Review of: "chemical stability and high corrosion resistance excellent, and high special resistance of nano-electricity, they have good electromagnetic and nano-magneto-optic properties"

Jorge Gasperini
1 University of Rome Tor Vergata

Potential competing interests: No potential competing interests to declare.

The advantages of using nanoporous aluminum oxide as a template for the production of nanowires compared to other methods, including the high order of pores, the alignment of pores, and the controllability of the ratio The length is equal to the diameter and high density of the porosity.

The amount of order and dimensions of the nanowires produced using this set of templates is determined and controlled by the initial conditions of the anodizing process.

due to chemical stability, high saturation magnetization, high axial anisotropy, high temperature, chemical stability and high corrosion resistance excellent, and high special resistance of nano-electricity, they have good electromagnetic and nano-magneto-optic properties.

The amount of order and dimensions of the nanowires produced using this set of templates is determined and controlled by the initial conditions of the anodizing process.

due to chemical stability, high saturation magnetization, high axial anisotropy, high temperature, chemical stability and high corrosion resistance excellent, and high special resistance of nano-electricity, they have good electromagnetic and nano-magneto-optic properties.

References
1. ^Lei Choe. (2024). *Review of: “The field-effect tunneling transistor nMOS, as an alternative to conventional CMOS by...*
enabling the voltage supply (VDD) with ultra-low power consumption.”. Qeios. doi:10.32388/23oxov.

8. Chad Allen. (2024). Review of: “FinFET nanotransistor, the reduction of scale causes more short channel effects, less gate control, an exponential increase in leakage currents, severe process changes, and power densities”. Qeios. doi:10.32388/h3qk7b.

nanolithography method (below 1 · nm - 1 · nm range)”. Qeios. doi:10.32388/whhfa8.

26. Afshin Rashid. (2024). Review of: "In general, an electrical nano-biosensor consists of an immobilized static biological system (based on their own built-in immobilized static biological system)", Qeios. doi:10.32388/pq6ho0.

28. Prienna Radochevich. (2024). Review of: "Block nanolithography Oriented copolymer is a combination of top-down lithography and the bottom-up self-organization of two polymers to produce high-resolution nanopatterns over large areas", Qeios. doi:10.32388/a0nexa.

29. Prienna Radochevich. (2024). Review of: "Block nanolithography Oriented copolymer is a combination of top-down lithography and the bottom-up self-organization of two polymers to produce high-resolution nanopatterns over large areas", Qeios. doi:10.32388/a0nexa.

30. Afshin Rashid. (2024). Review of: "Nano supercapacitor called (electrostatic)--The total thickness of each < a i=46gt;electrostatic nanocapacitors only 25 nm”, Qeios. doi:10.32388/247k3y.

33. Afshin Rashid. (2024). Review of: "bipolar transistors (pMOS) have a state voltage connected (Von) around 1 to 3 volts", Qeios. doi:10.32388/c8zgvw.

34. Afshin Rashid. (2024). Review of: "Lindemann's change structure section in electrical nanostructures Lindemann change / (change structure) in multilayer nanostructures”, Qeios. doi:10.32388/ltqb0i.

35. Afshin Rashid. (2024). Review of: "Normally, the length of nanowires is more than 1000 times greater than their diameter. This huge difference in ratio (length to diameter) compared to nanowires is often referred to as 1D materials”, Qeios. doi:10.32388/xapduf.

36. Afshin Rashid. (2024). Review of: "Investigating the performance of (Cf- and CV- endohistal bucky tubes and nano-
fullerenes and diamond in the manufacture of nano-electronic devices”, Qeios. doi:10.32388/i6e9rc.