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The aim of this article is to introduce into quantum field theory, Zn × Zn
graded quantum stochastic calculus with the aim of generalizing supersymmetric
quantum stochastic calculus to situations where rather than just two kinds of
particles, Bosons and Fermions, we can have particles of n2 kinds graded by
Zn×Zn rather than by Z2. Following the suggestions at the end of the book [1]
by Timothy Eyre, we introduce the Zn×Zn graded tensor product by means of
a bi-character constructed from a primitive nth root of unity and then proceed
to grade both system and noise operators in Boson Fock space. This enables
us to construct consistent Lie algebra supercommutation relations graded by
Zn × Zn for appropriately defined graded quantum stochastic processes. Using
the Zn×Zn graded quantum noise for driving the Hudson-Parthasarathy noisy
Schrodinger equation combined with an appropriate non-demolition counting
measurement process, we formulate the problem of Zn × Zn graded quantum
filtering as a generalization of the Belavkin filter. After that, we discuss how to
construct Bosonic quantum noise out of these graded quantum noise processes
by tensoring with appropriately graded system operators and then how to add
such noise to Bosonic field theories including quantum gravity. We also discuss
quantum noise in string theories and a little bit of string field theories wherein
the action for the string field is chosen based on the BRST charge quantization
process that defines the condition for a state to be physical in the absence
of ghosts. The addition of higher degree terms in the string field action is
then based on the condition that the action should satisfy the quantum master
equation for invariance of the matrix elements under the choice of the gauge
fixing functional. We suggest methods by which quantum noise fields can also
be taken into account in string field theories. The entire aim of adding quantum
noise to a quantum field theory is motivated by the fact that the resulting
noisy Hamiltonian should describe a Hudson-Parthasarathy noisy Schrodinger
equation with unitary evolution on the joint System-Bath Hilbert space so that
after tracing out over the bath, one obtains a quantum dynamical semigroup
of TPCP maps describing system evolution alone for open quantum systems.
For noisy quantum field theories, finally, we explain how to compute propagator
corrections caused by noise.

0.1 Zn×Zn graded quantum stochastic differen-
tial equations and filtering

In what follows, we first define a Zn ×Zn graded tensor product, then describe
how to formulate Zn × Zn graded quantum stochastic processes in Boson Fock
space in such a way that these processes satisfy Zn × Zn graded Lie algebra
super commutation relations and then using such noisy processes, we introduce
a generalized form of quantum nojsy field theory by describing the resulting
dynamics in terms of quantum stochastic differential equations in the sense of
Hudson and Parthasarathy. We then explain how the Belavkin quantum filter
can be generalized to such processes, i.e., we outline a method for constructing
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a Zn ×Zn graded quantum filter using the classic reference probability method
of John Gough and Kostler. After that, we explain how to add Zn×Zn graded
noise into quantum field theories described by Lagrangian and Hamiltonian
densities which enable us to express the field equations as quantum stochastic
partial differential equations as noisy Heisenberg matrix mechanics.

0.2 Zn × Zn graded tensor product

Let z be a primitive nth root of unity and define

ω(a, b) = za1b2−a2b1 , a = (a1, a2), b = (b1, b2)−−− (1)

Given the standard matrix n2 × n2 E(a, b) that is one at entry (a, b) and zero
otherwise, define its Zn × Zn grading as (a1 − b1modn, a2 − b2modn) where
0 ≤ a, b ≤ n2 − 1 and a = na1 + a2, b = nb1 + b2 with 0 ≤ a1, a2, b1, b2 ≤ n− 1.
Now consider a Zn × Zn graded Hilbert space H expressed as a direct sum

H =
⊕

a1,a2∈Zn

Ha1,a2 =
⊕

a∈Zn×Zn

Ha −−− (2)

We write

σ(E(a, b)) = (a1 − b1, a2 − b2)modn ∈ Zn × Zn −−− (3)

Let Pa1,a2 = Pa, a = (a1, a2) denote the projection of H onto Ha1,a2 for a1, a2 ∈
Zn = {0, 1, ..., n− 1}. Thus, we have

PaPb = Paδ(a, b), a, b ∈ Zn × Zn −−− (4)

and of course, ∑
a∈A

Pa = 1−−− (5)

where we are using the notation

A = Zn × Zn −−− (6)

Note that although A and Zn2 are both Abelian groups of the same size n2, they
are not isomorphic because writing a = na1 + a2, b = nb1 + b2 with a, b ∈ Zn2 ,
we can write a + b = n(a1 + b1) + a2 + b2 and hence a+b mod n2 = n(a1 +
b1modn)+a2+b2 but we cannot replace in this expression a2+b2 by a2+b2modn
because we are considering modn2. Another way to see this is to compute the
irreducible (one-dimensional) characters of these groups and show that they are
not the same. Now take n2 × n2 matrices A,B and assuming

σ(A) = (a1, a2), σ(B) = (b1, b2)−−− (7)
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as above, i.e., if A = E(α, β) where α = np1 + p2, β = nq1 + q2, then a1 =
p1 − q1, a2 = p2 − q2, both mod n. We have the bicharacter

ω(σ(A), σ(B)) = za1b2−a2b1 −−− (8)

Assume that we have defined a linear map A → ΛA from the linear space of
n2 × n2 matrices into the space of quantum stochastic processes. Consider now
the supercommutator

[ΛA,ΛB ]ω = ΛA.ΛB − ω(σ(A), σ(B))ΛB .ΛA −−− (9)

We grade these quantum stochastic operator processes as

σ(ΛA) = σ(A) ∈ A = Zn × Zn −−− (10)

In order to get Lie superalgebra commutation relations, we wish that quadratic
terms in quantum stochastic processes disappear when we compute the differen-
tial of this supercommutator. In other words, we should obtain only quadratic
terms in the quantum stochastic differentials since such terms, by quantum Ito’s
formula, can be expressed again as quantum stochastic differentials. To this end,
we observe that

d[ΛA,ΛB ]ω = ΛA ⊗ dΛB + ω(σ(A), σ(B))ΛB ⊗ dΛA + 1⊗ dΛA.dΛB

−ω(σ(A), σ(B))(ΛB⊗dΛA+ω(σ(B), σ(A))ΛA⊗dΛB+1⊗dΛB .dΛA)−−−(11)

Now observing that

ω(σ(A), σ(B))ω(σ(B), σ(A)) = ω((a1, a2), (b1, b2)).ω((b1, b2), (a1, a2)) = za1b2−a2b1 .zb1a2−b2a1 = 1−−−(12)

and making cancellations, we get the formula required for the Zn×Zn-supercommutator
of a quantum stochastic process to define super-Lie algebra commutation rela-
tions:

d[ΛA,ΛB ]ω = 1⊗ dΛA.dΛB − ω(σ(A), σ(B)).1⊗ dΛB .dΛA

= 1⊗ (dΛA.δ.B − ω(σ(A), σ(B))dΛB.δ.A

= 1⊗ dΛA.δ.B−ω(σ(A),σ(B))B.δ.A = 1⊗ dΛ[A,B]δ,ω −−− (13)

with the obvious notation based on the Hudson-Parthasarathy quantum stochas-
tic calculus:

[A,B]δ,ω = A.δ.B − ω(σ(A), σ(B))B.δ.A−−− (14)

Now let X be an operator in H. We define X(a1,a2) (a1, a2 ∈ Zn) to be that com-
ponent of X that maps Hb1,b2 into Hb1−a1,b2−a2 for all b1, b2 ∈ Zn. To see that
such a decomposition is indeed possible is unique and that

∑
a1,a2∈Zn

X(a1,a2) =
X, we note that

X =
∑

a,b∈Zn×Zn

PaXPb =
∑
c

∑
a,b:b−a=c

PaXPb =
∑

c∈Zn×Zn

Xc −−− (15)
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where

Xc =
∑
b−a=c

PaXPb =
∑
b

Pb−cXPb, c ∈ Zn × Zn −−− (16)

where all summation indices range over Zn × Zn. It is clear that∑
c

Xc =
∑

b,c∈Zn×Zn

Pb−cXPb =
∑

a,b∈Zn×Zn

PaXPb = X −−− (17)

Note that when we write b− c, we actually mean (b1 − c1modn, b2 − c2modn) ∈
Zn × Zn where b = (b1, b2), c = (c1, c2) ∈ Zn × Zn. Also note that Xc maps Ha

into Ha−c because

XcPa =
∑
b

Pb−cXPbPa = Pa−cXPa −−− (18)

since PbPa = δ(b, a)Pa for all a, b ∈ Zn × Zn.
The uniqueness of this decomposition is proved as follows. Suppose X =∑
c X̃c where X̃c maps Hb into Hb−c for each b, c ∈ Zn × Zn. Then, X̃cPb =

Pb−cX̃cPb for all b, c. and hence

XPb =
∑
c

X̃cPb =
∑
c

Pb−cX̃cPb −−− (19)

from which it follows that

Pb−cXPb = Pb−cX̃cPb∀b, c−−− (20)

Also since by hypothesis, X̃c maps Hb into Hb−c for each b, it follows that

PaX̃cPb = 0, a ̸= b− c−−− (21)

Thus, we get

Pb−cXPb = Pb−cX̃cPb =
∑
a

PaX̃cPb = X̃cPb −−− (22)

Summing this equation over all b, then gives us the desired uniqueness result:

Xc =
∑
b

Pb−cXPb =
∑
b

X̃cPb = X̃c −−− (23)

Now define the operators

θa =
∑

b∈Zn×Zn

ω(a, b)Pb, a ∈ Zn × Zn −−− (24)
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This is the same as saying that

θa1,a2 =
∑

b1,b2∈Zn

za1b2−a2b1Pb1,b2 .−−− (25)

Now for two operators X,Y in H, define their graded tensor product as

X ⊗g Y =
∑
a

Xa ⊗ θaY −−− (26)

where the sum is over all a = (a1, a2) ∈ Zn × Zn. Then, we get

(X ⊗g Y ).(U ⊗g V ) =
∑
a,b

(Xa ⊗ θaY ).(Ub ⊗ θbV )

=
∑
a,b

(XaUb ⊗ θaY θbV ) =
∑
a,b,c

(XaUb ⊗ θaYcθbV )−−− (27)

Now,

θaYcθb =
∑
d,f

ω(a, d)ω(b, f)PdYcPf =
∑
d,f

ω(a, d)ω(b, f)δ(f − c, d)PdYcPf

=
∑
f

ω(a, f − c)ω(b, f)Pf−cYcPf −−− (28)

Now observing that

Pf−cYcPe = 0, e ̸= f −−− (29)

since Yc maps He into He−c for each e, it follows that

Pf−cYcPf =
∑
e

Pf−cYcPe = Pf−cYc −−− (30)

and thus we get

θaYcθb =
∑
f

ω(a, f − c)ω(b, f)Pf−cYc =
∑
f

ω(a, f)ω(b, f + c)PfYc −−− (31)

Note that all summations are taken over the Abelian group Zn × Zn. Now
observe that

ω(a, f)ω(b, f+c) = za1f2−a2f1+b1(f2+c2)−b2(f1+c1) = z(a1+b1)f2−(a2+b2)f1 .zb1c2−b2c1

= ω(a+ b, f)ω(b, c)−−− (32)

This could also be seen from the bicharacter property of ω:

ω(a, f)ω(b, f + c) = ω(a, f)ω(b, f)ω(b, c) = ω(a+ b, f)ω(b, c)−−− (33)
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Thus, we get

θaYcθb = ω(b, c)
∑
f

ω(a+ b, f)PfYc = ω(b, c)θa+bYc −−− (34)

Summing over c, we get

θaY θb = θa+b.
∑
c

ω(b, c)Yc −−− (35)

Combining these results, we get

(X ⊗g Y ).(U ⊗g V )

=
∑
a,b,c

(XaUb ⊗ θaYcθbV ) =

∑
a,b,c

ω(b, c)(XaUb ⊗ θa+bYcV )−−− (36)

In particular, when Y = Yc, U = Ub for fixed b, c we get

(X ⊗g Y ).(U ⊗g V ) = (X ⊗g Yc).(Ub ⊗g V ) = ω(b, c)
∑
a

XaUb ⊗ θa+bYcV

= ω(b, c)
∑
d

(XU)d ⊗ θdY V = ω(b, c)XU ⊗g Y V −−− (37)

which is the desired formula to be satisfied by the Zn×Zn graded tensor product.

0.3 Zn×Zn graded quantum stochastic processes
with Zn×Zn graded Lie algebra commutation
relations

For a = (a1, a2), b = (b1, b2) ∈ Zn × Zn, define

ϕ(a, b) = a1b2 − a2b1 −−− (38)

Thus,
ω(a, b) = zϕ(a,b), z = exp(2πi/n)−−− (39)

Let us also use the notation a for na1 + a2 and likewise b for nb1 + b2. This is
justified because any element a of Zn2 = {0, 1, ..., n2 − 1} can be expressed in a
unique way as na1 + a2 where a1, a2 ∈ Zn = {0, 1, ..., n− 1}. Thus by a we can
mean either the element (a1, a2) of Zn×Zn or else the element na1+a2 of Zn2 .

Let now ≱ab with a, b = 0, 1, ..., n2 − 1 or equivalently a, b ∈ Zn × Zn denote
the generalized quantum noise processes of the Hudson-Parthasarathy quantum
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stochastic calculus acting in the Boson Fock space Γs(L
2(R+) ⊗ Cn2

). They
satisfy the quantum Ito formula

dΛab .dΛ
c
d = ϵaddΛ

c
b −−− (40)

We now introduce the grading operators in this Boson Fock space:

G(t, a) = exp((2πi/n).
∑
b

ϕ(b, a)Λbb(t))−−− (41)

where
ϕ(b, a) = b1a2 − b2a1

As usual, it is understood that a, b are elements of either Zn×Zn or equivalently,
of Zn2 . Note that we can equivalently write since

ω(b, a) = zb1a2−b2a1 , z = exp(2πi/n)−−− (42)

G(t, a) = Πbω(b, a)
Λb

b(t) = exp(
∑
n

ln(ω(b, a))Λbb(t))−−− (43)

Remark: The grading operator G(t, a− b) is the analogue of

G(t)σ(a,b) = (−1)σ(a,b)
∑

c σ(c)Λ
c
c)(t)

= (−1)σ(a,b)Λt(H) = exp(iπ.σ(a, b)Λt(H)) = Γ(exp(iπHt))
σ(a,b) = Γ(Kt)

σ(a,b)

in Z2 graded quantum stochastic calculus. Here,

σ(a) = 0, a = 1, ..., r, σ(a) = 1, a = r + 1, r + 2, ..., N

and
σ(a, b) = σ(a) + σ(b),

H = diag[σ(a), a = 1, 2, ..., N ], Ht = H.χ[0,t],

K = exp(iπH) = diag[Ir,−IN−r]

and
Kt = exp(iπHt) = K.χ[0,t] + I.χ(t,∞)

This grading operator has the important property

G(t)σ(a,b).dΛcd(s)G(t)
σ(a,b) = (−1)σ(a,b)σ(c,d).dΛcd(s), s < t

Now, coming back to the Zn × Zn situation, we find that for s < t,

< e(u)|G(t, a− b)∗dΛcd(s).G(t, a− b)|e(v) >

=< G(t, a−b)e(u)|dΛcd(s)|G(t, a−b)e(v) >= exp((2π/n)iϕ(c, a−b)−ϕ(d, a−b))vc(s)ūd(s)ds−−−(44)
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and therefore,

G(t, a−b)∗dΛcd(s).G(t, a−b) = exp(2πiϕ(c−d, a−b))/n)dΛcd(s) = zϕ(c−d,a−b)dΛcd(s) = ω(c−d, a−b)dΛcd(s)−−−(45)

This suggests that we should define the grading of dΛcd(s) as

σ(dΛcd(s)) = c− d = (c1 − d1, c2 − d2)−−− (46)

The above formula can be expressed in elegant notation as

G(t, σ(A))∗.dΛs(B).G(t, σ(A)) = ω(σ(B), σ(A))dΛs(B)−−−−(47)

Remark: The grading of Eab is σ(Eab ) = a− b where a− b = (a1− b1, a2− b2)
with a = (a1, a2), b = (b1, b2).

The precise meaning of this equation is obtained by taking

G(t, σ(A)) = G(t, a− b), A = Eab −−− (48)

and
dΛs(B) =

∑
a,b

Bab .dΛ
a
b (s), B =

∑
a,b

BabE
a
b −−− (49)

and

ω(σ(B), σ(A))dΛs(B) =
∑
c,d

Bcd.ω(σ(E
c
d), σ(A))dΛs(E

c
d) =

∑
c,d

Bcdω(c−d, a−b)dΛcd(s)−−−(50)

Since G(t, σ(A)) is a unitary operator, we can equivalently write

dΛs(B).G(t, σ(A)) = ω(σ(B), σ(A))G(t, σ(A))dΛs(B), s < t−−− (51)

Of course, we are assuming here that A = Eab for some a, b ∈ Zn × Zn. Then,
define the quantum stochastic process

ξt(B) =

∫ t

0

G(s, σ(B))dΛs(B), B = Eab −−− (52)

or more precisely,

dξab (t) = G(t, a− b)dΛab (t)−−− (53)

Then consider for s < t,

dξs(A).dξt(B) = G(s, σ(A))dΛs(A).G(t, σ(B))dΛt(B) =

ω(σ(A), σ(B))G(s, σ(A)).G(t, σ(B)).dΛs(A)dΛt(B)−−− (54)
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Note that for any A,B and any s, t G(s, σ(A)) commutes with G(t, σ(B)) be-

cause G(t, σ(B)) is a function of
∑
f ϕ(f a− b)Λff (t) where σ(B) = a− b while

G(s, σ(A)) is a function of
∑
f ϕ(f, c− d)Λff (s) and we have

[dΛff (t), dΛ
g
g(s)] = 0, s < t−−− (55)

while
[dΛff (s), dΛ

g
g(s)] = ϵfg .dΛ

g
f (s)− ϵgf .dΛ

f
g (s) = 0−−− (56)

since ϵfg is one for f = g ≥ 1 and zero otherwise. Thus, using

ω(σ(B), σ(A)).ω(σ(A), σ(B)) = 1−−− (57)

we get

dξs(A).dξt(B)− ω(σ(A), σ(B)).dξt(B).dξs(A) = 0, s < t−−− (58)

which is the desired supercommutation relation that we are looking for. Further,

dξs(A).dξs(B) = G(s, σ(A)).dΛs(A).G(s, σ(B)).dΛs(B)

= G(s, σ(A))G(s, σ(B)).dΛs(A).dΛs(B)

= G(s, σ(B)).G(s, σ(A)).dΛs(A).dΛs(B)

= G(s, σ(A) + σ(B)).dΛs(A).dΛs(B)−−− (59)

since

exp((2πi/n)
∑
c

ϕ(c, σ(A))Λcc(s)).exp((2πi/n).
∑
c

ϕ(c, σ(B)).Λcc(s))

= exp((2πi/n)
∑
c

ϕ(c, σ(A) + σ(B))Λcc(s))−−− (60)

Therefore, we find

[dξs(A), dξs(B)]ω = dξs(A).dξs(B)− ω(σ(A), σ(B)).dξs(B).dξs(A) =

= G(s, σ(A)+σ(B))[dΛs(A).dΛs(B)−ω(σ(A), σ(B)).dΛs(B).dΛs(A)]−−−(61)

Now observing that by the quantum Ito formula,

dΛab (s).dΛ
c
d(s) = ϵad.dΛ

c
b(s)

we can write by noting that A = AabE
b
a (The Einstein summation over the

repeated indices a, b being implied),

dΛs(A).dΛs(B) = AbaB
d
c ϵ
a
ddΛ

c
b(s) = (Aϵ.B)bcdΛ

c
b(s) = dΛs(Aϵ.B)−−− (62)

so we get
[dξs(A), dξs(B)]ω
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= G(s, σ(A) + σ(B))dΛs([A,B]ϵ,ω) = dξs([A,B]ϵ,ω)−−− (63)

because
σ(AϵB) = σ(A) + σ(B)−−− (64)

Note that

[A,B]ϵ,ω = A.ϵ.B − ω(σ(A), σ(B))B.ϵ.A−−− (65)

Remark: More precisely, we have the following:

[dξab (s), dξ
c
d(s)]ω = G(s, a−b).G(s, c−d).dΛab (s).dΛcd(s)−ω(a−b, c−d)G(s, c−d).G(s, a−b)dΛcd(s).dΛab (s)

= G(s, a− b+ c− d)[ϵaddΛ
c
b(s)− ω(a− b, c− d)G(s, a− b+ c− d)ϵcbdΛ

a
d(s)]

= G(s, c− b)ϵaddΛ
c
b(s)− ω(a− b, c− d)G(s, a− d)ϵcbdΛ

a
d(s)−−− (66)

So that writing
A = AbaE

a
b , B = BdcE

c
d,

we get

[dξs(A), dξs(B)]ω = Abaϵ
a
dB

d
cG(s, c−b)dΛcb−ω(a−b, c−d)Bdc ϵcbAbaG(s, a−d)dΛad(s)

= Abaϵ
a
dB

d
c dξ

c
b − ω(a− b, c− d)Bdc ϵ

c
bA

b
adξ

a
d(s)

= dξs(Aϵ.B − ω(σ(A), σ(B))Bϵ.A)−−− (67)

Combining these facts, we obtain the following quantum stochastic Lie al-
gebra representation of Zn × Zn graded matrix Lie algebras:

[ξs(A), ξt(B)]ω = ξs(A)ξt(B)− ω(σ(A), σ(B))ξt(B).ξs(A) =

ξmin(s,t)(AϵB − ω(σ(A), σ(B))Bϵ.A)−−− (68)

Now consider the following quantum stochastic differential equation:

dU(t) = (Lab ⊗g dξba(t))U(t)−−− (69)

where Lab has the grading

σ(Lab ) = a− b−−− (70)

Note that ξba has the grading b− a so Lab ⊗ dξba has the grading zero as it should
be since U(t) to be unitary must have the grading zero because U(t) and U(t)∗

are required to have the same grading and I = U(t)∗U(t) has the grading zero.
Of course, we could more generally require that U(t) maps Ha into Ha−c so
that U(t) has the grading c and then U(t)∗ will map Ha−c into Ha which would
imply that U(t)∗ has the grading −c and then I = U(t)∗U(t) will have the
grading −c + c = 0 as required. With this understanding, we are free to toy
with the idea that Lab has an arbitrary grade. However, it is absurd to think
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that a unitary operator does not have zero grade because such an operator is the
exponential of i times a Hermitian operator and a Hermitian operator H must
necessarily have zero grade because H∗ = H and so if H maps Ha to Ha−c,
then H = H∗ will map Ha to Ha+c which means that c = 0. So for consistency
of analysis, we shall assume that σ(Lab ) = a− b and proceed. Note that we are
using the graded tensor product between the system and noise operators. If A
is a system operator and B a noise operator, then we have

(A⊗g B)∗ = (
∑
a

(Aa ⊗ θaB))∗ =
∑
a

A∗
a ⊗B∗θ∗a −−− (71)

where we recall that

θa =
∑
b

ω(a, b)Pb, ω = za1b2−a2b1 , z = exp(2πi/n)−−− (72)

so that
θ∗a =

∑
b

ω(−a, b)Pb = θ−a −−− (73)

Also note that
σ(Aa) = a, σ(A∗

a) = −a−−− (74)

because Aa maps Hb into Hb−a and hence A∗
a maps Hb−a into Ha. Thus, we

get

(A⊗gB)∗ =
∑
a

A∗
a⊗B∗θ−a =

∑
a

(A∗)−a⊗B∗θ−a =
∑
a

(A∗)a⊗B∗θa−−−(75)

Now observe that

A⊗g B =
∑
a

(Aa ⊗ I).(I ⊗ θaB) =
∑
a

(I ⊗ θaB).(Aa ⊗ I)−−− (76)

and hence,

(A⊗g B)∗ =
∑
a

(Aa ⊗ I)∗(I ⊗ θaB)∗ −−− (77)

Suppose for definiteness,

σ(A) = a, σ(B) = b−−− (78)

Then,
A⊗g B = A⊗ θaB −−− (79)

(A⊗g B)∗ = A∗ ⊗ (θaB)∗ = A∗ ⊗B∗θ−a −−− (80)

Now recall the formula

θaYcθb = ω(b, c)θa+bYc −−− (81)
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for any operator Y , which gives in particular,

θaθb = θa+b −−− (82)

In particular,
θaθ−a = θ0 = I −−− (83)

since ω(0, b) = 1∀b. Note that I has the grading zero, i.e., σ(I) = (0, 0). Then,
since σ(A∗) = −a, σ(B∗) = −b, it follows that

B∗θ−a = θ−aθaB
∗θ−a = θ−a.ω(−a,−b)B∗ = ω(a, b)θ−aB

∗ −−− (84)

so that

(A⊗g B)∗ = ω(a, b)A∗ ⊗ θ−aB
∗ = ω(a, b)A∗ ⊗g B∗ −−− (85)

This is a fundamental formula. Another way to see this is:

(A⊗g B)∗ = ((A⊗g I)(I ⊗g B))∗ = (I ⊗g B)∗(A⊗g I)∗ −−− (86)

But,
(A⊗g I)∗ = (A⊗g θa)∗ = A∗ ⊗ θ−a = A∗ ⊗g I,

(I ⊗g B)∗ = (I ⊗B)∗ = I ⊗B∗ = I ⊗g B∗

Combining these,

(A⊗g B)∗ = (I ⊗g B∗).(A∗ ⊗g I) = ω(σ(B∗), σ(A∗))A∗ ⊗g B∗

= ω(−b,−a)A∗ ⊗g B∗ = ω(b, a)A∗ ⊗g B∗ −−− (87)

0.4 Zn×Zn graded quantum stochastic Belavkin
filter

Now, let X be a system operator of definite grade and consider the quantum
stochastic differential equation

dU(t) = (Lab ⊗ dξba(t))U(t)−−− (88)

where it is assumed that the tensor product ⊗ is the graded tensor product ⊗g,
so that we avoid writing the subscript g at each tensor product. The system
operators Lab are chosen so that U(t) is unitary for all t. Using quantum Ito’s
formula in the form

d(U∗U) = dU∗.U + U∗.dU + dU∗.dU −−− (89)
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we see that the condition for this to vanish so that U is a unitary evolution is
that

(Lab )
∗ + Lba + (Ldb)

∗ϵdcL
c
a = 0−−− (90)

with summation over the repeated indices c, d being implied. In shorthand
notation, this equation is the same as

L∗ + L+ L∗ϵ.L = 0−−− (91)

where L is the ”block operator” ((Lab ))0≤a,b≤n2−1. We assume that

σ(Lab ) = a− b, σ(dξba) = b− a−−− (92)

so
σ(Lab ⊗ dξba) = 0−−− (93)

Then, according to the above discussion,

(Lab⊗dξba)∗ = ω(σ(Lab ), σ(dξ
b
a))(L

a
b )

∗⊗dξab ) = ω(a−b, b−a).()(Lab )∗⊗dξab ) = (Lab )
∗⊗dξab−−−(94)

since

(dξab (t))
∗ = (G(t, a− b)dΛab (t))

∗ = G(t, b− a)dΛba(t) = dξba(t)−−− (95)

Note that

G(t, a)∗ = G(t,−a) = G(t, a)−1, a ∈ Zn × Zn −−− (96)

X being a system operator of definite grade, we have

jt(X) = U(t)∗XU(t), t ≥ 0−−− (97)

We shall now derive a formula for djt(X) which can be termed as a Zn × Zn
graded version of the Evans-Hudson flow describing noisy Heisenberg evolution
of a system observable in the context of the ungraded Hudson-Parthasarathy
noisy Schrodinger equation. Such a graded Evans-Hudson flow can then be
used to derive a Zn × Zn graded version of the Belavkin quantum filter. Note
that in [Harish Parthasarathy, Qeios], we have already derived a Z2-graded, i.e.
supersymmetric version of the Belavkin quantum filter.

Quantum Ito’s formula gives

djt(X) = dU(t)∗XU(t) + U(t)∗XdU(t) + dU(t)∗XdU(t)

= jt(((L
a
b )

∗⊗dξab (t)∗)(X⊗1)+(X⊗1).(Lab )⊗dξba(t))+(Lab )
∗⊗dξab (t)).(X⊗1).(Lcd⊗dξdc (t)))

= ω(b− a, σ(X))jt((L
a
b )

∗X.G(t, b− a))dΛba(t)+

jt(XL
a
bG(t, b−a))dΛba(t)+ω(a−b, σ(X))jt((L

a
b )

∗XLcd.G(t, a−b+d−c))dΛab (t).dΛdc(t)−−−(98)

Now consider the input measurement process

Yi(t) = c(a)ξaa(t) = c(a)Λaa(t)−−− (99)
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with c(a)′s being some real constants and the sum over all a ∈ Zn2 being
implied. This process forms an Abelian family of operators in the Boson Fock
space Γs(L

2(R+)⊗ Cn2

). We form the output measurement process

Yo(t) = U(t)∗Yi(t)U(t)−−− (100)

Now observing that for T ≥ t, dξab (T ) = G(T, a − b)dΛab (T ) commutes with
Λcc(t) because both G(T, a− b) and dΛab (T ) commute with Λcc(t), it follows that

Yo(t) = U(T )∗Yi(t)U(T ), T ≥ t−−− (101)

It follows that for any system observable X, since X commutes with Yi(t), that
jT (X) = U(T )∗XU(T ) will commute with Yo(t) for any T ≥ t. Note that Yi(t)
can be regarded as a weighted sum of the number counts up to time t of the
particles of different types of grade (A Zn ×Zn generalization of the Z2 Boson-
Fermion counting process). It also follows that since Yi(.) forms and Abelian
family and U(T ) is unitary that Yo(t) = U(T )∗Yi(t)U(T ), 0 ≤ t ≤ T forms an
Abelian family for any T ≥ 0. In other words, for all t ≥ 0,

ηo(t) = σ(Yo(s) : s ≤ t)−−− (102)

is an Abelian Von-Neumann algebra. Since further X.G(t, a−b) commutes with
Yi(s), s ≤ t for any system operator X, because Λcc(s) commutes with Λdd(t) for
any s, t, c, d, it follows that jt(X.G(t, a− b)) = U(t)∗XG(t, a− b)U(t) commutes
with Yo(s) = U(t)∗Yi(s)U(t), s ≤ t and hence

πt,a−b(X) = E(jt(X.G(t, a− b))|ηo(t)), X ∈ L(⟨)−−− (103)

is defined for all t ≥ 0, a, b ∈ Zn2 . Since ηo(t) is an Abelian algebra, it follows
that πt,a−b(X), t ≥ 0 is Abelian family adapted to ηo(.) and we can assume
therefore in view of quantum Ito’s formula for the quantum Poisson processes
Λcc(t) that

dπt,a−b(X) = Ft,a−b(X)dt+Gt,a−b(X)dYo(t)−−− (104)

where Ft,a−b(X), Gt,a−b(X) ∈ ηo(t).

We calculate

djt(X.G(t, a− b)) = d(U(t)∗X.G(t, a− b)U(t))

= U(t)∗X.dG(t, a−b).U(t)+dU(t)∗X.G(t, a−b).U(t)+U(t)∗XG(t, a−b)dU(t)+dU(t)∗X.dG(t, a−b).U(t)+U(t)∗.X.dG(t, a−b).dU(t)+dU(t)∗.X.G(t, a−b).dU(t)−−−(105)

Now,

dG(t, a− b) = d.exp((−2πi/n)
∑
c

ϕ(a− b, c)dΛcc(t))

= G(t, a− b).
∑
c

(exp(−(2πi/n)ϕ(a− b, c))− 1).dΛcc(t)−−− (106)
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Remark: For any matrix H of size n2 × n2, we have with Ht = H.χ[0,t],

< e(u)|exp(Λt(H))|e(v) >=< e(u)|e(exp(Ht)v) >= exp(< u|exp(Ht)|v >) = exp(

∫ t

0

< u(s)|exp(H)|v(s) > −
∫ ∞

t

< u(s)|v(s) > ds)−−−(107)

and hence,

d < e(u)|exp(Λt(H))|e(v) >=< e(u)|exp(Λt(H)|e(v) > . < u(t)|exp(H)−1|v(t) > dt

=< e(u)|exp(Λt(H))dΛt(exp(H)− 1)|e(v) > −−−(108)

Therefore,

dexp(Λt(H)) = exp(Λt(H)).dΛt(exp(H)− 1)−−− (109)

In particular, taking

H =
∑
c

f(c)Ecc = diag[f(c) : c ∈ Zn2 ]

we get

exp(H)− 1 =
∑
c

(exp(f(c))− 1)Ecc

and therefore,

dexp(
∑
c

f(c)Λcc(t)) = exp(
∑
c

f(c)Λcc(t))
∑
c

(exp(f(c))− 1)dΛcc(t)−−− (110)

in agreement with the classical formula for the differential of the exponential of
a superposition of independent Poisson processes.

(Note that by jt(X.G(t, a−b)), we actually mean U(t)∗(X⊗G(t, a−b))U(t)).

Also

dU(t)∗XG(t, a− b)U(t) = U(t)∗dξcd(t)(L
c
d)

∗XG(t, a− b)U(t)

= ω(c−d, σ(X))U(t)∗(Lcd)
∗XG(t, a−b+c−d)U(t)dΛcd(t) = ω(c−d, σ(X))jt((L

c
d)

∗XG(t, a−b+c−d))dΛcd(t)−−−(111)

Remark:

(Lcddξ
d
c )

∗ = ω(c−d, d−c)(dξdc )∗(Lcd)∗ = dξcd(L
c
d)

∗ = (Lcd)
∗G(t, c−d)dΛcd−−−(112)

Likewise,

U(t)∗XG(t, a− b)dU(t) = jt(XL
c
dG(t, a− b+ d− c))dΛdc(t)−−− (113),

dU(t)∗XG(t, a−b)dU(t) = ω(c−d, σ(X)+p−q)U(t)∗(Lcd)
∗XLpqG(t, a−b+c−d+q−p)ϵcp)U(t)dΛqd(t)

= ω(c−d, σ(X)+c−q)jt((1−δ[c])(Lcd)∗XLcq.G(t, a−b+q−d))dΛ
q
d(t)−−−(114)
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where δ[c] = 0, d ≥ 1, δ[0] = 1. Further,

dU(t)∗XdG(t, a− b)U(t) =

ω(c−d, σ(X))U(t)∗(Lcd)
∗Xdξcd(t)G(t, a−b).(exp(−(2πi/n)ϕ(a−b, p))−1).dΛpp(t)U(t)

= ω(c−d, σ(X))(exp(−(2πi/n)ϕ(a−b, p))−1)jt((L
c
d)

∗XG(t, a−b+c−d))ϵcpdΛ
p
d(t)

= ω(c−d, σ(X))(1−δ[c])(exp(−(2πi/n)ϕ(a−b, c))−1)jt((L
c
d)

∗XG(t, a−b+c−d))dΛcd(t)−−−(115)

Likewise,
U(t)∗XdG(t, a− b).dU(t) =

U(t)∗XG(t, a− b).(exp(−(2πi/n)ϕ(a− b, p))− 1).dΛpp(t)L
c
ddξ

d
c (t)U(t)

= (exp(−(2πi/n)ϕ(a− b, p))− 1)jt(XL
c
d.G(t, a− b+ d− c))ϵpcdΛ

d
p(t)

= (1−δ[c])(exp(−(2πi/n)ϕ(a−b, c))−1)jt(XL
c
d.G(t, a−b+d−c))dΛdc(t)−−−(116)

In all these formulas, summation over repeated indices ranging from 0 to n2− 1
is implied or equivalently, summation over Zn × Zn with each index a ∈ Zn2

being represented uniquely as a = na1+a2 or equivalently as (a1, a2) ∈ Zn×Zn.
Combining all these results, we can write,

djt(X.G(t, a− b)) = jt(θ(X|a− b, c, d, p, q).G(t, q))ω(σ(X), p)dΛcd(t)−−− (117)

where X → θ(X|a− b, c, d, p, q) are linear maps in the space of system observ-
ables. We next calculate the output measurement noise differential making use
of the above derived conditions for unitarity of U(t) on Lab :

dYo(t) = d(U(t)∗Yi(t)U(t)) =

dYi(t) + dU(t)∗dYi(t)U(t) + U(t)∗dYi(t)dU(t) =

c(a)dΛaa(t) + jt((L
a
b )

∗dξab (t).c(c)dΛ
c
c(t)) + jt(c(c)dΛ

c
c(t)L

a
bdξ

b
a(t))

= c(a)dΛaa(t)+jt((L
a
b )

∗G(t, a−b)dΛab (t).c(c)dΛcc(t))+jt(c(c)dΛcc(t)LabG(t, b−a)dΛba(t))

= c(a)dΛaa(t)+jt(c(a)(1−δ[a])(Lab )∗G(t, a−b))dΛab (t)+jt(c(a)(1−δ[a])LabG(t, b−a))dΛba(t)−−−(118)

This equation can be expressed as

dYo(t) = C(a, b, c, d)jt(M(c)G(t, d)dΛab (t)−−− (119)

where C(a, b, c, d) are some complex constants and M(c) are system operators.
Using these formulas, it is easy to compute the filter coefficients Ft,a(X)andGt,a(X)
based on the orthogonality principle (reference probability approach in the sense
of John Gough and Kostler):

E[(jt(XG(t, a))− πt,a(X))C(t)] = 0−−− (120)

where
dC(t) = C(t)f(t)dYo(t), t ≥ 0, C(0) = 1−−− (121)
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Taking the differential of this and using quantum Ito’s formula with the arbi-
trariness of the complex function f(t) gives us two equations

E[(djt(X.G(t, a)))− dπt,a(X)|ηo(t)] = 0−−− (122),

E[(jt(X.G(t, a))−πt,a(X))dYo(t)|ηo(t)]+E[(djt(X.G(t, a))−dπt,a(X))dYo(t)|ηo(t)] = 0−−−(123),

Using the formulas for the differentials of jt(X.G(t, a)) and Yo(t) derived above
and the homomorphism property of jt, it is an elementary matter to obtain
the filter coefficients in terms of πt,a evaluated at appropriate system operators,
provided that we evaluate the expectation of dΛab (t) in a coherent state of the
bath |ϕ(u) > as < ϕ(u)|dΛab (t)|ϕ(u) >= ūa(t)ub(t)dt. We leave this derivation
as an exercise for the interested reader. The calculations are similar to those in
[1].

0.5 A remark on a more general way of imposing
an Zn×Zn grading on N 2×N 2 matrices when
N ≥ n

For a ∈ {0, 1, ..., N − 1}}, let ρ(a) ∈ {0, 1, ..., n − 1} , i.e., ρ : ZN → Zn is
a map. Define the Zn × Zn grading of the N2 × N2 matrix Eab where a, b ∈
{0, 1, ..., N2 − 1} by

σ(Eab ) = (ρ(a1)− ρ(b1), ρ(a2)− ρ(b2)) = ρ(a)− ρ(b)−−− (124)

with
ρ(a) = (ρ(a1), ρ(a2)), ρ(b) = (ρ(b1), ρ(b2))−−− (125)

where
a = Na1 + a2, b = Nb1 + b2 −−− (126)

with a1, a2, b1, b2 ∈ ZN = {0, 1, ..., N − 1}. This is a consistent grading scheme
in the sense that the grading of Eab .E

b
c = Eac equals

σ(Eac ) = (ρ(a1)− ρ(c1), ρ(a2)− ρ(c2))

= (ρ(a1)−ρ(b1), ρ(a2)−ρ(b2))+(ρ(b1)−ρ(c1), ρ(b2)−ρ(c2)) = σ(Eab )+σ(E
b
c)−−−(127)

In accordance with this definition, following the general arguments of this paper,
we can define a Zn×Zn graded tensor product on the space of N2×N2 matrices
satisfying

(A1 ⊗g A2).(B1 ⊗g B2) = ω(σ(A2), σ(B1)).A1B1 ⊗g A2B2 −−− (128)

where the function ω : (Zn × Zn) × (Zn × Zn) → T is as defined earlier with
T being the unit circle in C. The idea in defining this graded tensor product
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is that wherever a, b ∈ Zn × Zn appeared in the above arguments, we replace
these by ρ(a) = (ρ(a1), ρ(a2)) and likewise ρ(b) = (ρ(b1), ρ(b2)).

We also introduce the grading equal to ρ(a)−ρ(b) of the quantum stochastic

process ξab (t) =
∫ t
0
G(t, ρ(a)− ρ(b))dΛab (s) where

G(t, ρ(a)− ρ(b)) = exp((−2πi/n).
∑
c

ϕ(ρ(a)− ρ(b), ρ(c))Λcc(t))−−− (129)

whereas earlier,

exp(−2πiϕ(ρ(a)−ρ(b), ρ(c))/n) = ω(ρ(a)−ρ(b),−ρ(c)) = z−ϕ(ρ(a)−ρ(b),ρ(c))−−−(130)

or equivalently,

ϕ(ρ(a)− ρ(b), ρ(c)) = (ρ(a1)− ρ(b1))ρ(c2)− (ρ(a2)− ρ(b2))ρ(c1)−−− (132)

Note that if we define the processes∑
c

ρ(ck)Λ
c
c(t) = Λ̃k(t), k = 1, 2, c = (c1, c2) = Nc1 + c2,−−−(133)

then we can write

G(t, ρ(a)−ρ(b)) = z−(ρ(a1)−ρ(b1))Λ̃2(t)+(ρ(a2)−ρ(b2))Λ̃1(t), z = exp(2πi/n)−−−(134)

Note that Λ̃k, k = 1, 2 are mutually commuting Abelian processes.

We now consider the following identity that is crucial in defining the Lie Zn×
Zn graded super-algebra supercommutation relations for quantum stochastic
processes obtained as representations of N×N matrices with N ≥ n: For s < t,

G(t, ρ(a)− ρ(b))|e(u) >= |e(H(a, b)uχ[0,t] + u.χ(t,∞)) > −−−(135)

where

H(a, b) = exp((−2πi/n)
∑
c

ϕ(ρ(a)− ρ(b), ρ(c))Ecc) ∈ CN×N −−− (136)

is a diagonal unitary matrix. Thus, we get

< e(v)|dΛcd(s)G(t, ρ(a)−ρ(b))|e(u) >= v̄d(s)(H(a, b)u(s))cds < e(v)|G(t, ρ(a)−ρ(b))|e(u) >

= v̄d(s)exp((−2πi/n)ϕ(ρ(a)−ρ(b), ρ(c)))uc(s)ds. < e(v)|G(t, ρ(a)−ρ(b))|e(u) >,

= ω(ρ(a)−ρ(b),−ρ(c))uc(s)v̄d(s)ds. < e(v)|G(t, ρ(a)−ρ(b))|e(u) > −−−(137),

on the one hand, and on the other,

< e(v)|G(t, ρ(a)− ρ(b))dΛcd(s)|e(u) >=

< e(H(a, b)∗v.χ[0,t] + v.χ(t,∞))|dΛcd(s)|e(u) >=
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(H(a, b)v(s))d.uc(s)ds < e(v)|G(t, ρ(a)− ρ(b))|e(u) >

= ω(ρ(a)−ρ(b),−ρ(d))uc(s)v̄d(s)ds. < e(v)|G(t, ρ(a)−ρ(b))|e(u) > −−−(138)

Comparing the two expressions and using the fact that exponential vectors are
total in the Boson Fock space, i.e., their linear span is dense in the Boson Fock
space, we derive the following generalization of the formula derived earlier,

ω(ρ(a)−ρ(b), ρ(d))G(t, ρ(a)−ρ(b))dΛcd(s) = ω(ρ(a)−ρ(b), ρ(c)).dΛcd(s).G(t, ρ(a)−ρ(b))−−−(139)

or equivalently,

dΛcd(s)G(t, ρ(a)−ρ(b)) = ω(ρ(a)−ρ(b), ρ(d)−ρ(c)).G(t, ρ(a)−ρ(b)).dΛcd(s), s < t−−−(140)

From this formula and the commutativity of the operators G(t, ρ(a)− ρ(b)), t ≥
0, a, b ∈ ZN × ZN (because of the commutativity of the operators Λcc(t), t ≥
0, c ∈ ZN × ZN = ZN2), it immediately follows that

ξcd(s)ξ
a
b (t)− ω(ρ(d)− ρ(c), ρ(a)− ρ(b))ξab (t)ξ

c
d(s) =

(ϵcbξ
a
d − ϵad.ω(ρ(d)− ρ(c), ρ(a)− ρ(b))ξcb)(min(t, s))−−− (141)

or equivalently, if we assign the grade

σ(ξab ) = ρ(a)− ρ(b)−−− (142)

to the quantum stochastic process ξab , then we can express the above equation
as

ξcd(s)ξ
a
b (t)− ω(σ(ξcd), σ(ξ

a
b ))ξ

a
b (t)ξ

c
d(s)

= (ϵcbξ
a
d − ϵad.ω(σ(ξ

c
d), σ(ξ

a
b ))ξ

c
b)(min(t, s))−−− (142)

Note the way in which we have assigned the grade of ξab implies that

σ(ξab ) = σ(Eab )−−− (143)

This is natural to expect because of our definition

dξab (t) = z−
∑

c ϕ(ρ(a)−ρ(b),ρ(c))Λ
c
c(t)dΛt(E

a
b )−−− (143)

and the fact that Λcc = Λt(E
c
c) combined with the fact that σ(Ecc) = ρ(c)−ρ(c) =

(0, 0) = 0.
It should be noted that in terms of N2×N2 matrices A,B, it follows by mul-

tiplying the above super-Lie-algebra relation by AdcB
b
a that we can also express

it in the following compact form:

ξs(A).ξt(B)−ω(σ(A), σ(B)).ξt(B).ξs(A) = ξmin(t,s)(AϵB−ω(A,B).BϵA)−−−(144)

where it is understood that the matrices A,B have a definite grade.
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0.6 On the design of TPCP maps using super-
string Hamiltonians

The free Bosonic string Hamiltonian is

HB = p2/2 +
∑
n≥1

α(−n).α(n)−−− (145)

while the free Fermionic string Hamiltonian is

HF =
∑
n≥0

S(−n).S(n)−−− (146)

where

S(−n).S(n) = Sa(−n).Sa(n), α(−n).α(n) = αµ(−n).αµ(n)−−− (147)

Now we allow the Bosonic component to interact with a string gauge field poten-
tial Bµν(X) and the superstring supercurrent Ja = Xµ

,bρ
bρaψµ to interact with

the gravitino field χa. Note that by virtue of the superstring field equations

∂b∂bX
µ = 0, ρa∂aψµ = 0−−− (148),

we have the result that the supercurrent is conserved:

∂aJ
a = 0−−− (149)

which can be derived by making use of the anticommutation relations

ρbρa + ρaρb = 2ηab, η = ((ηab)) = diag[1,−1]−−− (150)

The total Lagrangian of the superstring taking into account interaction with
gravitons eαa (τ, σ), with gravitinos χαa (τ, σ) and with the string gauge field
Bµν(X) is given by (where we include the more general situation when the
string moves in a curved background space-time and also the situation when
the world sheet has a curved metric hab(τ, σ):

L(X,ψ) = e.(1/2)habgµν(X)Xµ
,aX

ν
,b + (1/2)Bµν(X)ϵabX

µ
,aX

ν
,b.e

+ψµT ρ0ρaψµ,a.e+ gµν(X)χTaX
µ
,bρ

0ρbρaψν .e−−− (160)

where

e = e(τ, σ) =
√
−h, h = det((hab)), ψµ = gµνψ

ν −−− (161)

It should be noted that in the case when space-time is flat, gµν(X) = ηµν , then
for the gravitino-interaction term, we get the supercurrent

Ja = Xµ
,bρ

0ρbρaψν −−− (162)

20



which is conserved for free strings:

∂aJ
a = 0−−− (163)

(assuming that by means of an appropriate world-sheet reparametrization and
conformal transformation, we have got hab = ηab so that e = 1), in view of the
free string equations

ηabXµ
,ab = 0, ρa∂aψν = 0−−− (164)

because
ρaρb + ρbρa = 2ηab.I2 −−− (165)

In the curved space-time scenario, the supercurrent would be given by the grav-
itino interaction term as

Ja = gµν(X)Xµ
,bρ

0ρbρaψν −−− (166)

which would again be conserved because of the free field because now the string
equations are

ηab∂a(gµνX
ν
,b) = 0, ρa∂aψν = 0−−− (167)

Note that the spin connection of the world sheet can be taken as zero because
it is two-dimensional. This means that we can replace a world sheet covariant
derivative

∇aψµ = (∂a + ωa)ψµ, a = 0, 1−−− (168)

by ∂aψµ where ωa(τ, σ) is a 2× 2 matrix. This is because, the two-dimensional
world sheet metric, by means of an appropriate reparametrization, can be
brought to the form ϕ(τ, σ)diag[1,−1] which means that the term ψT ρ0ρaωaψ
in the Fermionic Lagrangian ψT ρ0∇aψ = ψT ρ0ρa(∂a+ωa)ψ can be replaced by
ψTωψ where ω is a symmetric matrix and since ψ anti-commutes with itself, we
have ψTωψ = 0.

In fact, we note that the worldsheet spin connection

ωα = (1/2)eaβebβ:αρab, ρab = [ρa, ρb], a, b = 0, 1ρ0 = σ2, ρ1 = iσ1 −−− (169)

is simply a scalar field times ρ01 = 2σ3 and hence the spin connection contribu-
tion to the Fermionic field action given by

eαaψ
µT ρ0ρaωαψµ −−− (170)

vanishes because ρ0ρ0ωα and ρ0ρ1ωα are respectively proportional to σ3 and
I2, both of which are symmetric matrices and ψµTAψµ = 0 for any symmetric
matrix A owing to the Fermi statistics satisfied by the Fermionic wave function.

We seek to evaluate the Hamiltonian density corresponding to this La-
grangian density. The canonical momentum fields PXµ (τ, σ), Pψµ (τ, σ) that are
conjugate to the canonical position fields Xµ(τ, σ) and ψµ(τ, σ) are given by

PXµ = ∂L/∂Xµ
,0, P

ψ
µ (τ, σ) = ∂L/∂ψµ,0 −−− (171)
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We leave it as an exercise in algebra to evaluate these and hence the superstring
Hamiltonian.

0.7 String field theory

The quantum master equation for the string action S is given by

2ih∆S + (S, S) = 0−−− (172)

where the Laplacian ∆ is calculated in field space. This equation can be derived
from the hypothesis of the gauge invariance of the quantum action. Specifically,
let S[χ, χ∗] denote the action. Here, the antifield χ∗ = δψ[χ]/δχ where ψ is a
Fermionic functional of the fields χ. We require that the path integral which is
used to compute the quantum effective action∫

exp(iS/h)Dχ−−− (173)

be gauge invariant, i.e., it should not change when the gauge fixing functional
ψ is changed by a small amount δψ. Noting that S = S[χ, dψ[χ]/dχ], χ∗ =
dψ[χ]/dχ, this means that∫

exp(iS/h)(δS/δχ∗).(dδψ[χ]/dχ)Dχ = 0−−− (174)

Integrating this by parts in field space, this gives∫
d/dχ(exp(iS/h)(δS/δχ∗))δψ[χ]Dχ = 0−−− (175)

which gives on expanding,∫
((i/h)(δS/δχ).(δS/δχ∗) + δ2S/δχ.δχ∗))exp(iS/h)δψ[χ]Dχ = 0−−− (176)

which yields the quantum master equation for the action S:

−ih∆S + (δS/δχ).(δS/δχ∗) = 0−−− (177)

which actually means

−ih
∫
(δ2S/δχ(x)).δχ∗(x))d4x+

∫
(δS/δχ(x)).(δS/δχ∗(x))d4x = 0−−− (178)

The various solutions to this equation yield the admissible class of actions,
namely, only those actions for which the amplitudes computed using path inte-
grals in field space do not depend on the choice of the gauge fixing functional.
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Remark: Note that in fact,

(d/dχ)(exp(iS/h)δS/δχ∗) = exp(iS/h)((i/h)δS/δχ+(i/h)(δS/δχ∗).(δ2ψ/δχ.δχ)).δS/δχ∗

= exp(iS/h).(i/h)(δS/δχ).(δS/δχ∗)−−− (179)

since the contribution of the term

(δS/δχ∗).(δ2ψ/δχ.δχ).(δS/δχ∗)−−− (180)

vanishes. Note that χ∗ = δψ[χ]/δχ is Fermionic if χ is Bosonic and is Bosonic
if χ is Fermionic, i.e., χ and χ∗ have opposite statistics and δ2ψ/δχ.δχ is an-
tisymmetric if χ is Bosonic and is symmetric if χ is Fermionic. This equation
should be read as∫

(δS/δχ∗(y)).(δ2ψ/δχ(x).δχ(y)).(δS/δχ∗(x)d4xd4y = 0−−− (181)

To see this, we note that if χ is Bosonic, then χ∗ is Fermionic and hence δS/δχ∗

is Fermionic which means that δS/δχ ∗ (x) anticommutes with δS/δχ∗(y) while
δ2ψ/δχ(x).δχ(y) is a symmetric kernel. On the other hand, if χ is Fermionic,
then δ2ψ/δχ(x).δχ(y) is an antisymmetric kernel while since now χ∗ is Bosonic,
δS/δχ∗ is Bosonic and hence δS/δχ∗(x) commutes with δS/δχ∗ (y). So in both
cases, the above integral vanishes, proving the validity of the quantum master
equation, namely the equation that any action must satisfy in order that the
quantum mechanical amplitudes computed using it should be independent of
the choice of the gauge fixing functional.

String field theory is based on selecting an appropriate action for the string
field namely for the wave functional of the Bosonic string and the Fermionic
string. Such a choice of action starts with the BRST equation

QΨ(X,S) = 0−−− (182)

where Q superstring BRST super charge operator (Green Schwarz and Witten,
Superstring theory vol.1), X is the Bosonic string function X(σ), σ ∈ [0, 2π) and
S is the Fermionic string function S(σ), σ ∈ [0, 2π). Specifically, we expand the
Bosonic string in terms of the Bosonic creation and annihilation operators and
construct the position operator q(n) corresponding to each creation-annihilation
pair. Likewise, we expand the Fermionic string in terms of the Fermionic cre-
ation and annihilation operator and retain only the annihilation operators. De-
noting the Bosonic position operator sequence by q and the Fermionic annihi-
lation operators by S, we observe that q forms a complete set of commuting
observables for the Bosonic string and S form a complete set of anticommuting
variables for the Fermionic string and just as in superfield theories in supersym-
metry, the string field wave function Ψ is a function of q, S, i.e. Ψ(q, S) and this
function can be expanded as

Ψ(q, S) = Ψ(q(0), q(1), q(2), q(3), , S0, S1, S2, S3, ...) =
∑

0≤n0<n1<n2<...

Ψ(q|n0, n1, n2, ...)Sn0Sn1Sn2 ...−−−(183)
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This field satisfies in the unperturbed situation, the superstring BRST equation

QΨ(q, S) = 0−−− (184)

This equation can be derived from the action principle

δ < Ψ|Q|Ψ >= 0−−− (185)

In order to describe interactions of the string field that lead to appropriate
values of quantum mechanical scattering amplitudes of the superstring, add
higher degree terms to the quadratic action < Ψ|Q|Ψ > like

∑
n≥3,c1,...,c1=0,1 <

Wn(c1, ..., cn)|Ψc1 ⊗ ...Ψcn > where Ψ0 = Ψ,Ψ1 = Ψ∗. The coefficients Wn

appearing here are subject to the constraint that the total string field action
should satisfy the quantum master equation.

Remark:It should be mentioned that during the process of quantization of
the Bosonic string using path integrals, we have to introduce reparametrization
Fermionic ghost fields c(σ), b(σ) appearing in a ghost action in order to take
into account the determinant contribution coming from the path integral over
the world sheet metric. From the ghost action, it follows that these ghost fields
satisfy the CAR in which the c′s all mutually anticommute and so do the b′s,
but the c does not anticommute with the b′s, in fact, their anticommutator
is a delta function. The Fourier series expansion of c field thus yields mutu-
ally anticommuting operators c(n), n ≥ 0. Likewise while quantization of the
Fermionic string, we are forced to introduce Bosonic ghost fields β(σ), γ(σ) ap-
pearing in a ghost action in order to take into account the determinant combing
from Berezin path integration over the worldsheet gravitino. From the ghost
field action, again it follows that these ghost fields satisfy CCR in which the
β′s mutually anticommute and so do the γ′s, but the commutator of the β
field with the γ field is a delta function. Thus, if β(n) are the Fourier series
coefficients of the β field, these operators mutually commute. It follows then
that the total Lagrangian and hence Hamiltonian of the superstring contains
in addition Fermionic and Bosonic ghost terms. In short, the string field wave
function Ψ(q, S) should be such that q includes apart from the Bosonic string
position operators, also the Bosonic ghosts β(n), n ≥ 0 coming from Fermionic
string quantization and S includes apart from the Fermionic string annihilation
operators, also the Fermionic ghosts coming from Bosonic string quantization.
Indeed, the nilpotent BRST supercharge operator Q is a quadratic function
of the Bosonic and Fermionic string amplitudes and a cubic function of the
Fermionic and Bosonic ghosts.

Remark: A physical state |ψ > is characterized by the fact that it satis-
fies Q|ψ >= 0 where Q is the BRST operator. This equation generalizes the
requirement that the action be invariant under gauge transformations of the
fields. The generalization is required because we are required to accommodate
ghost fields into the action based on the Faddeev-Popov method in order to
replace determinants associated with the choice of a gauge fixing functional so
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that the path integral is invariant under the choice of the gauge fixing func-
tional. Now the BRST operator Q is nilpotent, specifically, Q2 = 0. Physical
states |ψ > are characterized by BRST invariance, i.e., Q|ψ >= 0. Moreover, a
state |ψ > should be equivalent to any state of the form |ψ > +Q|χ > where
|χ > is any state. Indeed Q(|ψ > +Q|χ >) = Q|ψ > because Q2 = 0. In other
words, physical states are characterized by the fact that they are elements of
the Q-cohomology. Q-cohomology consists of the equivalence class of all states
annihilated by Q modulo the range of Q. An observable O is said to be BRST-
invariant if [Q,O] = 0. If |ψk >, k = 1, 2 are physical states, then the matrix
elements of any observable O w.r.t these states are BRST invariant because
< ψ1|O|ψ2 > changes to < ψ1|[Q,O]|ψ2 >= 0 since < ψ1|Q = 0, Q|ψ2 >= 0.
Moreover, if O is any BRST invariant operator, i.e., QO = OQ, then its matrix
elements w.r.t physical states |ψk >, k = 1, 2 depends only on the cohomology
classes to which |ψ1 >, |ψ2 > belong. This is because

< ψ1+Qχ1|O|ψ2+Qχ2 >=< ψ1|O|ψ2 > + < χ1|QO|ψ2 > + < ψ1|OQ|χ2 > + < χ1|QOQ|χ2 >

=< ψ1|O|ψ2 > + < χ1|OQ|ψ2 > + < ψ1|QO|χ2 > + < χ1OQ
2|χ2 >=< ψ1|O|ψ2 > −−−(186)

Since matrix elements of observables w.r.t physical states are all that we mea-
sure, it follows that BRST invariant observables and the Q-cohomology of states
are all that matter in a valid physical theory wherein experiments can be per-
formed, observables measured and transition probabilities computed.

0.8 Quantum noise in string theory

Let Xµ(τ, σ) denote the Bosonic string and ψµ(τ, σ) the Fermionic string. The
Bosonic string is assumed to interact with a quantum noisy string gauge poten-
tial Bµν(τ,X) in accordance with the interaction Lagrangian

(1/2)

∫
ϵ(ab)Bµν(τ,X(τ, σ))Xµ

,a(τ, σ)X
ν
,b(τ, σ)dσ −−− (187)

while the Fermionic string is assumed to interact with a quantum noisy gauge
potential Aa(τ, σ) in accordance with the interaction Lagrangian∫

ψµT (τ, σ)ρ0ρaψµ(τ, σ)Aa(τ, σ)dσ −−− (188)

We write

Bµν(τ,X) =
∑
n≥1

[Wn(τ)Bnµν(X) +Wn(τ)
∗Bnµν(X)∗]−−− (189)

where the Bnµν are given basis functions on the string state space Rd. Wn(τ)
equals the time derivative of the annihilation process appearing in the Hudson-
Parthasarathy (HP) quantum stochastic calculus and Wn(τ)

∗ is its adjoint,
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namely, the time derivative of the creation process appearing in the HP quantum
stochastic calculus. They satisfy the HP quantum Ito formula:

Wn(τ)Wm(τ)∗ = (1/dτ)δ[n−m]−−− (190)

More generally, we can write for time discretization step sizes dτ ,

Wn(τ)Wm(s)∗ = δτ,s(dτ)
−1δ[n−m] = δ(τ − s)δ[n−m]−−− (191)

Writing the annihilation process as

An(τ) =

∫ t

0

Wn(s)ds−−− (192),

we see that we can write the above equation as

dAn(τ).dAm(s)∗ = δτ,sdτ.δ[n−m] = δ(τ − s)δ[n−m]dτ.ds−−− (193)

The interaction Lagrangian of the Bosonic string with the noisy string gauge
field can now be expressed as

−V1(τ) = (1/2)

∫
ϵ(ab)Bµν(τ,X(τ, σ))Xµ

,a(τ, σ)X
ν
,b(τ, σ)dσ

= (1/2)
∑
n

[Wn(τ)

∫
ϵ(ab)Bnµν(X(τ, σ))Xµ

,a(τ, σ)X
ν
,b(τ, σ)dσ+H.c]−−− (194)

Likewise, writing the noisy gauge potential Aa as

Aa(τ, σ0 =
∑
n

[Wn(τ)Ana(σ) +H.c]−−− (195)

where Ana is again a set of basis functions of the string length parameter, we
can write for the interaction Lagrangian of the Fermionic string with this noisy
gauge potential as

−V2(τ) =
∫
ψµT (τ, σ)ρ0ρaψµ(τ, σ)Aa(τ, σ)dσ

=
∑
n

Wn(τ)

∫
ψµT (τ, σ)ρ0ρaψµ(τ, σ)Ana(σ)dσ +H.c−−− (196)

Our aim is to compute the corrections to the superstring Hamiltonian and prop-
agator caused by these quantum noisy effects. First, however, we observe that
corresponding to the canonical Bosonic position field Xµ(τ, σ), the canonical
momentum field is

PXµ (τ, σ0 = ∂L/∂Xµ
,0 = Xµ,0(τ, σ) +Bµν(τ,X(τ, σ))Xν

,1(τ, σ)−−− (197)

and corresponding to the canonical Fermionic position field ψµ(τ, σ), the canon-
ical Fermionic momentum field is

Pψµ (τ, σ) = ∂L/∂ψµ,0 = iψµ(τ, σ)−−− (198)
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The superstring Hamiltonian density obtained by the Legendre transformation
is then

H =

PXµ X
µ
,0 + Pψµ ψ

µ
,0 − L =

(1/2)[Xµ
,0Xµ,0 +Xµ

,1Xµ,1]− ψµTσ3ψµ,1 − iψµT ρ0ρaψµ.Aa −−− (199)

In order to calculate the correction to the superstring propagator, we must first
solve for the Bosonic and Fermionic string equations and express these solutions
in terms of the free Bosonic and Fermionic string creation and annihilation op-
erators and the quantum noise processesWn,W

∗
n . The Bosonic string equations

are
Xµ,00 −Xµ,11 − ϵ(ab)Bµν(τ,X),aX

ν
,b = 0−−− (200)

while the Fermionic string equations are

[∂0 +A0 + σ3(∂1 +A1)]ψ
µ = 0−−− (201)

We shall assume for simplicity that Bnµν(X) = HnµνρX
ρ where Hnµνρ are

constants. This assumption amounts to assuming a constant string gauge field
over the length scale of the string. Note that ρ0 = σ2, ρ

1 = iσ1 so ρ0ρ1 = σ3
and (ρ0)2 = 1, (ρ1)2 = −1, ρ0ρ1 + ρ1ρ0 = 0 which can be expressed in compact
notation as

ρaρb + ρbρa = 2ηab −−− (202)

The Bosonic string equations can be expressed as

Xµ,00(τ, σ)−Xµ,11(τ, σ) + [Hnµνρ[W
′
n(τ)X

ρ(τ, σ)Xν
,1(τ, σ)+

Wn(τ)(X
ρ
,0X

ν
,1 −Xρ

,1X
ν
,0)(τ, σ))] +H.c.] = 0−−− (203)

with the summation convention over the repeated indices n, ν, ρ being under-
stood. Up to linear orders in the noise amplitudes Wn,W

∗
n , the solution to this

differential equation is

Xµ(τ, σ) =
∑
n

aµ(n)exp(in(τ − σ)) +
∑
n

bµ(n, τ)exp(−inσ)−−− (204),

where
∂2τ bµ(n, τ) + n2bµ(n, τ) = fµ(n, τ)−−− (205),

with

fµ(n, τ) = (1/2π)

∫ 2π

0

exp(inσ).fµ(τ, σ)−−− (206),

where
fµ(τ, σ) =

−
∑
m

[Hmµνρ[W
′
m(τ)Xρ

0 (τ, σ)X
ν
0,1(τ, σ)+

Wm(τ)(Xρ
0,0X

ν
0,1 −Xρ

0,1X
ν
0,0)(τ, σ))] +H.c.]−−− (207)
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where
X0(τ, σ) =

∑
n

aµ(n)exp(in(τ − σ))−−− (208)

Since we are assuming only right moving unperturbed string field, the term
Xρ

0,0X
ν
0,1 −Xρ

0,1X
ν
0,0)(τ, σ) vanishes and we get

fµ(τ, σ) = −
∑
m

[Hmµνρ.W
′
m(τ).Xρ

0 (τ, σ)X
ν
0,1(τ, σ)

= i
∑
m,k,n

HmµνρW
′
m(τ)aρ(k)aν(n− k)exp(in(τ − σ)) +H.c.−−− (209)

This gives

fµ(n, τ) = i
∑
m,k

HmµνρW
′
m(τ)aρ(k)aν(n−k)exp(inτ)+H.c.(n < −−− > −n)−−−(210)

We note that the equation

∂2τ bµ(n, τ) + n2bµ(n, τ) = fµ(n, τ)−−− (211)

has the solution

bµ(n, τ) =

∫ τ

0

sin(n(τ − s))

n(τ − s)
fµ(n, s)ds−−− (212)

if n ̸= 0, while if n = 0, it has the solution

bµ(0, τ) =

∫ τ

0

(τ − s)fµ(0, s)ds−−− (213)

This analysis of noise in quantum string theories can be cast into a more
general framework as follows: Let ϕk(t, x), k = 1, 2, ..., N be a set of Bosonic
fields and ψk(t, x), k = 1, 2, ...,M a set of Fermionic fields on the space-time
manifold R×Rn, i.e., t ∈ R, x ∈ Rn. Assume that the total Lagrangian density
of these fields is

L(ϕk, ψm, ψ
∗
m, ϕk,µ, ψm,µ)−−− (214)

where µ = 0, 1, ..., n with x0 = t, x = (x1, ..., xn) denoting respectively the time
and spatial coordinates. Assume that this Lagrangian density has the special
form

L = L0(ϕ(t, x), ϕ,µ(t, x))+
∑
k,m

ψk(t, x)
∗[Lµ1km(ϕ(t, x), ϕ,ν(t, x))∂µ+L2km(ϕ(t, x), ϕ,ν(t, x))]ψm(t, x)−−−(215)

We now add quantum Bosonic noise and quantum Fermionic noise to this La-
grangian density by replacing ϕ(t, x) with

ϕ(t, x) +
∑
k

(Wk(t)χk(x) +Wk(t)
∗χk(x)

∗)−−− (216)
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an ψ(t, x) with

ψ(t, x) +
∑
k

Vk(t)ηk(x)−−− (217)

so that ψ(t, x)∗ gets replaced with

ψ(t, x)∗ +
∑
k

Vk(t)
∗ηk(x)

∗ −−− (218)

whereWk(t) = A′
k(t) is white Bosonic annihilation noise, i.e., the time derivative

of the annihilation process appearing in the Hudson-Parthasarathy quantum
stochastic calculus while Vk(t) = J ′

k(t) is Fermionic annihilation noise, i.e., the
time derivative of the Fermionic annihilation process again appearing in the
Hudson-Parthasarathy quantum stochastic calculus. Note that

Wk(t)
∗Wm(t) = A′

k(t)
∗A′

m(t) = dΛmk (t)/dt−−− (219)

is the time derivative of the Bosonic conservation processes in the Hudson-
Parthasarathy theory and likewise

Vk(t)
∗Vm(t) = J ′

k(t)
∗J ′
m(t) = dΛ̃mk (t)/dt−−− (220)

is again a conservation process associated with the Fermions. Expanding the
total Lagrangian density after making these noise substitutions up to second
order in the noise amplitudes Wk,W

∗
k , Vn, V

∗
m gives us

L = L0(ϕ(t, x), ϕ,µ(x)) +
∑
k

[L0k(x, ϕ(t, x), ϕ,µ(t, x))Wk(t) +H.c]

+
∑
km

L0km(x, ϕ(t, x), ϕ,µ(t, x))dΛ
m
k (t)/dt

+ψ(t, x)∗[Lµ1 (ϕ(t, x), ϕ,ν(t, x))∂µ + L2(ϕ(t, x), ϕ,ν(t, x))]ψ(t, x)

+
∑
k

Vk(t)
∗[ηk(x)

∗[Lµ1 (ϕ(t, x), ϕ,ν(t, x))∂µ + L2(ϕ(t, x), ϕ,ν(t, x))]ψ(t, x)

+
∑
k

ψ(t, x)∗[Lµ1 (ϕ(t, x), ϕ,ν(t, x))∂µ + L2(ϕ(t, x), ϕ,ν(t, x))]ηk(x)Vk(t)

+
∑
km

ηk(x)
∗[Lµ1 (ϕ(t, x), ϕ,ν(t, x))∂µ + L2(ϕ(t, x), ϕ,ν(t, x))]ηm(x).dΛ̃mk (t)/dt

+
∑

ψ(t, x)∗[Wk(t)(L
µ
1k(x, ϕ(t, x), ϕ,ν(t, x))∂µ + L2k(x, ϕ(t, x), ϕ,ν(t, x))

+(dΛmk (t)/dt)(Lµ1km(x, ϕ(t, x), ϕ,ν(t, x))∂µ+L2km(x, ϕ(t, x), ϕ,ν(t, x)))+H.c.]ψ(t, x)−−−(221)

where

L0k(x, ϕ(t, x), ϕ,µ(t, x)) =
∑
s

[(∂L0(ϕ(t, x), ϕ,µ)(t, x))/∂ϕs)χks(x)+(∂L0(ϕ(t, x), ϕ,µ(t, x))/∂ϕs,µ)χks,µ(x)−−−(222)
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As an example of this, we can apply this formalism of adding quantum noise
to the action for the gravitational field in general relativity interacting with the
electromagnetic field of photons and the Dirac field of electrons and positrons.
Let ϕ(t, x) denote the spatial components of the covariant metric tensor of space-
time. In a synchronous frame, the Lagrangian density of the gravitational field
has the form

(1/2)ϕT,0A1(ϕ)ϕ,0 − (1/2)(∇⊗ ϕ)A2(ϕ)(∇⊗ ϕ)−−− (223)

where A1(ϕ) and A2(ϕ) are respectively complicated 6× 6 and 18× 18 matrix-
valued functions of ϕ(t, x) (ie, these matrix-valued functions do not contain any
space-time derivatives of ϕ).

Adding noise to the gravitational field ϕ(t, x) involves replacing ϕ(t, x) with
ϕ(t, x) +

∑
nWn(t).χn(x).

0.9 Quantum noise associated with particles hav-
ing Zn × Zn graded spins as a generalization
of the situation for Z2 involving only Bosons
and Fermions

We first recall some of the things discussed earlier.
We define the graded tensor product between the system and noise observ-

ables in such a way that

L⊗W = ω(σ(L), σ(W ))W ⊗ L

where if σ(L) = (a, b) and σ(W ) = (c, d) with a, b, c, d ∈ Zn, then

ω(σ(L), σ(W )) = zad−bc

with z being a primitive nth root of unity, for example z = exp(2πi/n). Assum-
ing W a

b (t)dt = G(t, a− b)dΛab (t) where the noise grading operator G(t, a− b) is
defined by

G(t, a− b) = z−
∑

c ϕ(a−b,c)Λ
c
c(t)

with ϕ(a, b) = a1b2 − a2b1 where a ∈ Zn2 is identified with (a1, a2) ∈ Zn × Zn
via the formula

a = na1 + a2

and likewise for b, c, d etc. Noting that

Λcc(t) = λ(Eccχ[0,t])

and hence

exp(iα.Λcc(t))|e(u) >= |e(exp(iα)Eccuχ[0,t] + uχ(t,∞)) >
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and hence,

G(t, a− b)|e(u) >= |e(exp(iK(a− b))u.χ[0,t] + u.χ(t,∞)) >

where

K(a−b) = exp((2πi/n).
∑
c

ϕ(a−b, c)Ecc) = Πcω(a−b, c)E
c
c = diag[ω(a−b, c) : c ∈ Zn×Zn]

It is now easy to prove that for s < t, (by forming the matrix element w.r.t.
< e(v)| and |e(u) >) that

G(t, a− b)dΛcd(s) = ω(a− b, c− d)dΛcd(s).G(t, a− b)

[Note that a− b = (a1 − b1, a2 − b2), c− d = (c1 − d1, c2 − d2) and

ω(a, b) = za1b2−a2b1

so
ω(a− b, c− d) = z(a1−b1)(c2−d2)−(a2−b2)(c1−d1)]

and hence the processes

ξab (t) =

∫ t

0

G(s, a− b)dΛab (s)

satisfy a Zn × Zn Lie algebra supercommutation relation:

ξab (t).ξ
c
d(s)−ω(a−b, c−d)ξcd(s).ξab (t) = ϵad.ξ

c
b(min(t, s))−ω(a−b, c−d).ϵcb.ξad(min(t, s))

Owning to these quantum stochastic processes satisfying a Zn×Zn Lie algebra,
it is tempting to use such noise processes as a model for noise in quantum field
theory. Specifically, let us assume that we have a set of Zn×Zn graded quantum
fields ϕab (t, x), a, b ∈ Zn×Zn. Let us assume that the grade of the field ϕab is a−
b ∈ Zn×Zn. Then, the grade of ϕab (t, x)⊗dξba(t) is zero (this differential is there-
fore a Bosonic noise differential), and hence, given a Bosonic field χ(t, x), we
can think of adding the quantum noise field ϕab (t, x)⊗ dξba(t)/dt to this Bosonic
field and thereby alter the Hamiltonian density H(χ(t, x),∇χ(t, x), P (t, x)) to
H(χ(t, x) + ϕab (t, x)W

b
a(t),∇χ(t, x) + ∇ϕab (t, x)W b

a(t), P (t, x)) where W a
b (t) =

dξab (t)/dt. For example, it is instructive to start with the charged Klein-Gordon
Lagrangian density

L(ϕ, ϕ∗, ϕ,µ, ϕ
∗
,µ)) = (Dµϕ)∗(Dµϕ)−m2ϕ∗ϕ,Dµ = ∂µ + igVµ −−− (225)

calculate the momentum densities

P = ∂L/∂ϕ,0, P
∗ = ∂L/∂ϕ∗,0 −−− (226)

and then the Hamiltonian density

H(ϕ, ϕ∗,∇ϕ,∇ϕ∗, P, P ∗) = P.ϕ+ P ∗ϕ∗ − L−−− (227)
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and then add quantum noise to the position fields ϕ, ϕ∗ and then write down the
Hudson-Parthasarathy quantum stochastic differential equation corresponding
to the Hamiltonian

∫
Hd3x. It should be noted that in this example, only linear

and quadratic terms in the noise will appear in the Hamiltonian and quadratic
terms can again be expressed as linear terms using the quantum Ito formula.
In the general case, when we expand the Hamiltonian density in powers of the
noise dξab (t)/dt, we will obtain terms such as dξa1b1 (t)...dξ

an
bn

(t)/dtn which can
again, using quantum Ito’s formula, be expressed as linear terms in dξab (t). The
denominator terms 1/dtn can be replaced by 1/∆n where ∆ is a finite time
discretization step size. This is just like introducing ultraviolet and infrared
cutoffs in quantum field theory while evaluating Feynman diagrams.

Remark: Let X be observable in the system Hilbert space (i.e. the quantum
field Bosonic Fock space). We wish to express the product ϕabdξ

b
a.X in a form

in which the noise differential appears to the right of all the system observables.
Note that this product is to be interpreted as (ϕab ⊗ dξba).(X ⊗ I) and we know
from the basic theory of the graded tensor product that if X has a definite
grading σ(X) = (c, d), then this product equals

(ϕab ⊗ dξba).(X ⊗ I) = ω(dξba, σ(X))(ϕabX ⊗ dξba) = ω(dξba, σ(X))(ϕbaX)dξba

= ω(b− a, c− d)ϕbaX.dξ
b
a = z(b1−a1)(c2−d2)−(b2−a2)(c1−a1)ϕba.X.dξ

b
a −−− (228)
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0.10 Introducing quantum noise into quantum
gravity theory in a consistent way

Let H(Q,∇Q,P ) be the Hamiltonian density of a quantum field Q(t, x). The
Hamiltonian field equations are

∂tQ(t, x) = −∂P mathcalH(Q(t, x),∇Q(t, x), P (t, x)),

∂tP (t, x) = −∇QH(t, Q(t, x),∇Q(t, x), P (t, x))+div∇∇QH(Q(t, x),∇Q(t, x), P (t, x))−−−(229)

When we seek to introduce a quantum noisy field into this theory, we cannot
alter the momentum field because, by analogy with Newtonian mechanics, the
first equation is a generalization of ∂tQ = P/m which merely states the relation-
ship between the velocity field and the momentum field. However, in the more
general case, when there is a vector potential A(t, Q), the velocity equation in
Newtonian mechanics gets modified to

∂tQ = (P + eA(t, Q))/m−−− (230)

and we can alter this equation by adding a noise term to P owing to the fact
that such an addition is equivalent to adding a noisy term to the vector po-
tential. However, we shall assume that such a vector potential field function
of the quantum field Q(t, x) is not present, although, in the case of gravity in
general relativity, it is present. Indeed, if we describe the metric tensor by six
independent position fields ϕ(t, x), then the gravitational Lagrangian density
has the form

L(ϕ, ∂µϕ) = (1/2)(∂tϕ)
TA0(ϕ)(∂tϕ) + ∂tϕ

TA1(ϕ)(∇⊗ ϕ)

−(1/2)(∇⊗ ϕ)TA2(ϕ).(∇⊗ ϕ)−−− (231)

Thus, the canonical momentum field is

P = ∂L/∂∂tϕ = A0(ϕ)∂tϕ+A1(ϕ))(∇⊗ ϕ)

and hence application of the Legendre transformation gives the Hamiltonian
density as

H = (P, ∂tϕ)− L = (1/2)(∂tϕ)
TA0(ϕ)(∂tϕ) + (1/2)(∇⊗ ϕ)TA2(ϕ).(∇⊗ ϕ)

= (1/2)(P−A1(ϕ)(∇⊗ϕ))T (P−A1(ϕ)(∇⊗ϕ))+(1/2)(∇⊗ϕ)TA2(ϕ).(∇⊗ϕ)−−−(231)

If now we add weak quantum noise W (t, x) to ϕ(t, x), i.e., replace ϕ(t, x) by
ϕ(t, x) +W (t, x), then it is clear that the Hamiltonian density, up to second-
degree terms in the noise, would be given by an expression of the form

H = (1/2)(P−A1(ϕ)(∇⊗ϕ))T (P−A1(ϕ)(∇⊗ϕ))+(1/2)(∇⊗ϕ)TA2(ϕ).(∇⊗ϕ)

+C1(ϕ)(P⊗P⊗W )+C2(ϕ)(P⊗P⊗W )+C3(ϕ)(P⊗P⊗W⊗W )+C4(ϕ)(P )(P⊗W⊗W )+
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+C5(ϕ)((∇⊗W )⊗ (∇⊗W )) + C6(ϕ)((∇⊗ ϕ)⊗ (∇⊗W )⊗W ))

+C7(ϕ)((∇⊗ ϕ)⊗ (∇⊗ ϕ)⊗W ⊗W )

+C8(ϕ)((∇⊗ ϕ)⊗ (∇⊗ ϕ)⊗W )−−− (232)

In short, after expanding the position, momentum, and noise fields in terms of
basis functions of the spatial coordinates x, we can express the total gravita-
tional Hamiltonian (obtained by integrating the Hamiltonian density over the
entire spatial volume), as

H(t, q(t), p(t)) =

H0(q(t), p(t)) + V1kjm(q(t))pk(t)p(t)Wm(t) + V2kj(q(t))pk(t)Wj(t)

+V3kjmr(q(t))pk(t)pj(t)Wm(t)Wr(t) + V4kmr(q(t))pk(t)Wm(t)Wr(t)

+V5m(q(t))Wm(t) + V6mr(q(t))Wm(t)Wr(t)−−− (233)

This value of the noisy Hamiltonian must be substituted into the Hudson-
Parthasarathy noisy Schrodinger equation after replacing Wm(t) by the annihi-
lation process differential A′

m(t) and its adjoint and the products Wm(t)Wr(t)
by the differentials of the conservation process Λk

′

j (t) and finally adding to the
noisy Schrodinger dynamics, quantum Ito correction terms in order to guarantee
unitarity of the evolution.

0.11 The general form of the noisy propagator

In view of the above remarks, we consider the Lagrangian

L = L0(ϕ(t, x), ϕ,µ(t, x)) + L1k(ϕ(t, x), ϕ,µ(t, x))Wk(t)−−− (234)

with summation over k where Wk(t)
′s are quantum white noise processes, these

processes include Bosonic and Fermionic creation, annihilation, and conserva-
tion processes. With ϕk(t, x) being the position fields, some of which may be
Bosonic and others Fermionic, the corresponding momentum fields are

Pk(t, x) = ∂L/∂ϕk,0 = Pk0(t, x) + Pkm(t, x)Wm(t)

with summation over the repeated indices m being understood. Here,

Pk0 = ∂L0/∂ϕk,0, Pkm = ∂L1m/∂ϕk,0 −−− (235)

The field equations are the Euler-Lagrange equations:

∂tPk0 + ∂t(PkmWm(t)) = Fk0 + FkmWm(t)−−− (236)

where

Fk0 = ∂L0/∂ϕk − ∂r∂L0/∂ϕk,r, Fkm = ∂L1m/∂ϕk − ∂r∂L1m/∂ϕk,r −−− (237)
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where summation over the repeated index r = 1, 2, 3 is implied. Note that
we are using the standard convention used in general relativity, namely, that
Greek indices like µ, ν, ρ, σ stand for space-time indices, i.e., they assume values
0, 1, 2, 3 while Roman indices like r, s, k,m assume values 1, 2, 3 or perhaps more
than three as for example when such an index appears in Wm(t). The equal
time canonical commutation relations (CCR) assuming all fields are Bosonic,
are

[ϕ(t, x), P (t, x′)T ] = iδ3(x−x′), [ϕ(t, x), ϕ(t, x′)T ] = 0, [P (t, x), P (t, x′)T ] = 0−−−(238)

or equivalently,

[ϕk(t, x), Pj0(t, x
′) + Pjm(t, x′)Wm(t)] = iδkjδ

3(x− x′)−−− (239)

To proceed further, we make an important assumption that is usually satisfied
in most physical situations, namely that L0 is quadratic in ϕk,0 and L1 is inde-
pendent of ϕk,0. Then, inverting the above nonlinear equation that relates Pk
to ϕk,0, ϕk and Wm, we get up to linear orders in the Wm(t), an equation of the
form

ϕk,0(t, x) =Mkj(ϕ(t, x), ϕ,r(t, x))Pj(t, x)+Nk(ϕ(t, x), ϕ,r(t, x))Wk(t)−−−(240)

hence, the CCR can be expressed as

[ϕk(t, x), ϕm,0(t, x
′)] = iMmk(ϕ(t, x)), ϕ,r(t, x))δ

3(x− x′)−−− (241)

The field propagator matrix elements are defined by

∆km(t, x|t′, x′) =< T (ϕk(t, x)ϕm(t′, x′)) > −−−(242)

or equivalently, in matrix notation,

∆(t, x|t′, x′) =< T (ϕ(t, x)ϕ(t′, x′)T ) >= θ(t−t′) < ϕ(t, x)ϕ(t′, x′)T > +θ(t′−t) < ϕ(t′, x′)ϕ(t, x)T > −−−(242)

where for simplicity, we are assuming that fields are real Bosonic fields, i.e.,
Bosonic fields that do not carry charge. Examples are the scalar chargeless
Klein-Gordon field, the Yang-Mills non-Abelian gauge fields, and the gravita-
tional field.

where the expectations are carried out in a vacuum state of the field and
perhaps a coherent state of the noise. Up to linear orders in the noise, the field
equations can be expressed as

∂2t ϕ(t, x) +A1(ϕ(t, x), ϕ,r(t, x))∂tϕ(t, x) +A2km(ϕ(t, x), ϕt,r(x))ϕ,km(t, x)

+F (ϕ(t, x), ϕ,r(t, x)) +
∑
k

Gk(ϕ(t, x), ϕ,r(t, x))Wk(t) = 0−−− (243)

The aim is, of course, to derive a partial differential equation satisfied by the
propagator. Elementary computations using this equation and the above CCR
show that

∂t∆(t, x|t′, x′) =< T (∂tϕ(t, x)ϕ(t
′, x′)T ) >,
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∂2t∆(t, x|t′, x′) = i < M(ϕ(t, x), ϕ,r(t, x))
T > δ(t−t′)δ3(x−x′)+ < T (∂2t ϕ(t, x)ϕ(t

′, x′)T ) >

= i < M(ϕ(t, x), ϕ,r(t, x))
T > δ(t−t′)δ3(x−x′)− < T (A1(ϕ(t, x), ϕ,r(t, x))∂tϕ(t, x).ϕ(t

′, x′)T ) >

− < T (A2km(ϕ(t, x), ϕ,r(t, x))ϕ,km(t, x)ϕ(t′, x′)T ) > − < T (F (ϕ(t, x), ϕ,r(t, x))ϕ(t
′, x′)T ) >

−
∑
k

< T (Gk(ϕ(t, x), ϕ,r(t, x))ϕ(t
′, x′)T ) >< Wk(t) > −−−(244)

Note that Wk(t) will have a nonzero mean in a coherent state in general if the
coherent state is not the vacuum. Also note that Wk(t) is a superposition of
the time differentials of the creation, annihilation, and conservation processes
in the Hudson-Parthasarathy quantum stochastic calculus theory. Note that
in the further special case when A1 is a constant matrix, the above equation
simplifies to

∂2t∆(t, x|t′, x′) =

i < M(ϕ(t, x), ϕ,r(t, x))
T > δ(t− t′)δ3(x− x′)−A1∂t∆(t, x|t′, x′)

− < T (A2km(ϕ(t, x), ϕ,r(t, x))ϕ,km(t, x)ϕ(t′, x′)T ) >

− < T (F (ϕ(t, x), ϕ,r(t, x))ϕ(t
′, x′)T ) > −

∑
k

< T (Gk(ϕ(t, x), ϕ,r(t, x))ϕ(t
′, x′)T ) >< Wk(t) > −−−(245)

If further, Gk is linear in ϕ and ϕ,r, so that it can be written as

Gk(ϕ(t, x), ϕ,r(t, x)) = Gk1ϕ(t, x) +Gk2rϕ,r(t, x)−−− (246)

(summation over r = 1, 2, 3 again being implied) where Gk1 and Gk2r are con-
stant matrices, and also F is linear in ϕ and ϕ,r so that it can be written as

F (ϕ(t, x), ϕ,r(t, x)) = F1ϕ(t, x) + F2rϕ,r(t, x)−−− (247)

where F1, F2r, r = 1, 2, 3 are constant matrices, and further, A2km are constant
matrices, then the above propagator differential equation further simplifies to

∂2t∆(t, x|t′, x′) =

= i < M(ϕ(t, x), ϕ,r(t, x))
T > δ(t− t′)δ3(x− x′)−A1∂t∆(t, x|t′, x′)

−F1∆(t, x|t′, x′)− F2r∂
x
r∆(t, x|t′, x′)−A2km∂

x
k∂

x
m∆(t, x|t′, x′)

−(Gk1∆(t, x|t′, x′) +Gk2r∂
x
r∆(t, x|t′, x′)) < Wk(t) > −−−(248)

again summation over t, r being understood in the last term. In case that
< Wk(t) >= µ(k, u) are independent of time but functions of the coherent state
parameter u, and M is evaluated in a constant vacuum expected state ϕ0 of ϕ,
the above propagator equation in the four-momentum domain becomes

[(p0)2−A2kmp
kpm−iA1p

0+F1+iF2rp
r+Gk1µ(k, u)+iG2krp

rµ(k, u))∆(p) = iMT (ϕ0)−−−(249)

Actually, in the above equation of motion of the field ϕ, the noise term coefficient
Gk would more generally, be a function of not only ϕ and ϕ,r, but also of the
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double spatial partial derivatives ϕ,rs. In that case, assuming linear dependence
on these partial derivatives, we would write

Gk(ϕ(t, x), ϕ,r(t, x)) = Gk1ϕ(t, x) +Gk2rϕ,r(t, x) +G3krsϕ,rs(t, x)−−− (250)

where G3krs are also constant matrices. In that case, the above propagator
equation further generalizes to

[(p0)2−A2rsp
rps−iA1p

0+F1+iF2rp
r+Gk1µ(k, u)+iG2krp

rµ(k, u)−G3krsp
rpsµ(k, u))∆(p)

= iMT (ϕ0)−−− (251)

Thus, the propagator contains dissipative terms that are linear in pµ and have
imaginary coefficient matrices. It also contains mass terms, with masses given
by the eigenvalues of the mass block matrix ((A2rs+G3krsµ(k, u)))rs explicitly
showing how noise in a coherent state can contribute to particle mass.

0.12 Conclusions

In this article, we have firstly constructed a Zn × Zn graded tensor product in
Hilbert space. Secondly, we have constructed Zn×Zn-graded quantum stochas-
tic processes in the sense of Hudson and Parthasarathy along the lines outlined
for Z2-grading in the work of Timothy Eyre. These processes are shown to
satisfy Zn×Zn-graded super Lie algebra commutation relations. Thirdly using
the graded tensor product between system Hilbert space and noise Boson Fock
space, we have defined Zn×Zn graded quantum stochastic differential equations
along the lines of Hudson and Parthasarathy. Fourthly, we have outlined an ap-
proach for generalizing Belavkin’s quantum filter for such Zn×Zn-graded quan-
tum stochastic differential equations based on counting process non-demolition
measurements for Zn×Zn noise. Fifthly, we have explained how graded quantum
stochastic noise is to be incorporated into quantum field theory and quantum
gravity via Lagrangian and Hamiltonian approaches. Finally, we have derived
some approximate formulas for the correction to the propagator in quantum field
theory caused by the presence of quantum stochastic noise. Formulas for correc-
tions to particle masses caused by noise have been derived from such corrected
propagators.
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