA between SC1 and SC2 before �ltering and after �ltering.

Fig. 10 shows the time domain noise curve of the out-of-plane PAA between SC1 and SC2 before �ltering

and the curve after Kalman �ltering. This result re�ects the time domain performance of the AEKF. The

results show that the AEKF is ef�cient in noise suppression.

Figure 11. Out-of-plane PAA between SC1 and SC2 after �ltering.
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Figure 12. Prediction error of the out-of-plane PAA between SC1 and SC2.

Fig. 11 displays the AEKF result and the real values of the out-of-plane PAA between SC1 and SC2 variation

in one year. Fig. 12 shows the prediction error of the out-of-plane PAA between SC1 and SC2 after Kalman

�ltering in the time domain. During 100-180 days and 300-360 days, their relative motion is uniform,

and the Kalman �ltered out-of-plane PAA closely matches the actual situation. At this time, the noise

before �ltering is about 63  , and after Kalman �ltering, it reaches about 0.84 nrad. However, within

50-100 days and 180-300 days, there is a signi�cant variation in the out-of-plane PAA. Consequently, the

�lter error during these periods is relatively large, about 0.95 nrad. This is mainly due to the large

variation of relative velocity motion between two SCs.

Figure 13. In-plane PAA between SC1 and SC2 before �ltering and after �ltering .

μrad
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Fig. 13 displays the time domain noise curve of the in-plane PAA between SC1 and SC2 before �ltering an

after �ltering. The results in the time domain re�ect the noise reduction effect of the in-plane PAA under

the AEKF. Compared with the out-of-plane PAA, the variation range of the in-plane PAA is reduced and

the variation under the action of noise is evident. The in-plane PAA noise in the time domain shows a

decreasing trend in the range of 50-100 days and an increasing trend in the range of 100-200 days.

Figure 14. In-plane PAA between SC1 and SC2 after �ltering.

Fig. 14 shows the AEKF result and the real values of the in-plane PAA between SC1 and SC2 variation in

one year. Fig.  15 shows the prediction error of the in-plane PAA between SC1 and SC2 after Kalman

�ltering in the time domain. Compared with the out-of-plane PAA, the error variation of the in-plane PAA

is more evident after Kalman �ltering. Comparing the error before and after �ltering, it may be seen that

the AEKF algorithm can effectively suppress the in-plane PAA noise. The noise before �ltering is about

63  , while the pointing error after AEKF �ltering is less than 1 nrad.μrad
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VIII.1. Summary of the main results.

Parameters SC12 SC13 SC21 SC23 SC31 SC32

Observed PAA out/(rad) 6.987E-5 6.883E-5 6.916E-5 6.884E-5 6.812E-5 6.912E-5

Observed PAA in/(rad) 6.584E-5 6.413E-5 6.622E-5 6.418E-5 6.602E-5 6.512E-5

AEKF PAA out/(rad) 6.899E-6 6.905E-6 6.899E-6 6.893E-6 6.905E-6 6.892E-6

AEKF PAA in/(rad) 3.743E-8 3.967E-8 3.750E-8 4.112E-8 4.65E-8 4.531E-8

Ideal PAA out/(rad) 6.899E-6 6.905E-6 6.899E-6 6.892E-6 6.905E-6 6.892E-6

Ideal PAA in/(rad) 3.708E-8 6.633E-8 3.708E-8 4.483E-8 6.633E-8 4.483E-8

Table I. Dynamic range of the PAA.

We will give a recap of the main results at the end of this section. The dynamic range of PAA is dependent

on error in the precision orbit determination of SCs. When the position determination error of the SC is

20km and the velocity error is 2cm/s, the dynamic range of the out-of-plane PAA and the in-plane PAA is

about 63  . With AEKF inserted into the control loop, the dynamic range of the out-of-plane PAA is

approximately reduced to 6.9  , and the dynamic range of the in-plane PAA is approximately reduced

to 40 nrad. The result shows that the dynamic range of the PAA can be effectively reduced by AEKF even

in the presence of error in precision orbit determination.

Based on the analysis of the �ltering results in the frequency domain, the error of the in-plane PAA and

the out-of-plane PAA decreases signi�cantly at high-frequency ends. In the band from 0.01 Hz to 10 Hz,

the �ltering error signal is less than 1  . The �ltering effect of AEKF at low frequency is not as

good as that at high frequency.

μrad

μrad

nrad/ Hz
−−−

√

qeios.com doi.org/10.32388/VPP8SM 22

https://www.qeios.com/
https://doi.org/10.32388/VPP8SM


Parameters SC12 SC13 SC21 SC23 SC31 SC32

PAA-OUT/(nrad) 0.957 0.857 0.940 0.941 0.882 0.852

PAA-IN(nrad) 0.846 0.833 0.845 0.920 0.972 0.814

Table II. Prediction error of PAA in-plane and out-of-plane.

In our simulation, orbital dynamics and the update of the SC’s state of motion are input into the iterations

of the AEKF. Table II summarizes the results of the maximum prediction errors before and after �ltering

the in-plane PAA and the out-of-plane PAA between the two SCs. The results in Table I show that the

AEKF can effectively suppress the pointing noise of the PAA.

Parameters SC12 SC13 SC21 SC23 SC31 SC32

SSE 4.0985E-29 7.06114E-29 1.5231E-28 7.4431E-29 5.5912E-29 8.10921E-30

RMSE 1.7019E-16 2.23388E-16 3.28085E-16 2.2935E-16 1.98781E-16 7.57027E-17

R-square 1 1 1 1 1 1

adjusted R-square 1 1 1 1 1 1

Table III. Fitting result.

In our simulation, we conduct a �tting precision analysis on the discrete PAA values after �ltering

through the AEKF. The �tting accuracy can be evaluated using SSE, R-square, adjusted R-square, and Root

Mean Squared Error (RMSE). The �tting results are shown in Table III. Both R-square and adjusted R-

square are close to 1, SSE and RMSE are close to 0, indicating a good �t and that the �tting accuracy meets

our requirements.
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IX. Concluding remarks

In the present work, by exploiting the simple orbital structure of SC motion in the triangular

constellation, the feasibility of incorporating an AEKF in the PAAM is considered. The simulation results

show that the dynamic range of the PAAM may be drastically reduced. This will cut down on the TTL

coupling noise and the position noise budget allocated to the instrument. At the same time, the dynamic

range of the �ne pointing control is also reduced and leaves room for the improvement of accuracy for

the �ne pointing control. The position noise budget allocated to the pointing stability control may be

reduced as a whole.

Though our calculations look complicated as we try to spell out the details of the derivation, the actual

implementation of the Kalman �lter is very simple, From our �ight experience with the adaptive AEKF

for star sensors and, again, due to the simplicity of the orbital dynamics of the three SCs, we expect the

AEKF for PAAM will only consume a little computational resource on board. In our next step, we are

setting up a desktop experiment to verify the AEKF constructed here in a hardware setting. Further, we

are also considering the employment of the Kalman-�ltered PAAM to improve the capture time and

ef�ciency in the ATP phase. We hope to report further progress in this direction soon.

X. Appendices

In the main text, simulation results are presented only for a single arm out of the three arms in the

triangular constellation of SCs, as simulation results are almost identical for the the three arms. In this

appendix, for completeness, simulation results for all three arms are presented.
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Figure 16. Out-of-plane PAA after �ltering.

Figure 17. Prediction error of the out-of-plane PAA.
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Figure 18. In-plane PAA after �ltering.

Figure 19. Prediction error of the in-plane PAA.
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Figure 20. Out-of-plane PAA PSD curve before and after �ltering.

Figure 21. PSD curve of the out-of-plane PAA error before and after �ltering.
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Figure 22. In-plane PAA PSD curve before and after �ltering.

Figure 23. PSD curve of the in-plane PAA error before and after �ltering.
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