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1 abstract

In this paper, we first derive the discrete time recursive stochastic filtering equa-
tions for a classical Markov process when noisy measurements of the process are
made with the measurement noise at each discrete sample forms an iid Gaussian
or non-Gaussian process. The filter involves deriving general formulae for the
conditional mean process given measurements upto that time and also simulta-
neously recursive formulae for the conditional moments of the estimation error
process. In the next section, we build upon the method of John Gough etal,
to construct a supersymmetric quantum stochastic filter, ie, the supersymmet-
ric Belavkin filter. The construction of supersymmetric noise in the Hudson
Parthasarathy noisy Schrodinger equation is based on constructing Fermionic
noise by applying a twist to Bosonic noise, ie, dJ = (−1)ΛdA, dJ∗ = (−1)ΛdA∗.
Such a Fermionic noise has memory unlike the Bosonic noise and satisfies the
CAR. We prove that when a superposition of Bosonic quantum Brownian mo-
tion and Bosonic counting process along with Fermionic counting process is
measured through the Hudson-Parthasarathy noisy Schrodinger system with
both Bosonic and supersymmetric noise, then it satisfies the non-demolition
property and hence conditional expectations can be defined. The construction
of the quantum filter here involves taking into consideration all the positive
integer powers of the output measurement noise differential and we give an al-
gorithm for computing these powers based on the quantum Ito formula. The
method for deriving a countably infinite number of linear equations for the fil-
ter coefficients is based on the reference probability method of Gough et.al.
The method of constructing supersymmetric noise for driving the HPS equa-
tion is based on the work of Timothy Eyre. The main result of this paper is
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to derive an infinite system of linear equations for the quantum filter coeffi-
cients thereby yielding a real time implementable filter for estimating system
observables or equivalently, the system mixed state from the most general form
of non-demolition measurements comprising Bosonic continuous and counting
noise plus Fermionic counting noise.

keywords:Belavkin quantum filter; Fermionic noise using Poisson twist; Re-
frence probability approach; non-demolition measurement; supersymmetric quan-
tum noise

2 Introduction

The primary aim of this work is to develop a Belavkin quantum real time filter
for the case when the non-demolition measurement Y ot consist of a mixture of
quantum Brownian motions and quantum Poisson processes passed through the
noisy H-P dynamics taking into account the presence of Fermionic noise hav-
ing memory in the H-P quantum stochastic differential equation (QSDE). The
resulting filter is again a classical Schrödinger equation but contains all powers
of the measurement differential i.e. (dY ot )k, k ≥ 1. This is the characteristic
feature of any Levy process driven sde beacuse if Yt is a Levy process then in
general, all powers of dYt are of O(dt) or larger. In the quantum case however,
in addition, the Brownian and Poisson component of the measurement do not
commute because of the quantum Ito table so things are more complex. The
filter coefficients are determined using the reference probability approach.

Gough and Kostler provided a comprehensive analysis of the Belavkin fil-
ter assuming that the bath is in a coherent state and that the measurements
are either quadrature only, or (A + A†), or photon counts alone, or Λ. The
derivation of the filter for mixtures of these two processes have been covered
in Naman et al. When measurement noise is Gaussian white noise but process
noise is non-Gaussian white noise, i.e., the state process is Markov, classical
nonlinear filtering theory is applicable and. Not much research on non-linear
filtering in the case of white non-Gaussian measurement noise, or a differential
of a Levy process has been carried out. The emergence of all powers of the
output noise differential in the stochastic partial differential equation for the
filter characterizes these kinds of problems.

In this paper, we present the Kushner-Kallianpur Belavkin quantum filter-
ing equation for the scenario where the noisy Schrodinger equation in the H-P
sense contains both Bosonic and Fermionic Creation, Annihilation, and Con-
servation noise. Additionally, the input non-demolition measurement includes
the previous three Bosonic components and also the conservative/counting part
of quantum Fermionic noise. Quantum Fermionic noise was constructed by
KRP and Hudson using the Poisson twist (−1)ΛdA, (−1)ΛdA†. Accordingly,
the stochastic differential structure of the Belavkin dynamical quantum filter
for an evolving system observable X based on non-demolition measurement Y 0
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will be as follows:

dπt(X) = Ft(X)dt+
∑
k≥1

Gkt(X)(dY 0
t )k

where the linear functionals Ft(X) and Gkt(X) are measurable with respect
to the non-demolition output noise of X. Filtration of Abelian type σ(Y 0

s :
s ≤ t). This Belavkin filter can be thought of as a classical sde [13] as the
operators Ft(X) and Gkt(X) commute. It is simple to derive a series of linear
equations for Ft(X) and Gkt(X) in terms of the Hamiltonian and Lindblad

operators of the H-P equation and the coefficients of At, A
†
t ,Λt in the input

measurement process Y it . This is done by applying the orthogonality principle
for conditional expectation πt(X) = E(jt(X)|Y 0

s : s ≤ t). It is not possible to
solve these equations in closed form. On the other hand, using system operators
and the homomorphism jt that transfers system observables to their Heisenberg
evolution after time t in the tensor product of the system and bath space, we
develop recursive equations for computing output measurements.

The primary new feature of this paper is to derive the quantum filter when
the HP QSDE has both Bosonic and Fermionic noise with the measurement
noise being a superposition of Bosonic quantum Brownian motions, Bosonic
counting processes and Fermionic counting processes. That such processes yield
non-demolition measurements is established via two theorems. The new idea
here involves computing the evolution of not only E(jt(X)|η0(t)) = π0,t(X) but
also E(jt(X(−1)Λt)|η0(t)) = π1,t(X) where X is a system observable while Λt
is the quantum Poisson process used as a twist to define the Fermionic noise
differentials.These computations are carried out in the supersymmetric notaion
of T. Eyre[14].

The two major novel features of this paper are therefore deriving an infinite
sequence of linear equations for the quantum filter coefficients in the case where
noise in the H-P QSDE is supersymmetric in the language of Timothy Eyre [14]
and in addition, when the measurement process is a mixture of quantum Bosonic
Gaussian process, quantum Bosonic counting process and quantum Fermionic
counting process passed through the HP QSDE.

3 Fundamentals of stochastic filtering theory

Let x[n], n ≥ 0 be a Markov process in discrete time having transition proba-
bility density πn(y|x), ie,

P (x[n+ 1] ∈ E|x[n] = x) =

∫
E

πn(y|x)dy

The measurement process is

z[n] = hn(x[n]) + v[n]
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where v[n] has independent samples with pdf qn(v) v and x are assumed to be
independent processes. Let

Zn = {z[k] : k ≤ n}

The aim is to determine an integro-difference equation satisfied by pn(x|Zn),
the density of x[n] given Zn and hence calculate approximate recursions for
x̂[n|n] = E(x[n]|Zn), x̂[n+1|n] = E(x[n+1]|Zn) and E(x[n]−x̂[n|n])⊗k|Zn), k =
2, 3, .... We have using the Markov property

p(x[n+ 1]|Zn+1) =
p(x[n+ 1], z[n+ 1], Zn)

p(z[n+ 1], Zn)

=

∫
p(z[n+ 1]|x[n+ 1])p(x[n+ 1]|x[n])pn(x[n]|Zn) dx[n]

p(z[n+ 1]|Zn)

=

∫
qn+1(z[n+ 1]− hn+1(x[n+ 1]))πn(x[n+ 1]|x[n])pn(x[n]|Zn).dx[n]∫

qn+1(z[n+ 1]− hn+1(x[n+ 1]))πn(x[n+ 1]|x[n])pn(x[n]|Zn).dx[n+ 1]

In case we have the model

x[n+ 1] = fn(x[n], w[n+ 1])

with w[n] independent having pdf rn(w), we can write

p(x[n+1]|Zn+1) =

∫
qn+1(z[n+ 1]− hn+1(f(x[n], w))rn+1(w)pn(x[n]|Zn) dw dx[n]∫

qn+1(z[n+ 1]− hn+1(f(x[n], w))rn+1(w)pn(x[n]|Zn) dw dx[n+ 1]

In the general case, we write

x[n] = x̂[n|n] + e[n|n], x[n+ 1] = x̂[n+ 1|n] + e[n+ 1|n]

If φ(x) is any function of the state, we define

Πn(φ) = E(φ(x[n])|Zn)

and sometimes write this as Πn(φ(x)), the argument x being emphasized to
make sure that it is to be replaced by x[n] and then followed by calculating the
conditional expectation. Then the above gives

Πn+1(φ) =
σn+1(φ)

σn+1(1)

where

σn+1(φ) = Πn

(∫
qn+1(z[n+ 1]− hn+1(y))φ(y)πn(y|x)dy

)
We also have the following relations:

E(φ(x[n+1])|Zn) = Πn

(∫
φ(y)πn(y|x)dy

)
p(x[n+1]|Zn) =

∫
πn(x[n+1]|x[n])p(x[n]|Zn)dx[n]

4



so that

x̂[n+ 1|n] = E(x[n+ 1]|Zn) = Πn

(∫
yπn(y|x)dy

)
For example, suppose

x[n+ 1] = fn(x[n]) + w[n+ 1]

where w has independent samples with pdf rn(w). Then,

πn(y|x) = rn+1(y − fn(x))

and

x̂[n+ 1|n] = E(fn(x[n])|Zn) =
∑
m

f
(m)
n (x̂[n|n])

m!
E(e[n|n]⊗m|Zn)

where
e[n|n] = x[n]− x̂[n|n]

More generally, if
x[n+ 1] = fn(x[n], w[n+ 1])

where w has independent samples with density rn(w), then

πn(y|x)dy = P (fn(x,w[n+ 1]) ∈ dy)

or equivalently,

πnφ(x) =

∫
φ(y)πn(y|x)dy = Eφ(fn(x,w[n+ 1])) =

∫
φ(fn(x,w))rn(w)dw

then defining
f (m)
n (x,w) = ∂mx fn(x,w)

we get

x̂[n+ 1|n] =
∑
m

(m!)−1E(f (m)
n (0, w[n+ 1]))E(x[n]⊗m|Zn)

or equivalently, in terms of central moments,

x̂[n+ 1|n] =
∑
m

(m!)−1E(f (m)
n (0, w[n+ 1]))E(x[n|n] + e[n|n])⊗m|Zn)

We can expand

(x[n|n] + e[n|n])⊗m =
∑
|k|≤|m|

Pk(x̂[n|n])e[n|n]⊗k

and then observe that

E(x[n|n] + e[n|n])⊗m|Zn) =
∑
|k|≤|m|

Pk(x̂[n|n])E(e[n|n]⊗k|Zn)
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Here, Pk’s are multivariate polynomials. To complete the recursion, we must
compute x̂[n+ 1|n+ 1] and E(e[n+ 1|n+ 1]⊗m|Zn+1) in terms of x̂[n+ 1|n].

To this end, we recall that

p(x[n+1]|Zn+1) =

∫
qn+1(z[n+ 1]− hn+1(x[n+ 1]))πn(x[n+ 1]|x[n])pn(x[n]|Zn)dx[n]∫

qn+1(z[n+ 1]− hn+1(x[n+ 1]))πn(x[n+ 1]|x[n])pn(x[n]|Zn)dx[n+ 1]

=
A(z[n+ 1], x[n+ 1])

B(z[n+ 1])

where A(z[n+1], x[n+1]) is the numerator and B(z[n+1]) =
∫
A(z[n+1], x[n+

1])dx[n+ 1] is the denominator. We then get with e = e[n+ 1|n],

A(x[n+ 1], z[n+ 1]) =

= A(x̂[n+1|n]+e, z[n+1]) =

∫
qn+1(z[n+1]−hn+1(x̂[n+1|n]+e))πn(x̂[n+1|n]+e|x)pn(x|Zn)dx

Thus, the filtering recursion is completed by using the fact that

E(x[n+ 1]⊗m|Zn+1) =

∫
y⊗mA(z[n+ 1], y)dy/B(z[n+ 1])

or equivalently, in terms of central moments,

E(e[n+ 1|n+ 1]⊗m|Zn+1) =

∫
e⊗mA(x̂[n+ 1|n] + e, z[n+ 1])de/B(z[n+ 1])

Having classical general non-Gaussian stochastic filtering theory in discrete
time, we now proceed to a discussion of its quantum continuous time coun-
terpart.

4 Quantum filtering in the presence of both Bosonic
and supersymmetric generalized noise processes

Here, we present a complete derivation of the Boson-Fermion quantum filter
introduced first by Belavkin and developed further upto perfection by John
Gough etal in [3]-[4]. The Hudson-Parthasarathy-noisy Schrodinger equation
with both Bosonic and Fermionic creation, annihilation and conservation noise
processes is first introduced based on the graded tensor product between the
system and noise Hilbert spaces and then Bosonic non-demolition measurements
like the Bosonic Gaussian quadrature measurement and the Fermionic counting
measurement processes are introduced. Then, using the reference probability
approach developed by J.Gough et.al, we derive the quantum filtering equa-
tions, namely a non-commutative supersymmetric generalization of the classi-
cal Kushner-Kallianpur stochastic nonlinear filter. In our formalism, we assume
that the Fermionic quantum Brownian motion proceses are derived from the
Bosonic quantum Brownian motion processes by applying the number operator
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twist to the latter and more generally, supersymmetric quantum noise processes
are derived by applying graded number operator twists to the ungraded noise
processes as discussed in detail in [14].

In order to introduce Mixed Bosonic and Fermionic or equivalently, super-
symmetric quantum filtering [12], we start with the Hilbert space

H = H1 ⊕H2

where Hk, k = 1, 2 are copies of L2(R+)⊗CN and identify the Boson Fock space
Γs(H) with Γs(H1)⊗Γs(H2) via the canonical isomorphism e(u1⊕u2)→ e(u1)⊗
e(u2) where e(u) is the standard exponential vector [1]. Let Aj(t), 1 ≤ j ≤ N
denote the canonical annihilation processes in the Fock space Γs(H1). They are
defined in terms of canonical annihilation field a as a(χ[0,t]ej), j = 1, 2, ..., N
where ej , j = 1, 2, ..., N is the standard basis for CN . We define the generalized
quantum noise processes by

dΛab (t) = dAb(t)
∗dAa(t)/dt⊕ 0,

dΛ̃ab (t) = 0⊕ dAb(t)∗dAa(t)/dt

where a, b = 0, 1, ..., N with A0(t) = A0(t)∗ = t. The quantum Ito formula is
then

dΛab (t).dΛcd(t) = εaddΛcb(t), dΛ̃ab (t).dΛ̃cd(t) = εaddΛ̃cb(t)

where εab = 1 if a = b ≥ 1 and is zero otherwise. Note that a, b assume values
0, 1, ..., N .

Note that we can write Aa(t) = a(χ[0,t](ea⊕0)) and Ãa(t) = a(χ[0,t](0⊕ea))
in the Boson Fock space Γs(H) = Γs(H1⊕H2) ≈ Γs(H1)⊗Γs(H2) and dΛab (t) =

dA∗b(t)dAa(t)/dt and dΛ̃ab (t) = dÃ∗b(t)dÃa(t)/dt and of course

[Λab (t), Λ̃cd(s)] = 0,∀t, s

These generalized quantum Ito formulae can be seen easily to be consequences
of the fundamental quantum Ito formula

dAi(t)dAj(t)
∗ = δijdt, i, j = 1, 2, ..., N

The generalized Bosonic noise processes are Λab (t), a, b ≥ 0 and the super-
symmetric noise processes are

ξ̃ab (t) =

∫ t

0

G̃(s)σ(a,b)dΛ̃ab (s), a, b ≥ 0

where
G̃(t) = (−1)Λ̃t(H) = exp(iπΛ̃t(H))

with
H = diag[0r, IN−r]
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and σ(a, b) = 0 if either 1 ≤ a, b ≤ r or r + 1 ≤ a, b,≤ N and σ(a, b) = 1
otherwise. Note that on setting Λ̃(t) = Λ̃t(H) = λ̃(Ht),

G̃(t) = Γ̃(exp(iπHt)) = (−1)Λ̃(t), Ht = H.χ[0,t]

so that

Λ̃(t) =

N∑
k=r+1

Λ̃kk(t)

and hence

G̃(t)|e(u) >= |e(exp(iπH)uχ[0,t] + uχ(t,∞) >= |Kuχ[0,t] + uχ(t,∞) >

Note that
exp(iπH) = K = (−1)H = diag[Ir,−IN−r]

It is easily verified that for s ≤ t,

< e(v)|dΛ̃ab (s)G̃(t)|e(u) >= (Ku)a(s)v̄b(s)ds < e(v)|G̃(t)|e(u) >

and

< e(v)|G̃(t)dΛ̃ab (s)|e(u) >=< G̃(t)e(v)|dΛ̃ab (s)|e(u) > ua(s)(̄Kv)b(s)ds < e(v)|G̃(t)|e(u) >

Note that here, we are assuming that the Boson Fock space is

Γs(H1 ⊕H2) = Γs(H1)⊗ Γs(H2)

and that the noise processes Λab act in Γs(H1) while the noise processes Λ̃ab act
in Γs(H2). Thus, these two noise processes mutually commute. Noting that

(Ku)a(s) = (−1)σ(a)ua(s), (K̄v)b(s) = (−1)σ(b)v̄(s) (1)

where (−1)σ(a) = Kaa is one for 1 ≤ a ≤ r and −1 for r+ 1 ≤≤ N , we get that

G̃(t)dΛ̃ab (s) = (−1)σ(a,b)dΛ̃ab (s)G̃(t)

since
σ(a, b) = σ(a) + σ(b)mod2

Thus,
G̃(t)σ(c,d)dΛ̃ab (s) = (−1)σ(a,b)σ(c,d)dΛ̃ab (s)G̃(t)σ(c,d), s ≤ t

From the commutativity of G̃(t), t ≥ 0, and of G̃(s) with dΛ̃ab (t), t ≥ s, we thus
easily deduce that for s 6= t, we have

dξ̃ab (s).dξ̃cd(t)− (−1)σ(a,b)σ(c,d)dξ̃cd(t).dξ̃
a
b (s) = 0

and hence, using quantum Ito’s formula in the form

dξ̃ab (t).dξ̃cd(t) = G̃(t)σ(a,b)+σ(c,d)dΛ̃ab (t).dΛ̃cd(t)
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= εad.G̃(t)σ(a,b)+σ(c,d)dΛ̃cb(t) = εaddξ̃
c
b(t)

(because when a = d, we get σ(a, b) + σ(c, d) = σ(b, c)mod2), we deduce from
these results, the following Lie super-algebra representation property of the
super-symmetric noise processes:

ξ̃ab (t).ξ̃cd(s)− (−1)σ(a,b)σ(c,d)ξ̃cd(s).ξ̃
a
b (t) =

εad.ξ̃
c
b(min(t, s))− (−1)σ(a,b)σ(c,d)εcbξ̃

a
d(min(t, s))

This equation was first derived by Timothy Eyre [14] wherein he used this
formula to illustrate how representations of Lie-Super algebras can be con-
structed using the Hudson-Parthasarathy quantum stochastic calculus [2].

Now consider the super-symmetric Hudson-Parthasarathy-noisy Schrodinger
equation

dU(t) = (LbadΛab (t) +M b
adξ̃

a
b (t))U(t)

where Lba,M
b
a are system operators chosen to ensure unitarity of U(t), ie,

0 = d(U(t)∗U(t)) = dU(t)∗.U(t) + U(t)∗.dU(t) + dU(t)∗.dU(t)

This happens iff
(Lab )∗ + Lba + (Ldb)

∗Lcaε
d
c = 0

or and likewise,
(Ma

b )∗ +M b
a + (Md

b )∗M c
aε
d
c = 0

Note that the ξ̃ab processes have memory while the Λab processes do not have
memory. By this, we mean that Λab (t2)−Λab (t1) commutes with Λab (t4)−Λab (t3)

when t1 < t2 < t3 < t4 but this property is not shared by the process ξ̃ab .
A suitable candidate for the input non-demolition measurement process is

therefore a linear combination of Bosonic noise Λab (t), a, b = 0, 1, ..., N and thje

supersymmetric counting processes ξ̃aa(t) = Λ̃aa(t), a = 1, 2, ..., N . Thus, we take
as our input measurement process

Yi(t) = cbaΛab (t) + d(a)Λ̃aa(t)

where summation over the repeated indices a, b is implicitly being assumed.
Here, to maintain self-adjointedness of Yi(t), we require to assume that cab = c̄ba
and d(a) = d̄(a). This form of the measurement process is a generalization of
that given in John Gough et.al [Fermionic filter] wherein the input measure-
ment consisted of Bosonic noise (either quantum Brownian motion or Bosonic
counting process) plus Fermionic counting noise. In the present situation, the in-
put measurement consists of a mixture of Bosonic quantum Brownian motion,
Bosonic counting processes and Fermionic counting processes in the different
channels.

Therefore, the measured output non-demolition process obtained by passing
the input measurement process through the HP system is given by

Yo(t) = U(t)∗Yi(t)U(t)
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We require to show that Yo(.) satisfies the non-demolition property, ie, firstly,
that it is an a Abelian family of observables, ie, [Yo(t), Yo(s)] = 0∀t, s and sec-
ondly, that for any T > t, Yo(t) commutes with jT (X.G̃(T )m) = U(T )∗XG(T )mU(T ),m =
0, 1 where X is any system observable. To prove the non-demolition property,
we first show that

Theorem 1:
dT (U(T )∗Yi(t)U(T )) = 0, T ≥ t

where dT denotes differential w.r.t T .
Proof: Let T ≥ t. Owing to the conditions on the system operators Lba,M

b
a

that ensure unitarity of U(T ) and the fact that Yi(t) commutes with all the the
system operators and that Yi(t) also commutes with the Bosonic noise differen-
tials dΛab (T ), with G̃(T ) and with dΛ̃ab (T ), we can easily deduce that

dT (U(T )∗Yi(t)U(T )) = dU(T )∗Yi(t)U(T )+U(T )∗Yi(t)dU(T )+dU(T )∗Yi(t).dU(T ) = 0, T ≥ t

Note that

dU(T )∗ = U(T )∗(Lba)∗dΛba(T ) + (M b
a)∗G̃(T )σ(a,b)dΛ̃ba(T ))

and
dU(T ) = (LbadΛab (T ) +M b

aG̃(T )σ(a,b)dΛab (T ))U(T )

and Yi(t) commutes with all the terms (Lba)∗, Lba, (M
b
a)∗,M b

a, dΛba(T ), dΛ̃ba(T ), G̃(T ).
The only difficult part here is the proof that Yi(t) commutes with G̃(T ). To
prove this we require to show that Yi(t) commutes with Λ̃(T ) =

∑n
c=r+1 Λ̃cc(T ).

But that is immediate since Λab (t) commutes with Λ̃cc(T ) (The two processes op-
erate in different components of the tensor product of two Boson Fock spaces)
and also that Λ̃aa(t) commutes with Λ̃cc(T ) because of the fact that for t 6= s,
[dΛ̃aa(t), dΛ̃cc(s)] = 0 and

dΛ̃aa(t)dΛ̃cc(t) = dΛ̃cc(t).dΛ̃aa(t)

= εac .dΛ̃cc(t)

Corollary 1: Yo(t) = U(T )∗Yi(t)U(T )∀T ≥ t.
Proof: Immediate.
This corollary immediately implies that [Yo(t), Yo(s)] = 0∀t, s. In fact, choos-

ing T > t, s and applying this theorem gives

[Yo(t), Yo(s)] = [U(T )∗Yi(t)U(T ), U(T )∗Yi(s)U(T )] = U(T )∗[Yi(t), Yi(s)]U(T ) = 0

since obviously Yi(.) forms an Abelian family.
Theorem 2: [Yo(t), jT (XG̃(T )m)] = 0,m = 0, 1, T ≥ t for all system opera-

tors X.
Proof: For T ≥ t, we write Yo(t) = U(T )∗Yi(t)U(T ) and then proving

the result amounts to proving that [Yi(t), X.G̃(T )m] = 0 for T ≥ t. But Yi(t)
commutes with X and also with G̃(T ) as observed in Theorem 1. This completes
the proof.
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Note that by non-demolition, we mean that Yo(t) commutes with Yo(s) for
all s 6= t and secondly that jT (XG(T )m) commutes with Yo(t) for all T ≥ t and
for m = 0, 1.

Now let ηi(t) be the Abelian algebra generated by Yi(s), s ≤ t and let ηo(t)
be the Abelian algebra generated by Yo(s), s ≤ t. Note that this latter is Abelian
because in view of what we have just noted, ηo(t) = U(t)∗ηi(t)U(t) (ie, because
Yo(s) = U(t)∗Yi(s)U(t), t ≥ s). Since we have just proved that jt(X.G(t)m)
commutes with ηo(t) = σ(Yo(s) : s ≤ t), it follows that we can talk of the
conditional expectations

πm,t(X) = E(jt(X.G̃(t)m)|ηo(t)),m ≥ 0

Now,

dYo(t) = d(U(t)∗Yi(t)U(t)) = dYi(t) + dU(t)∗dYi(t)U(t) + U(t)∗dYi(t)dU(t)

because of the unitarity of U(t) and the fact that

dU(t)∗Yi(t)U(t) + U(t)∗Yi(t)dU(t) + dU(t)∗Yi(t)dU(t) = 0

since Yi(t) commutes with all the system operators and also with dΛab (t), dΛ̃ab (t)

and G̃(t). This latter statement again would not be true if Yi(t) contained a

term ξ̃ab (t) because then ξ̃ab (t) =
∫ t

0
G̃(s)σ(a,b)dΛ̃ab (s) does not commute with

G̃(t) since dΛ̃ab (s) does not commute with G̃(t) for s ≤ t. Now we can assume
that

dπm,t(X) = Fm,t(X)dt+
∑
k≥1

Gm,k,t(X)(dYo(t))
k

where Fm,t(X), Gm,k,t(X) are all η0(t) measurable. Obviously, this filter is
commutative because the η0(.) is a commuting family of algebras. Let C(t)
satisfy

dC(t) =
∑
k≥1

fk(t)C(t)dYo(t)
k, t ≥ 0, C(0) = 1

where the f ′k are complex valued functions. Then, consider the orthogonality
principle

E[(jt(X.G̃(t)m)− πm,t(X))C(t)] = 0−

Application of Ito’s formula and use of the arbitrariness of fk(t)′s then gives us

E[(djt(X.G̃(t)m)− dπm,t(X))|ηo(t)) = 0−−− (a)

E[(jt(X.G̃(t)m)− πm,t(X))dYo(t)
k|ηo(t)]

+E[(djt(X.G̃(t)m)− dπm,t(X))dYo(t)
k|ηo(t)] = 0−−− (b)

Now, we have

dYo(t) = dYi(t) + dU(t)∗dYi(t)U(t) + U(t)∗dYi(t)dU(t)

11



= dYi(t) + jt((L
b
a)∗)dΛba(t)dYi(t) + jt(L

a
b )dYi(t)dΛba(t)

+jt((M
b
a)∗G̃(t)σ(a,b))dΛ̃ba(t)dYi(t) + jt(M

a
b G̃(t)σ(a,b))dYi(t)dΛ̃ba(t)

Now,
dΛba(t)dYi(t) = cµνdΛba(t).dΛνµ(t)

= cµν ε
b
µdΛνa(t)

dYi(t)dΛba(t) = cµνdΛνµ(t)dΛba(t)

= cµν ε
ν
adΛbµ(t)

dΛ̃ba(t)dYi(t) = d(c)dΛ̃ba(t)dΛ̃cc(t) = d(c)εbcdΛ̃ca(t)

dYi(t)dΛ̃ba(t) = d(c)dΛ̃cc(t)dΛ̃ba(t) = d(c)εcadΛ̃bc(t)

with summation over the repeated index c being implied.
Thus, we can write

dYo(t) = jt(K
a
b )dΛba(t) + jt(Q

a
b G̃(t)σ(a,b))dΛ̃ba(t)

where Ka
b are system operators expressible in terms of cab , L

a
b while Qab are

system operators expressible in terms of d(a),Ma
b .

Now writing

dYo(t)
m = jt(K

a
b (m))dΛba(t) + jt(Q

a
b (m)G̃(t)σ(a,b))dΛ̃ba(t),m ≥ 1,

we derive the recursions:

jt(K
a
b (m+ 1))dΛba(t) + jt(Q

a
b (m+ 1)G̃(t)σ(a,b))dΛ̃ba(t)

= jt(K
c
dK

a
b (m))dΛdc .dΛba+

+jt(Q
c
dQ

a
b (m)G̃(t)σ(c,d)+σ(a,b))dΛ̃dc .dΛ̃ba

= jt(K
c
dK

a
b (m))εdadΛbc + jt(Q

c
dQ

a
b (m))G̃(t)σ(b,c))εdadΛ̃bc

and hence,

Kc
b (m+ 1) = εdaK

c
dK

a
b (m), Qcb(m+ 1) = εdaQ

c
dQ

a
b (m)

Equivalently, in matrix notation,

K(m+ 1) = KεK(m), Q(m+ 1) = Qε.Q(m),Ka
b (1) = Ka

b , Q
a
b (1) = Qab

yielding the solution

K(m) = (Kε)m−1K,Q(m) = (Qε)m−1Q,m ≥ 1,K(1) = K,Q(1) = Q,m ≥ 1

Thus, we also get

E(jt(X.G̃(t)m)(dYo(t))
k|ηo(t))

12



= E(jt(X.G̃(t)m)(jt(K
a
b (k))dΛba(t) + jt(Q

b
a(k)G̃(t)σ(a,b))dΛ̃ba(t))|ηo(t))

= E(jt(X.K
a
b (k)G̃(t)m)dΛba(t) + jt(XQ

a
b (k)G̃(t)m+σ(a,b))dΛ̃ba(t))|ηo(t))

= πm,t(XK
a
b (k))ub(t)ūa(t)dt+ πm+σ(a,b),t(XQ

a
b (k))ũb(t)̄̃ua(t)∗dt

Now, we compute

dG̃(t) = ((−1)Λ̃(t)+1) − (−1)Λ̃(t))dΛ̃(t)

= −2G̃(t)dΛ̃(t), Λ̃(t) =

N∑
k=r+1

Λ̃kk(t)

and more generally,

dG̃(t)m = d(−1)mΛ̃(t)

= [(−1)m(Λ̃(t)+1) − (−1)mΛ̃(t)]dΛ̃(t)

= ((−1)m − 1)G̃(t)mdΛ̃(t)

= −2ρmG̃(t)mdΛ̃(t)

where ρm = 1 if m is odd and = 0 if m is even. Note that G̃(t)m = 1 if m
is even because the eigenvalues of the observable Λ̃(t) are all zero or one since
Λ̃(t)2 = Λ̃t(H)2 = Λ̃t(H

2) = Λ̃t(H) = Λ̃(t), or equivalently since (dΛ̃(t))2 =
dΛ̃(t) and dΛ̃(t).dΛ̃(s) = 0 for t 6= s. Now,

djt(X.G̃(t)m) = d(U(t)∗X.G̃(t)mU(t))

= jt(X.dG̃(t)m) + dU(t)∗XG̃(t)mU(t) + U(t)∗XG̃(t)mdU(t)

+dU(t)∗X.G̃(t)mdU(t) + dU(t)∗X.dG̃(t)m)U(t)

+U(t)∗X.dG̃(t)mdU(t)

= jt(X.dG̃(t)m) + dU(t)∗X.dG̃(t)m)U(t) + U(t)∗X.dG̃(t)mdU(t)

+jt((L
a
b )∗XG̃(t)m)dΛab (t) + jt((M

a
b )∗XG̃(t)σ(a,b)+m)dΛ̃ab (t)

+jt(X.L
b
aG̃(t)m)dΛab (t) + jt(X.M

b
aG̃(t)m+σ(a,b))dΛ̃ab (t)

+jt((L
a
b )∗XLcdG̃(t)m)dΛab .dΛdc

+jt((M
a
b )∗XM c

dG̃(t)m+σ(a,b)+σ(c,d))dΛ̃ab .dΛ̃dc

Note that dΛ̃ab (t), dΛab (t) and system operators, all commute with G̃(t). Now
using the commutativity of system operators with noise operators and quantum
Ito’s formula (note that dΛ̃ab (t).dΛcd(t) = 0), we get

dU(t)∗X.dG̃(t)mU(t)

= −2ρmU(t)∗(Ma
b )∗XG̃(t)m+σ(a,b)dΛ̃ab (t)dΛ̃(t)U(t)

13



= −2ρmjt((M
a
b )∗X.G̃(t)m+σ(a,b))

M∑
k=r+1

dΛ̃ab (t)dΛ̃kk(t)

= −2ρmjt((M
a
b )∗X.G̃(t)m+σ(a,b))

M∑
k=r+1

εakdΛ̃kb (t)

= −2ρmθa.jt((M
a
b )∗XG̃(t)m+σ(a,b))dΛ̃ab (t)

where θa = θ(a−r−1) which equals unity for N ≥ a ≥ r+1 and zero otherwise.
Likewise,

U(t)∗X.dG̃(t)mdU(t) = −2ρmθa.jt(X.M
b
aG̃(t)m+σ(a,b))dΛ̃ab (t)

Thus,
djt(X.G̃(t)m) = A+B

where

A = −2ρm.jt(XG̃(t)m)dΛ̃(t)− 2ρmθa.jt((XM
b
a + (Ma

b )∗X)G̃(t)m+σ(a,b))dΛ̃ab (t)

= jt(φ(1, b, a,m,X)G̃(t)m)dΛ̃ab (t) + jt(φ(2, b, a,X)G̃(t)m+σ(a,b))dΛ̃ab (t)

where

φ(1, b, a,m,X) = −2ρmθaδ(a− b)X,φ(2, b, a,X) = −2ρmθa(XM b
a + (Ma

b )∗X),

and
B = jt((L

a
b )∗XG̃(t)m)dΛab (t) + jt((M

a
b )∗XG̃(t)σ(a,b)+m)dΛ̃ab (t)

+jt(X.L
b
aG̃(t)m)dΛab (t) + jt(X.M

b
aG̃(t)m+σ(a,b))dΛ̃ab (t)

+jt((L
d
b)
∗XLcaG̃(t)m)εdc .dΛab + jt((M

d
b )∗XM c

aG̃(t)m+σ(b,a))εdcdΛ̃ab (t)

= jt(φ(3, b, a,X)G̃(t)m)dΛab (t) + jt(φ(4, b, a,X)G̃(t)m+σ(b,a))dΛ̃ab (t)

where

φ(3, b, a,X) = (Lab )∗X+XLba+εdc(L
d
b)
∗XLcaφ(4, b, a,X) = (Ma

b )∗X+X.M b
a+εdc(M

d
b )∗XM c

a

Thus, combining all of the above equations, we get

djt(X.G̃(t)m)

= jt(φ(1, b, a,m,X)G̃(t)m)dΛ̃ab (t)

+jt(φ(2, b, a,X)G̃(t)m+σ(a,b))dΛ̃ab (t)

+jt(φ(3, b, a,X)G̃(t)m)dΛab (t)

+jt(φ(4, b, a,X)G̃(t)m+σ(b,a))dΛ̃ab (t)

= jt(ψ(1, b, a,X)G̃(t)m)dΛab (t) + jt(ψ(2, b, a,X)G̃(t)m)dΛ̃ab (t)

+jt(ψ(3, b, a,X)G̃(t)m+σ(b,a))dΛ̃ab (t)

14



where

ψ(1, b, a,X) = φ(3, b, a,X), ψ(2, b, a,X) = φ(1, b, a,X), ψ(3, b, a,X) = φ(2, b, a,X)+φ(4, b, a,X)

Then,

E(djt(X.G̃(t)m)|ηo(t)) = [πm,t(ψ(1, b, a,X))ua(t)ūb(t)

+πm,t(ψ(2, b, a,X))ũa(t)∗ũb(t)

+πm+σ(b,a),t(ψ(3, b, a,X))ũa(t)∗ũb(t)]dt

because the expectation is being computed in the state |f > ⊗|φ(u) ⊗ φ(ũ) >
where |f > is a pure system state and |φ(u) >= exp(−|u|2/2)|e(u) > is a bath
coherent state for the first kind of Bosons and likewise |φ(ũ) > for the second
kind. Note that the total coherent state of the bath is |φ(u) > ⊗|φ(ũ) >=
|φ(u⊕ ũ) >. Note that the noise operators Λab (t) act on the first kind of Bosons

while Λ̃ab (t) act on the second kind. Equivalently, the annihilation and creation
fields are a(u⊕ ũ), a(u⊕ ũ)∗ and the creation and annihilation operators of the
first kind are Aa(t)∗ = a(eaχ[0,t] ⊕ 0)∗, Aa(t) = a(eaχ[0,t] ⊕ 0) while those of

the second kind are Ãa(t)∗ = a(0⊕ eaχ[0,t])
∗, Ãa(t) = a(0⊕ eaχ[0,t]). Here, the

Hilbert space for the first kind of Bosons is H1 = Cd ⊗L2(R+) and the Hilbert
space for the second kind of Bosons H2 is a copy of H1. The two spaces are
orthogonal to each other and the Boson Fock space for the entire system is

Γs(H) = Γs(H1 ⊕H2) = Γs(H1)⊗ Γs(H2),H = H1 ⊕H2

Thus, we have

dΛab (t) = dAb(t)
∗dAa(t)/dt, dΛ̃ab (t) = dÃb(t)

∗dÃa(t)/dt

Note that the general annihilation field can be expressed as

a(u⊕ ũ) = a(u⊕ 0) + a(0⊕ ũ)a(u⊕ 0) = a1(u)⊕ 0, a(0⊕ ũ) = 0⊕ a2(ũ)

where a1, a2 are copies of each other acting respectively in the component Boson
Fock spaces Γs(H1) and Γs(H2) respectively. a(u ⊕ ũ) acts in the total Boson
Fock space Γs(H) = Γs(H1)⊗ Γs(H2)

Further,
E(jt(X.G̃(t)m)(dYo(t))

k|ηo(t))

= E(jt(X.G̃(t)m)(jt(K
a
b (k))dΛba(t) + jt(Q

a
b (k)G̃(t)σ(a,b)dΛ̃ba(t))|ηo(t))

= E(jt(XK
a
b (k)G̃(t)m)dΛba(t) + jt(X.Q

a
b (k)G̃(t)σ(a,b))dΛ̃ba(t)|ηo(t))

= πm,t(XK
a
b (k))ub(t)ūa(t)dt+ πm+σ(a,b),t(XQ

a
b (k))ũb(t)ũa(t)∗dt

In particular, we note that taking X = I,m = 0

E(dYo(t)
k|ηo(t)) = π0,t(K

a
b (k))ub(t)ūa(t)dt+ πσ(a,b),t(Q

a
b (k))ũb(t)ũa(t)∗dt
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Also,

E(πm,t(X)dYo(t)
k|ηo(t)) = πm,t(X)π0,t(K

a
b (k))ub(t)ūa(t)dt+πm,t(X)πσ(a,b),t(Q

a
b (k))ũb(t)ũb(t)

∗dt,

Further,

E(djt(X.G̃(t)m).dYo(t)
k|ηo(t)) = E[[jt(ψ(1, b, a,X)G̃(t)m)dΛab (t)

+jt(ψ(2, b, a,X)G̃(t)m)dΛ̃ab (t)

+jt(ψ(3, b, a,X)G̃(t)m+σ(b,a))dΛ̃ab (t)][jt(K
c
d(k))dΛdc(t)+jt(Q

c
d(k)G̃(t)σ(c,d))dΛ̃dc(t)]|ηo(t)]

= E[[jt(ψ(1, b, a,X)Kc
d(k)G̃(t)m).dΛab (t)dΛdc(t)|ηo(t)]

+E[jt(ψ(2, b, a,X)Qcd(k)G̃(t)m+σ(c,d))dΛ̃ab (t).dΛ̃dc(t)|ηo(t)]

+E[jt(ψ(3, b, a,X)Qcd(k)G̃(t)m+σ(b,a)+σ(c,d))dΛ̃ab (t)dΛ̃dc(t)|ηo(t)]

= E[[jt(ψ(1, b, a,X)Kc
d(k)G̃(t)m)εacdΛdb(t)|ηo(t)]

+E[jt(ψ(2, b, a,X)Qcd(k)G̃(t)m+σ(c,d))εacdΛ̃db(t)|ηo(t)]

+E[jt(ψ(3, b, a,X)Qcd(k)G̃(t)m+σ(b,a)+σ(c,d))εacdΛ̃db(t)|ηo(t)]

= πm,t(ψ(1, b, a,X)Kc
d(k))εacud(t)ūb(t)dt

+πm+σ(c,d),t(ψ(2, b, a,X)Qcd(k))εac ũd(t)ũb(t)
∗dt

+πm+σ(b,d),t(ψ(3, b, a,X)Qcd(k))εac ũd(t)ũb(t)
∗dt

Finally, for k ≥ 1

E(dπm,t(X).dYo(t)
k|ηo(t)) =

∑
r≥1

E(Gm,r,t(X)dYo(t)
k+r|ηo(t))

=
∑
r≥1

Gm,r,t(X)E(dYo(t)
k+r|ηo(t))

=
∑
r≥1

Gm,r,t(X)(π0,t(K
c
d(k+ r))ud(t)ūc(t)dt+πσ(c,d),t(Q

c
d(k+ r))ũd(t)uc(t)

∗dt)

and

E(dπm,t(X)|ηo(t)) = Fm,t(X)dt+
∑
r≥1

Gm,r,t(X)(π0,t(K
c
d(r))ud(t)ūc(t)dt+πσ(c,d),t(Q

c
d(r))ũd(t)ũc(t)

∗dt

In this way, all the components required for iteratively determining the fil-
ter on a real time basis have been obtained. Specifically, from (a) and the
subsequent equations,

πm,t(ψ(1, b, a,X))ua(t)ūb(t)+πm,t(ψ(2, b, a,X))ũa(t)ũb(t)
∗+πm+σ(b,a),t(ψ(3, b, a,X))

−Fm,t(X)−
∑
k≥1

Gm,k,t(X)(π0,t(K
a
b (k))ub(t)ūa(t)+πσ(a,b),t(Q

a
b (k))ũb(t)ũa(t)∗) = 0,m = 0, 1−−−(c)
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where summation over the repeated indices a, b = 0, 1, ..., N is implied. From
(b) and the subsequent equations,

πm,t(XK
a
b (k))ub(t)ūa(t) + πm+σ(a,b),t(XQ

a
b (k))ũb(t)ũa(t)∗

−πm,t(X)π0,t(K
a
b (k))ub(t)ūa(t)− πm,t(X)πσ(a,b),t(Q

a
b (k))ũb(t)ũa(t)∗

+πm,t(ψ(1, b, a,X)Kc
d(k))εacud(t)ūb(t)

+πm+σ(c,d),t(ψ(2, b, a,X)Qcd(k))εac ũd(t)ũb(t)
∗dt

+πm+σ(b,d),t(ψ(3, b, a,X)Qcd(k))εac ũd(t)ũb(t)
∗dt

−
∑
r≥1

Gm,r,t(X)(π0,t(K
a
b (k + r))ub(t)ūa(t) + πσ(a,b),t(Q

a
b (k + r))ũb(t)ua(t)∗)

= 0,m = 0, 1, k ≥ 1−−− (d)

[c] and [d] constitute an infinite system of linear equations to solve for Fm,t(X), Gm,r,t(X),m =
0, 1, r ≥ 1

5 Conclusions

We have determined the basic quantum filter equation for estimating on a real
time basis the state of a quantum system coupled to a quantum noisy bath when
the bath supplies both Bosonic and Fermionic noise. The non-demolition mea-
surement process in full generality turns out to be a superposition of Bosonic cre-
atiion, annihilation and conservation/counting processes and Fermionic count-
ing processes passed through the HP system. It turns out that measurements on
the Fermionic creation and annihilation processes do not yield non-demolition
measurements owing to them having memory in the sense that their increments
over non-overlapping time intervals do not mutually commute.

The crucial steps involves computation of the quantum stochastic differen-
tials djt(X(−1)Λt) apart from djt(X) where X is a system operator and Λt is
a quantum Poisson noise. Using these differentials, we calculate the coupled
stochastic differential equation for the conditional expectations for π0,t(X) =

E[jt(X)|η0(t)] and π1,t(X) = E[jt(X(−1)Λ̃t)|η0(t)] where X is a system oper-
ator and η0(t) is the output measurement Abelian algebra upto time t. These
differential equations are obtained by applying the orthogonality principle with
the hypothesis that dπk,t(X), k = 0, 1 can be expressed as polynomials in the
output measurement differentials dY0(t). In order to do so, we have deter-
mined a scheme for obtaining, (dY0(t))m,m = 0, 1, 2, 3.... in terms of dA, dA†, dΛ
with coefficients of the form jt(Kj(m)) where Kj(m) are system operator alge-
bra elements. The final result is an algorithm for determining the coefficients
Fmt(X), Gm,k,t(X) in the filter dπm,t(X) = Fmt(X)dt+

∑
k≥1Gm,k,t(X)(dY0(t))k,m =

0, 1.
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