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This study derives the exact frequency observed for electromagnetic waves

emitted during uniform acceleration. In the classic case, the frequency

observed is typically calculated using the formula f = f0 (1+gH/c2), where ‘f0‘ is

relevant to the source and g represents the constant acceleration. At least in

Feynman’s Lectures, such a formula is derived directly as a �rst-order

approximation from the relativistic Doppler effect. Relativistic relations are

used to determine the exact light-time between the source and observer. It is

found that, if g represents the proper acceleration, the frequency ratio remains

the same as in the classic case (1+gH/c2). Being that value exact, no higher-

order relation exists from which it can be derived. The absence of higher-order

terms depends on a peculiar compensation of two relativistic effects.
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forward to the authors
1. Introduction

Feynman[1], following Einstein’s reasoning[2],

considered the EM waves emitted from an oscillator A

situated at the front of a rocket towards B at its rear,

while measuring an acceleration g.
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Fig.1. Rocket acceleration scenario with the observer in the rear, receiving EM waves.

In the scenario illustrated in Fig. 1, at constant

acceleration g, B gets closer to the position of emission

of the light emitted by A. The light-time is

approximated as H/c[1][2], which is the same as having a

source and an observer at rest.

An observer in motion within the reference frame of the

emitter experiences a longitudinal Doppler. If fA

represents the frequency of the emitted light at rest

with the source, and the velocity v is much less than the

speed of light (v<<c)[1][2], then the approximation fB/fA =

1 + v/c holds. By substituting v=g*H/c into the previous

equation, we obtain

fB/fA ≈ (1+gH/c2), a result derived by Feynman[1], as a

�rst-order approximation of the relativistic Doppler

effect:

By considering the simplest case of a stationary source

and observer in uniform acceleration, the light-time

connecting source and observer will be calculated using

the relativistic formulas. This calculation will lead to

the derivation of a general result for the frequency shift

of light for accelerated observers. Contrary to

Feynman’s assertion, the formula maintains the same

form as the classic one, with g representing the proper

acceleration. The derivation of the relevant results will

follow, including the case of the accelerated rocket. A

short discussion is presented afterwards.

2. Longitudinal Doppler in Uniform

Acceleration

Two clocks, C’ and C’’, are stationary at a distance H;

they are synchronized using Einstein’s synchronization

procedure. At time t0, observer B departs from the

position B (t0) with a constant acceleration g, while

simultaneously A emits a pulse of radiation. The

instantaneous speed v1 of B, in the inertial reference

frame of the source, is calculated at the time of

absorption t1, in position B(t1) as shown in the �gure

below, across the displacement S. This calculation

allows for the application of the tested formula of the

Relativistic Doppler effect.

≈ (1 + gH/ ).
(1 + )v

c

1 −   v2

c2

− −−−−−
√

c2
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Fig.2. Emission by a stationary source and absorption of a pulse by an accelerated observer

According to relativistic dynamics[3] the displacement S

of an accelerated body with proper acceleration g as a

function of the elapsed time t, starting with t0=0, is

given by the formula
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The light-time to reach B is ct1 = H – S. (2)

The speed[3]

is the value of the speed of B in the IRF of the source at

the instant t1 of absorption.

From (1) and (2), the following equation is obtained 

(see appendix part 1)

The elapsed time is found by solving for t1.

t1 =   =  … (≈    for gH <<

c2) (see Appendix Part 2) (4)

This is the light-time between the emission by the

stationary source and the absorption by the accelerated

observer, as measured by a stationary clock located at

that point. In the limit of small gH, the interval is well

approximated by H/c.

The difference in light-times compared to the classical

case is the following, from Eq. (4): Δtvar = t1 –   ≈ - 

That represents the variation of the light-time to

connect the source with an observer experiencing

constant acceleration g. As expected, when the observer

is moving towards the source (approaching the source),

the exact light-time is shorter than H/c, Δtvar < 0.

Conversely, if the acceleration has a negative value

(observer departing from the source), the time interval

becomes longer, with Δtvar > 0.

By replacing t1 from Eq(4) in Eq(3), we have (see

Appendix Part 3)

v1=    =    (≈ 

 for gH << c2) (5)

The �nal speed, approximated to the second order in

gH, is v1 ≈   =

If the direction of the speed v is towards the emitter

(when g > 0), the classic speed Vclassic is greater than v

(all positive). Consequently, the observer’s speed at the

event of the absorption is slightly lower than the

calculated classic value. However, if the observer

departs from the source (illustrated as v<0), the

magnitude of the speed increases more than in the

classic case. This results in light taking more time to

reach the observer compared to the classic scenario.

The Relativistic Doppler Effect formula gives fB/fA= 

, considering v=v1

The numerator (1+ v1 /c) can be expressed also as 

(see appendix part 4) (6)

The denominator 1/√(1-v1
2/c2) can also be expressed as 

, (7)

By multiplying Eq. (6) and Eq. (7) to �nd the Doppler

effect, the �nal result is

fB/fA = (1+gH/c2) (8)

To some surprise, the frequency ratio given by Eq. (8) is

identical to the classic formula and is exact, with g

representing the proper acceleration of the observer.

Additionally, the frequency shift Δf /f = gH/c2, often

found in electrodynamics, is exact.

When heading towards the light wave (g>0), the light-

time gets shorter than H/c, hence the speed reached is

reduced in comparison to v=gH/c: v1 ≈    <

gH/c.

In Eq. (6), the value (1+gH/c2) is multiplied by the

quantity (1+gH/c2) / [1+gH/c2+1/2(gH/c2)2] ≈ 1 –

(gH/c2)2/2, representing the higher-order contribution.

This effect causes a decrease in the blueshift detected

by the observer due to the lower �nal speed at the

moment of detection.

The decrease mentioned above is exactly counterbalanced

by the relativistic effects in Eq. (7), which are the

reciprocal of the previous term (a factor not considered

in the classic con�guration). This occurs because the

period of the absorber becomes longer due to its

velocity in the frame of the source. As a result, the

incoming radiation is observed with a greater blueshift

compared to the classic case. This leads to the

S  = − (≈ 1/2g  in the classic case)
c2

g
1 +( )

gt

c

2
− −−−−−−−−

√ c2

g
t2 (1)

  =   (≈ g  for  << c)v1
gt1

1 + ( )
gt1

c

2
− −−−−−−−−

√

t1 vB (3)

( + –    ) =    H
c

c
g
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c
g
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)2
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conclusion that distinct relativistic effects precisely

cancel each other out. The original formula of the

Doppler ratio in accelerated motion, derived classically,

turns out to be exact, at least for a stationary emitter,

when considering the proper acceleration of the

observer.

The obtained formulas rely exclusively on the relativity

of time and the experimentally tested relativistic

Doppler effect. Now let’s explore how to apply these

formulas to the con�guration of the accelerated rocket.

3. The Case of the Accelerated

Rocket

In the context of the accelerated rocket, the emission

also takes place within a non-inertial frame. It’s

important to highlight that the choice of an initial

speed v0=0 is a deliberate decision to prevent v0 from

appearing in the formula for the frequency shift. This

maintains the independence of the formula from the

initial speed v0. If the frequency shift measured

internally were to depend on the initial speed, it could

potentially allow one to deduce their speed from within

the system solely by measuring the frequency shift.

This scenario requires only the knowledge of the

acceleration g and distance H, without referring to

external observations or internal clock readings. From a

relativistic standpoint, as discussed in[4], if the observer

at the rear detects an acceleration g, the front clock

within the rocket will register a slightly different

acceleration. According to Special Relativity, the two

clocks will exhibit different proper accelerations due to

these factors.

It was reported by Feynman[1], starting from the

formula (1+ v/c) /√(1- v2/c2) “Assuming that the

acceleration and the length of the ship are small enough

that this velocity is much smaller than c, we can neglect the

term in v2/c2”. He derived the result as already

mentioned, considering that the �rst-order

approximation is (1+ v/c) where v<<c, hence his �rst-

order approximation of the Relativistic Doppler effect

(1+ v/c) /√(1- v2/c2) ≈ (1+gH/c2).

However, the outcome of the detailed calculations

results in (1+ v/c) /√(1- v2/c2) = (1+gH/c2). This implies

that the classic formula is exact when g represents the

proper acceleration. Consequently, it does not have any

higher-order formula.

The longitudinal Doppler effect in accelerated motion,

as derived classically, is indeed exact and cannot be

derived as a �rst-order approximation from a higher-

order formula. While the difference between the light-

times in inertial motion and acceleration experiences a

slight adjustment, its �rst-order approximation is Δtvar

≈ - ½ gH2/c3 = - ½ vH/c2, where v = gH/c.

4. Conclusions

The light-time required to connect an observer

undergoing uniform accelerated motion with constant

acceleration g and an emitter, initially separated by H, is

t1 =  . Being the light-time at rest H/c, the

difference with t1 is approximately |Δtvar |≈ |½ H/c

gH/c2 |, a tiny fraction of the light-time at rest, |Δtvar

|/(H/c) ≈ |½ gH/c2 |.

To some surprise, the Doppler effect, with a source at

frequency f0, set at a distance H from an observer

measuring acceleration g, is exactly the ratio f/f0 =

(1+gH/c2) or Δf /f0 = gH/c2. It is the same as in the

classic case, with g as the proper acceleration. That

formula is valid also in an accelerated rocket. Feynman

incorrectly considered it derivable as a �rst-order

approximation from the Relativistic Doppler formula.

In the scenario of blueshift, when the observer is

moving towards the source, the observer's oscillator

would register, due solely to its speed, that the

incoming radiation exhibits a reduced blueshift

compared to the classic case. Conversely, relativistic

effects lead to an increase in the proper period of the

observer's oscillator, resulting in a more pronounced

blueshift in the detected incoming radiation. What's

particularly intriguing is the observation that these two

effects are reciprocals of each other and thus cancel

each other out, resulting in no net effect on the

observed blueshift.

These �ndings have implications for understanding

wave propagation in accelerating frames, with potential

applications in astrophysics and relativistic mechanics.

Appendix

�. From the �rst equation c t = H – S, replace S with

the Eq. (1)

ct = H – (c2/g √(1+(g t/c)2) -c2/g);

c t - H - c2/g = – (c2/g √(1+(g t/c) 2),

(H/c + c/g - t)= c/g √(1+(gt/c)2)

�. Find t1 by solving the previous equation,

by setting k=c/g,

(H/c + k - t1) = k √(1+(t1 /k)2) by solving in t1 (with

H
c

(1+ )
gH

2c2

1+
gH

c2
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Wolfram Alpha)

t1 = H/c (H/c+2 c/g) / 2(H/c + c/g), by multiplying

and dividing by (g/c)

t1 = [H/c (g/c) (H/c+2 c/g)] / [2(H/c + c/g)(g/c)] = [H/c

(gH/c2 +2)]/[2(gH/c2+1)]

t1 = H/c (1+gH/2c2)/(1+ gH/c2)

�. Calculate v = gt/√(1+(gt/c)2) replacing t1 (as

function g, H, c)

By replacing t = t1 as found in the previous, set k=

gH/c2; (with Wolfram Alpha)

(1+(g t/c) 2) = 1+ g2/c2 (H/c (1+k/2)/(1+ k)) 2 =1+ g2/c2

H2/c2 (1+k/2) 2/(1+ k) 2 = 1+ [(gH/c2)2 (1+k/2) 2/(1+ k)
2]; 1+ [k2 (1+k/2) 2/(1+ k) 2] =[(1+ k) 2 +k2 (1+k/2)
2]/(1+ k) 2 =1/2 [(k2 +2k+2) / (k+1)] 2;

√(1+(g t/c)2) = (k2 +2k+2) /2(k+1) ; 1/√(1+(g t/c)2) =

2(k+1)/ (k2 +2k+2)

v = g t [2(k+1)/ (k2 +2k+2)] = gH/c [(1+k/2)/(1+ k)]

[2(k+1)/ (k2 +2k+2)] = 2 gH/c (1+k/2)/ (k2 +2k+2)

replacing back k= gH/c2,

v= gH/c (1+gH/2c2)/(1/2(gH/c2)2 +gH/c2+1)

�. Find fB/fA= (1+ v /c) /√(1-v2/c2), replacing v (as

function g, H, c)

Setting k= gH/c2, from the previous calculations

considering v (instead of v1)

v /c = 2 gH/c2 (1+k/2)/ (k2 +2k+2) = 2 k (1+k/2)/ (k2

+2k+2)

from the previous

(1+ v/c) = 1 + 2 k (1+k/2)/ (k2 +2k+2) = [(k2 +2k+2) +2

k (1+k/2)]/ (k2 +2k+2) = (2k2 +4k+2)/ (k2 +2k+2) =

= 2(k2 +2k+1)/(k2 + 2k+2)

And

v2/c2) = 1- [2k(1+k/2)/ (k2 +2k+2)]2 = [(k2 +2k+2) 2-

(2k(1+k/2)) 2]/ (k2 +2k+2) 2 =

[(k2 +2k+2) 2- (2k+k2) 2]/ (k2 +2k+2) 2 = 4(k+1) 2

/(k2 +2k+2) 2

hence

√(1- v2/c2) = 2(k+1) /(k2 +2k+2)

Final result

(1+ v/c) /√(1- v2/c2) = 2(k2 +2k+1)/ [2(k+1)] = (k+1) =

(1+ gH/c2)
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