
24 April 2025, Preprint v2  ·  CC-BY 4.0 PREPRINT

Research Article

Channeling the Flow – A Metaphor for

Computer Programs

Attila Egri-Nagy1

1. Akita International University, Akita, Japan

What do we do when we program computers? A standard general answer could be that by writing a

program we create a process. Here, we entertain a different metaphor: programming as shaping an

existing process by constraints. By emphasizing constraining over construction, we liken writing code to

other activities like engineering and playing board games. Our goal is to enrich the experience of

computer programming and deepen its understanding by a possibly challenging analogy. A new

appreciation might be of use at the age when humans are about to stop doing this activity.

1. Introduction

We believe that writing computer programs is an ef�cient way of learning. Programming stands high in

the hierarchy of understanding something. It is at the same level, if not higher, as being able to explain

the idea to someone. As a form of learning, it will remain to be an important and rewarding human

activity, even if most coding will be automated in the future.

Programming is part of a network of activities involved in solving real world problems. In software

engineering, we analyze the requirements, design the software architecture, implement and test the

functions, we release them as a software package, integrate it into other systems and keep maintaining it.

There are other use cases, e.g., creative coding and smaller scale instances like scripting. The common

underlying activity in all these is the writing of code, i.e., text in a formal language. This view offers a

good everyday de�nition: computer programs are texts written in programming languages to carry out

information-processing tasks. The program code initiates a computational process, which produces the

expected behaviour or the desired result.

First, this short description draws our attention to the running program. Here, we are interested in this

dynamic aspect, not in the software artifact, which is a static entity. Second, we can consider

Qeios

qeios.com doi.org/10.32388/VU0ZG0.2 1

https://www.qeios.com/
https://doi.org/10.32388/VU0ZG0.2


programming as the construction of the computational process. This is the view we want to challenge, or

at least to make it more subtle.

Programming can also be viewed as an art form  [1]. This reinforces the view that writing computer

programs is about creating something new. However, the novel entity comes about by restricting what

can happen. Much like sculpting is removing the unnecessary part, according to the famous

Michelangelo quotes.

2. The main metaphor

By thinking about what happens when we run the code, we will shift the perspective from creating a

computational process to shaping an existing one. In a digital computer, the running code traverses

through the state space of all possible machine states. The path can zig-zag and loop back. This

movement can be generalized to analog computers [2], where the settings of input knobs may represent

the program. The path is in a continuous space. In both cases, by writing the program, we create paths in

state space.

Once we have the state space view, we can talk about constraints. Constraining is limiting the possibilities,

reducing the degrees of freedom. We can visualize it is as trying to steer something already in motion. We

create the path, by not letting it to go anywhere else.

As we argued elsewhere, computation, in general, is about forcing physical systems through some

dynamics that are meaningful to us [3]. In this paper, we want to elaborate on this thesis but on all levels

of computation, not just on the lowest machine code level. We state our de�nition upfront of the

underlying metaphor.

A program is a set of constraints that acts as guardrails for a pre-existing directionless process.

Therefore, programming is about cleverly placing obstacles. Then, a blind force bumps into those, and

thus, it gets stopped and redirected by them. When the plan works out, it ends up doing valuable work for

us. What is valuable is de�ned by us, the functional requirements of the program we write.

This de�nition is so abstract that it will encompass many things, including those very far from the

software packages on digital computers. Accordingly, we will need to treat the de�nition of a computer

very liberally. This we consider as a feature, not a bug.

qeios.com doi.org/10.32388/VU0ZG0.2 2

https://www.qeios.com/
https://doi.org/10.32388/VU0ZG0.2


2.1. The lead example: the canals

Canals are the visual and physical examples for our metaphorical thinking about programming. Water

itself is willing to �ow in any direction as long as it is downwards as it is pulled by gravity. We can stop

the �ow by building a dam. By digging out a new riverbed, we can redirect water. By making reservoirs,

we can store it later, sort of delaying the �ow. Constructing these engineered structures is a hard work.

We dig arti�cial waterways for good reasons. We may want better navigation than wild rivers or �ood

control. In agriculture, we build a network of irrigation channels for higher crop yields. Paddy �elds are

elaborate structures for the controlled �ooding of rice seedlings. To maximize the yield, the right amount

of water needs to be there at the right time to kill the weeds and supply minerals.

The engineered structures are constraints controlling the �ow. To spell it out, water and gravity form the

underlying hardware, and the channel structure is the software. We can say that we program water by

construction work to ensure that the plants will not dry out.

2.2. Notes on the methodology

Conceptual metaphors organize our everyday human experience seamlessly  [4]. Here, we use these

cognitive tools explicitly as knowledge transfer tools between different domains  [5]. After �nding an

initial link, we explore how and to what extent does the internal structure and dynamics of one domain

correspond to the other domain. For the mathematically minded, we try to �nd a functor between two

categories. Deliberate application of metaphors has been suggested even in software engineering [6].

We are not trying to �nd the differentia speci�ca of programming here. We aim for the most abstract idea,

which has a more extensive reach by its de�nition.

2.3. Logic and relational programming

The metaphor becomes literal in constraint programming, which covers a range of techniques for

combinatorial problem solving. Most notably, logic and relational programming [7][8].

In these paradigms, there is an underlying combinatorial search algorithm guided by the given set of

constraints. The search itself is directionless as without constraints it would go into all directions by

enumerating all combinatorial possibilities. We argue that this mechanism extends metaphorically to

other programming paradigms, down to how computers work and even to engineering in the physical

world.

qeios.com doi.org/10.32388/VU0ZG0.2 3

https://www.qeios.com/
https://doi.org/10.32388/VU0ZG0.2


3. Computational Power as Flow

Now we consider a digital computer, a desktop PC or laptop device. It has a processor, a memory

architecture, input-output and storage devices. How does this digital computing device have a

directionless process inside? We have two levels for this interpretation: a physical and an abstract. On the

physical level we have the �ow of electricity. On the abstract level we have the execution and data �ow,

the universality of the computing machine.

3.1. Physical level - Electricity

In a simpli�ed view, electricity is the �ow of electrons. Once freed from atoms, electrons can go anywhere

by their nature. This random wiggling is the underlying directionless process. A power source providing

voltage can then move electrons in one direction in a wire. A wire is an arti�cial river for electron �ow. In

this sense, an integrated circuit is an elaborate pipework. The basic building block of logic circuits, the

transistor, is like a lock, or a sluice gate for electricity.

The analogy with the canals has its limits. Intricate connections on the silicon chip are lot more complex.

Having an irrigation network with that many channels would not �t into our everyday world. The

purpose is different too. In agriculture, the presence of water is an objective, so its distribution is the goal.

In computing, the �ow of electricity represents something else: a bit in a binary digit or in a Unicode

character, or any other digitally represented piece of information.

The wonder of digital computing is that we can choreograph those wandering-wiggling electrons into

meaningful patterns tracing the abstract logic of our data transformation.

3.2. Abstract level - Execution �ow in state space

On the abstract level, we have computational power de�ned by the ability to perform data transformation

operations by executing instructions. It is an everyday experience that computers can do different things

depending on the applications we use. Computers are universal [9]. If a computer can do anything

computable, then there is no directionality in computation. Universal implies directionless. Therefore, we

need a program to constrain the �ow of execution.

Program execution is also a form of movement: a working processor traces a walk in the state-space of

the computer, de�ned by the totality of all possible con�gurations of the memory and the processor’s

internal registers. Technically, the state-space would be a graph with cycles in it, but we can model it with

qeios.com doi.org/10.32388/VU0ZG0.2 4

https://www.qeios.com/
https://doi.org/10.32388/VU0ZG0.2


a tree for input-to-output computations that make a steady progress towards the results. This tree

structure with an immensely high branching factor can represent all the processor’s possible state

transition dynamics starting from a given reset state.

The computer can potentially go in many directions, meaning that it can go through arbitrary state

sequences. Thus, we have to limit these choices. This limitation is what a computer program does:

choosing a speci�c execution line from an immense set of possibilities. A computer program corresponds

to a subtree, where the branches within the subtree represent the executions of the same program with

different input data. This view is not limited to assembly code. The same argument can be made for any

virtual machine or higher level notional machines [10].

One could argue that an ‘idle’ computer is a counterexample. However, idling is the continuous execution

of a simple wait cycle. The computer is still running a program.

There is also a very particular interpretation of the constraining the �ow idea: the UNIX pipeline, where

simple programs are composed to process the data �ow, following the operating system’s design

philosophy [11].

3.3. Board games as computation

The tree picture of program execution is similar to game trees in arti�cial intelligence [12] for two person

complete information board games. A particular game is a path in the tree, while the whole tree is the

totality of all possible games. The interaction of the two players ‘computes’ the result, the �nal board

position.

For a complex enough game, like Chess or Go, every match is a creation of something unique that can be

appreciated and analyzed later. Still, the process can be viewed as a sequence of constraints. Each move is

a choice from all available legal moves and reduce the set of future possibilities. In expert play, each move

contributes to the �nal result. Similarly, the subtree corresponding to a computer program should contain

states that somehow encode the computation result.

4. Programming the physical world a.k.a. engineering

We used canals, engineering artifacts, as a metaphor for programming. However, it is possible to turn

around the cognitive metaphor. Civil engineering predates software engineering, but nothing prevents us

using the latter to understand the �rst, upending the chronological order. It is possible that someone

qeios.com doi.org/10.32388/VU0ZG0.2 5

https://www.qeios.com/
https://doi.org/10.32388/VU0ZG0.2


trained as a programmer to use her understanding of computers to project it onto the physical world to

understand engineering. Thus we have the metaphor of engineering as programming the physical world.

We can look at the shared principle of ef�ciency. For example, trying to improve the steam engine we

want to have the molecules in steam to hit the piston, to make it move. However, the pressure of steam is

a blind force. The molecules also hit the wall of the cylinder, not just the piston. Though the ef�ciency is

limited, the engine works. The constraints are de�ned by how the piston is allowed to move. Without

these constraints, the cylinder would simply heat up, the speedy but random movement of the molecules

would not do any useful work.

In programming, optimization aims to remove unnecessary computation or trying to reduce the amount

data to be transferred. On the hardware level, the abstract computational meets the physical substrate.

The ef�ciency is in trying to maximize the electron movement with symbolic meaning versus their free

movement producing waste heat.

The question arises: What is the essential difference between building something physical, like a DIY

solar system (solar panels wired to a charge controller, battery bank, inverter), and developing a software

application, for instance, a program that monitors, records, and visualizes the performance of those solar

panels? We claim that there is not much difference.

This view has a connection to constructor theory [13][14]. It is a new way of formulating physical laws in

terms of counterfactuals: what can and cannot happen. For instance, a physical system’s state can only be

used as computer memory if the system could be in another state. We can (mis)use this grand theoretical

framework for our purposes. An engineering artifact comes with its own laws that constrain the

possibilities.

4.1. Software bugs

The ground experience of a programmer is often the quest for �nding errors. In software engineering

parlance, bug hunting. These frequently come from the unintended consequences in the workings of the

code. Or, in our terminology, the unexpected implications of the constraints. Transferring this into the

realm of engineering, into the programming the physical world, we can �nd further examples. Maybe the

biggest and most painful is the use of fossil fuels. These are unintended consequences of rearranging

materials for our purposes.

qeios.com doi.org/10.32388/VU0ZG0.2 6

https://www.qeios.com/
https://doi.org/10.32388/VU0ZG0.2


4.2. Sandbox style video games

For the similarity of engineering in the physical world and software development in the abstract realm,

there is the interesting middle ground of virtual worlds. Minecraft-like sandbox style video games de�ne

a virtual world with its own ‘physical” laws. Players leverage these laws by placing blocks in the discrete

world. For instance, putting light sources stops the monsters spawning, which is a basic mechanism of

this game world.

On the other hand, we see clearly that everything happening in the game is a running programn. The

player’s actions in the game correspond to changes in the underlying database. Those updates can be

done by a computer program. Therefore, there is very little difference between the world altering activity

inside the game and the execution of a computer program.

Writing ‘mods’, that are short programs, scripts, to modify the game world’s behavior is very much part

of the gaming culture. Perhaps, for regular gamers, expressing engineering as programming the real

world is a fairly obvious idea.

5. Conclusion

Here we elaborated on the subtle difference between ‘I tell the computer what to do.’ and ‘I setup the

computer in a way that will do something useful.’ The latter is closer to a semantic de�nition of

computation: computation is a constrained dynamical system, such that its trajectory or its �nal state is

meaningful for us. Consequently, the only difference between engineering and programming is whether

we are interested in the state of the physical system itself, or it is a model of something else. In both cases

we want to purposefully limit the set of possible states of the physical system.

When engaged in computer programming, do we construct or constrain? We argued that the second

interpretation is also possible and the two can coexist. The constraining view can lead to a uni�ed

understanding of engineering in the physical world and programming in the abstract realm.

Acknowledgements

The paper bene�ted from the discussion at the 2nd Akita Philosophy Seminar.

qeios.com doi.org/10.32388/VU0ZG0.2 7

https://www.qeios.com/
https://doi.org/10.32388/VU0ZG0.2


References

�. ^Donald E. Knuth. Computer programming as an art. Commun. ACM, 17(12):667–673, 1974.

�. ^B. Ulmann. Analog and Hybrid Computer Programming. De Gruyter Textbook. De Gruyter, 2020.

�. ^Attila Egri-Nagy. The algebraic view of computation: Implementation, interpretation and time. Philosophi

es, 3(2), 2018.

�. ^George Lakoff and Mark Johnson. Metaphors we Live by. University of Chicago Press, Chicago, 1980.

�. ^G. Fauconnier and M. Turner. The Way We Think: Conceptual Blending and the Mind’s Hidden Complexiti

es. Basic Books, 2002.

�. ^Alvaro Videla. Metaphors we compute by. ACM Queue, 15(3):40:52–40:62, 2017.

�. ^L. Sterling and E.Y. Shapiro. The Art of Prolog: Advanced Programming Techniques. Logic programming.

MIT Press, 1994.

�. ^William E. Byrd. Relational programming in minikanren: techniques, applications, and implementations.

PhD thesis, USA, 2009. AAI3380156.

�. ^Martin Davis. The Universal Computer: The Road from Leibniz to Turing. A. K. Peters, Ltd., 2011.

��. ^Juha Sorva. Notional machines and introductory programming education. ACM Transactions on Computi

ng Education, 13(2):8:1–8:31, 2013.

��. ^M. Gancarz. Linux and the Unix Philosophy. Operating Systems Series. Elsevier Science, 2003.

��. ^Stuart Russell and Peter Norvig. Arti�cial Intelligence: A Modern Approach. Prentice Hall Press, 3rd editio

n, 2009.

��. ^David Deutsch. Constructor theory. Synthese, 190(18):4331–4359, 2013.

��. ^C. Marletto. The Science of Can and Can’t: A Physicist’s Journey Through the Land of Counterfactuals. Pen

guin Books, Limited, 2021.

Declarations

Funding: No speci�c funding was received for this work.

Potential competing interests: No potential competing interests to declare.

qeios.com doi.org/10.32388/VU0ZG0.2 8

https://www.qeios.com/
https://doi.org/10.32388/VU0ZG0.2

