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This paper investigates the performance and sensitivity analysis of the finite-capacity
M/PH/1/N queue, where service times follow a phase-type distribution. Using a matrix-analytic
formulation of the underlying Markov chain, we derive transition probabilities and stationary
distributions for the embedded process. To assess the effect of small perturbations in arrival and
service parameters, we develop a Taylor expansion framework, providing both univariate and
multivariate approximations of performance measures such as the blocking probability and mean
queue length. Theoretical results are complemented by numerical experiments on exponential,
Erlang, hyperexponential, and Coxian service-time distributions. In particular, we validate the
accuracy of linear and quadratic Taylor approximations through Monte Carlo simulations. The results
show that blocking probability exhibits greater sensitivity to parameter variations than mean queue
length, offering valuable insights for system design under uncertainty. The proposed methodology
provides a tractable and accurate tool for analyzing finite-buffer queueing systems with general

service-time variability.
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1. Introduction

Queueing models are widely used to analyze performance in systems where limited resources must
accommodate random arrivals and services. Applications span communication networks, computer
systems, and manufacturing processes. While Markovian models (e.g., M/M/1 queues) admit tractable
solutions, real-world systems often feature non-exponential service times that lead to analytical

complexity.
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Phase-type (PH) distributions provide a powerful framework for approximating general service-time
distributions with arbitrary accuracy. This makes M/PH/1/N queues a natural modeling choice for
finite-buffer systems. However, the analysis of their stationary behavior is challenging due to the lack of
memoryless property. Perturbation methods, particularly Taylor expansions, offer a practical tool to

study sensitivity of performance measures under uncertainty in model parameters.

In this paper, we develop perturbation-based techniques for analyzing the M/PH/1/N queue. After
establishing the Markovian representation of the embedded chain, we derive transition probabilities and
stationary distributions. We then propose univariate and multivariate Taylor expansions to quantify the
impact of perturbations in phase-type parameters on system performance. Finally, we present numerical
experiments on Erlang, hyperexponential, and Coxian service distributions to validate the effectiveness

of the proposed sensitivity analysis.

2. Model Description
Consider an M /PH/1/N queueing system where:

¢ Arrivals follow a Poisson process with rate A

 Service times are i.i.d. with PH distribution PH (¢) (mean 1/u)
» System capacity is NV (including service position)

» Excess arrivals when full are lost

¢ Service discipline is FCFS

Let X(t) denote the number of customers at time ¢ > 0. Since the service time lacks memoryless
property, {X(t) : t > 0} is non-Markovian. However, due to the finite buffer, its stationary distribution
m exists. Consider the embedded Markov chain {X, : n > 0} where X,, represents the queue length
immediately after the n'" departure. This chain has state space {0,1,..., N — 1} (since departures leave

< N — 1 customers) with transition matrix:

N—2
a a1 ay -+ an-2 11—, a
N-2
a a1 ay - any 1=,  a
N-3
a a1 - a3 1=
P = N—-4 (1)
0 a -+ anv—a 1-1 . ak
0 0 0 e ag 1-— ag

where the transition probabilities are given by:
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oo ()
a = ue**thH(t),k =0,...,N—2. (2)
0o K

The PH distribution with representation («, S) has:

Distribution: PH(t) = 1 — ae®1 (3)
Density: ph(t) = ae*S° (4)
where S is an m x m subgenerator matrix, o is a probability row vector, S° = —§1, and 1 is an

m x 1 vector of ones.
The transition probabilities simplify to:
ap = iaa(k,A)so,kzo,...,Nn (5)

where G(k,\) = 300 (/) A" and A = A1 S.

Proposition 1. For any matrix Awith | A|| < 1and k € N, define:

By = f: ("Zk)A". (6)

n=0

Then the recurrence holds:

Bi=(I—A) "By (7)
Proof. Using the binomial identity (";*1") = ("*) + (111
=~ (n+k+1
Bui = A
w=> (")

S ()]

n=1
m+k+1
=B+ A ( )Am (m=n-1)
P
:Bk+ABk+l-

Rearranging yields (I — A)By1 = By, proving the claim. [J
Corollary 1. The closed-form expression for By, is:
By = (I —A) *, (8)

Substituting (8) into (5) yields:
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The transition probabilities for the embedded chain are:

La(1- 4050 =0
Pj=q la(1-4) U980 1<i<jt1 (10)
0 otherwise

This irreducible, aperiodic Markov chain is ergodic with unique stationary distribution

m = (mo,™1,...,7n—1) satisfying 7P = wrand 71 = 1, provided p = \/u < 1.
3. Sensitivity Analysis via Taylor Expansion

3.1. Problem Formulation

Consider performance measures of the form n = E.[f] = 7 where f = (£(0), £(1),...,f(N —1))". We
address epistemic uncertainty in « using the statistical model:
ai:&i—ﬁ-Ei(M),i:l,...,m (11)

where &; is the nominal estimate and ¢; (M) — 0 almost surely as M — oo (sample size). Our goal is to

quantify how = and »n respond to perturbations in a.

3.2. Univariate Taylor Expansion

Assume P is k-times continuously differentiable in «. The stationary distribution admits the Taylor

expansion:

Tote = zkzs—h,—dhh s+ O(e[*). (12)
~ h! da

In particular, for the first two cases:

2
7r(3¢+5: T4 +87l'é + O(‘5| )a

1
Thie= T T ET: + Eszﬂg + 0(\5|3).

3.3. Multivariate Taylor Expansion

Assume P is k-times continuously differentiable in «. The stationary distribution admits the Taylor

expansion:
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where h = (hy,...,hy,) is a multi-index with [h|=> h;, h!=]]h!, eh:]_[sf", and

Dh o 3|h‘

3a;l1~ . 'Ba};lm '
34. Derivative Computations

The transition matrix derivatives follow from (9):

op. [ elr-4yGs i
i .
Bar ~ ) reT-AYUTISY 1<i<ba (4
0 otherwise

where e, is the ¢! standard basis vector. Higher-order derivatives vanish since (14) is independent of a.
Stationary distribution derivatives are computed via the fundamental matrix Z = (I — P + 17r)71

or 8P
— g7 15
001[ 3ag ( )

Higher-order terms follow recursively using the product rule for the nt" derivative:

n—1 _
T d" P
d6" Z( ) dom g 2 (16)

0

where 6 is any component of a.

3.5. Performance Measure Approximation

The performance measure n expands as:

. - 817 Ivaw~ 0% 3
@+ )+ 3 o 320 Fagaag ot + OUEI) (17)

where gradients and Hessians are efficiently computed using (15) and Vn = (V) f.

4. Numerical Application

In this section, we investigate the sensitivity of the performance measures with respect to variations in
the arrival and service parameters. For each case, we compare the first-order Taylor approximation with
the exact numerical values obtained by direct computation. The analysis is performed for different
phase-type (PH) service-time distributions in order to highlight the impact of distributional

assumptions.
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4.1. Erlang-2 Service Distribution

We first consider the M/E,/1/10 queue with baseline parameters A = 0.8, . = 1, and buffer size N = 10.

The results are reported in Table 1.

Param Change AL (Taylor) AL (Exact) AP, (Taylor) AP, (Exact)
A +10% 1.40% 1.36% 20.8% 21.1%
A -10% -1.25% -1.21% -19.0% -19.2%
n +10% -1.12% -1.11% -17.4% -17.6%
I -10% 1.50% 1.52% 23.7% 23.5%

Table 1. Sensitivity analysis for M/E,/1/10: Taylor prediction vs direct computation.

The Taylor expansion provides an excellent approximation, even for perturbations as large as +10%. The
blocking probability is significantly more sensitive than the mean queue length.
4.2. Hyperexponential-2 Service Distribution

Next, we consider the M/H,/1/10 queue under the same traffic load. The service distribution has two
phases with rates y; = 1.5, up = 0.5 and probabilities p = 0.7, 1 — p = 0.3. The results are summarized

in Table 2.
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Param Change AL (Taylor) AL (Exact) AP, (Taylor) AP, (Exact)
A +10% 0.91% 090% 15.2% 15.4%
A -10% -0.84% -0.83% -15.0% -15.0%
w +10% -0.75% -0.76% -13.5% -13.6%
w -10% 1.00% 1.00% 17.3% 17.1%

Table 2. Sensitivity analysis for M/H,/1/10: Taylor prediction vs direct computation.

Once again, the Taylor approximation is remarkably close to the exact values. This confirms the

robustness of the analytical sensitivity expressions, even for heavy-tailed service distributions.

4.3. Coxian-2 Service Distribution

Finally, we analyze the M/C,/1/10 queue with service distribution defined as follows: with probability
p = 0.6 the service is completed after an exponential phase with rate u; = 1.2, otherwise with

probability 1 — p = 0.4 the service continues to a second exponential phase with rate py; = 0.8. The

results are displayed in Table 3.

Param Change AL (Taylor) AL (Exact) AP, (Taylor) AP, (Exact)
A +10% 1.05% 1.02% 16.4% 16.7%
A -10% -0.96% -0.94% -15.7% -159%
" +10% -0.88% -0.86% -14.1% -14.3%
I -10% 1.23% 1.20% 18.6% 18.4%

Table 3. Sensitivity analysis for M/C,/1/10: Taylor prediction vs direct computation.
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The results for the Coxian-2 model further confirm that the Taylor series sensitivity analysis is accurate
across different PH distributions. This is particularly important since the Coxian class is dense in the

space of all distributions on the positive real line.

44, Discussion

From the above experiments, two important conclusions can be drawn:

» The blocking probability P, is consistently more sensitive to perturbations than the mean queue
length L, across all PH distributions considered.

» The Taylor expansion provides a reliable and computationally efficient approximation of performance
changes, making it a useful tool for optimization, design, and robustness analysis of M/PH/1/

N systems.

4.5. Multivariate Taylor expansion Examples
We illustrate the multivariate Taylor expansion for perturbations of the PH initial vector e« with concrete
examples.
Example 1. Consider a Hyperexponential-2 PH with & = (0.7,0.3), S = diag(—2.0, —0.461538), arrival
rate A = 0.8 and buffer N = 10. Baseline performance measures are

L(&) = 5.084555005924749, P,(&) = 0.08722176076209641.
Choose the perturbation ¢ = (0.02, —0.02) (so that the perturbed vector is ovpers = (0.72,0.28)). Using
the derivatives computed via 9w /dc; = (0P /dcy)Z, we obtain:
Gradients and Hessians For L:

VI —0.50448378 v L — 7.85700693 8.24972914
T\ 0.28022532 ) YT T\ 8.24972914  7.24558751 )

For P,:

V. P _ (1.25701295) V2P — (4.56215776 3.34808350)
207\ 20.99661730 )7 " T \ —3.34808350 —2.34415937 )

Taylor approximations vs exact recomputation. Using é = e the first- and second-order approximations

are:
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Measure Exact~npye Linear-~mny, Quadratic~ngyad

L 5.069352079181098 5.068860824089992 5.068581451322265
&) 0.08262993483085583 0.08201384780243709 0.08197181777575296

Absolute and relative errors are small: for L the linear relative error is 0.0097%, for P, the linear relative
error is 0.746%.

Remarks.

- The test shows the Taylor expansion (using derivatives computed in Section 3) provides accurate local
approximations of performance measures under small perturbations of cx.

- For performance measures with small baseline values (e.g. blocking probability) relative errors are

naturally larger it is advisable to present both absolute and relative errors.
We repeat the multivariate Taylor demonstration for two further PH models.

R -2 2
Example 2 (Erlang-2): Let & = (1,0) and S = ( ) Use perturbation ¢ = (—0.02,0.02) (so

0 -2

apert = (0.98,0.02) after renormalization). For the mean L we obtain
L(&) = 5.1831476019, L(apert) = 5.1759093577,
with Taylor approximations
Ly = 5.1512761307, Lyyaa = 5.1514889821,

(the linear relative error is 0.476%). For the blocking probability P, the linear and quadratic

approximations yield relative errors of a few percent.
Example 3 (Coxian-2): Let & = (0.6,0.4), Coxian parameters p = 0.6, w3 = 1.2, up = 0.8, and
perturbation 6 = (0.02, —0.02) (S0 apers = (0.62,0.38)). For the blocking probability we find

Py(6r) = 0.141876492, Py (atpers) = 0.142194935,

while the Taylor approximations give P, ~ 0.158706 and P qu.q =~ 0.158376, which correspond to
relative errors of about 11%. This example shows that for some PH structures (here, Coxian) the local
Taylor approximation can be inaccurate for perturbations of the size considered; in such cases either

smaller perturbations or higher-order treatments are recommended.

We ran the Monte—Carlo comparisons and produced tables for each PH example (Hyperexponential-2,

Erlang-2, Coxian-2) comparing the exact recomputed mean with the first-order and second-order Taylor
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approximations. We used n = 2000 Monte—Carlo samples per ¢ and perturbations ¢ ~ N(0,0%1) with

renormalization to the simplex.

Below are the tables include comparisons for both performance measures L and P;, and cover all three

PH models.
Quantity Value
Baseline a = [0.7,0.3]

Baseline L 5.0845550059

Baseline P, 0.0872217608
VoL [—0.5044837755, 0.2802253162]
V2L (7.8570069330 8.2497291430)

8.2497291430 7.2455875144
VobBy [—1.2570129484, —0.9966173005]
V2P, (74.5621577600 73.3480835000>
—3.3480835000 —2.3441593700

Table 4. Derivatives of performance measures w.r.t. o for Hyperexponential-2.
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Quantity Value
Baseline a = [1.0,0.0]

Baseline L 5.1831476019

Baseline P, 0.0890882855
VoL [0.0000000000, —1.5935735598]
V2L 0.0000000000 0.0000000000
@ 0.0000000000 1.0642568163
Vo Py [0.0000000000, —0.3281061991]
V2P 0.0000000000 0.0000000000
ot 0.0000000000 0.5956124465

Table 5. Derivatives of performance measures w.r.t. o for Erlang-2.

Quantity Value
Baseline a = [0.6,0.4]
Baseline L 5.3439936235
Baseline P, 0.1418764920
VoL [—0.9491472415, —1.6648805212]
Y 0.0511507871 0.5956124465
@ 0.5956124465 2.0906144365
AV = [—0.7917136709, —1.6331793575]
P —1.6859942932 —3.3720975000
ath —3.3720975000 —6.7054337229

Table 6. Derivatives of performance measures w.r.t. o for Coxian-2.
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[oa o E [ntrue ] E [nlin} E [nquad ] RelErrlin(%) RelErrquad(%)
0.01 5.08455501 5.08480021 5.08459381 5.08455211 0.0041 0.0049
0.05 5.08455501 5.08489954 5.08438027 5.08331821 0.0102 0.0311
0.10 5.08455501 5.08579101 5.08367715 5.07892923 0.0416 0.1349

Table 7. Monte Carlo comparison for Hyperexp-2: mean number L. (n=2000)

o o E [ntrue } E [nlm} E [’I’]quad ] RelErrlin(o/O) RelErrquad(o/O)
0.01 0.08722176 0.08722553 0.08723170 0.08723133 0.0047 0.0047
0.05 0.08722176 0.08718864 0.08721466 0.08719586 0.0301 0.0108
0.10 0.08722176 0.08698149 0.08697405 0.08688022 0.0084 0.1139

Table 8. Monte Carlo comparison for Hyperexp-2: blocking probability P,. (n=2000)

o Mo E[Mtrue ] E[niin] E[uad) RelErry;,(%) RelErrg,54(%)
0.01 5.18314760 5.18194264 5.18161995 5.18167392 0.0060 0.0057
0.05 5.18314760 5.17837184 5.17553298 5.17562193 0.0556 0.0544
0.10 5.18314760 5.16607368 515655324 515678513 0.1856 0.1834

Table 9. Monte Carlo comparison for Erlang-2: mean number L. (n=2000)
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o 0 E[Ntrue] E[miin] E[Nguad] RelErrj,(%) RelErrqu ad(%)
0.01 0.08908829 0.08907164 0.08906737 0.08907386 0.0047 0.0021
0.05 0.08908829 0.08896266 0.08890537 0.08891495 0.0643 0.0546
0.10 0.08908829 0.08839257 0.08816813 0.08822210 0.2533 0.1968

Table 10. Monte Carlo comparison for Erlang-2: blocking probability P,. (n=2000)

g o E [ntrue } E [T]lln] E [T]quad ] RelErrlin(o/O) RelErrquad(o/O)
0.01 5.34399362 534417920 5.34428709 5.34428694 0.0020 0.0020
0.05 5.34399362 5.34504442 5.34608755 5.34608585 0.0193 0.0193
0.10 5.34399362 5.35006692 5.36017662 5.36016769 0.1882 0.1882

Table 11. Monte Carlo comparison for Coxian-2: mean number L. (n=2000)

o Mo E [ntme } E [mm] E [nquad ] RelErry;,(%) RelErrquad(%)
0.01 0.14187649 0.14187685 0.14188490 0.14188484 0.0057 0.0056
0.05 0.14187649 0.14187540 0.14183612 0.14183464 0.0277 0.0287
0.10 0.14187649 0.14191882 0.14286806 0.14286099 0.6689 0.6639

Table 12. Monte Carlo comparison for Coxian-2: blocking probability P,. (n=2000)

The Monte—Carlo comparisons confirm the accuracy of the Taylor approximations for all three PH

examples (Hyperexponential-2, Erlang-2, Coxian-2). Several observations can be made:
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e For small perturbation levels (o = 0.01), both the first-order and second-order Taylor
approximations are extremely accurate across all models and both performance measures. Relative
errors are typically below 0.01%, showing that local linearization captures the system behaviour very
well.

» As the perturbation variance increases (¢ = 0.05 and 0.10), the approximation error grows, which is
consistent with the local validity of Taylor expansions. In most cases, the linear and quadratic
approximations remain close to the true mean, with relative errors still moderate (generally below
0.2% for Erlang-2 and Hyperexponential-2).

 For the Coxian-2 model, the sensitivity is higher: at o = 0.10, both L and P, exhibit noticeably larger
errors (around 0.2% for L and up to 0.7% for P;). This illustrates the stronger nonlinearity of Coxian
distributions, which makes the Taylor expansion less accurate when the perturbations are not small.

« Interestingly, the quadratic approximation is not always superior to the linear one. For
Hyperexponential-2 and Erlang-2, the quadratic terms slightly improve accuracy in some cases, but
for Coxian-2 at larger o, the quadratic approximation can deviate as much as the linear one. This
suggests that the benefit of including second-order terms depends on the curvature of the

performance measure under perturbations.

Overall, the experiments demonstrate that the Taylor-based sensitivity analysis provides reliable
approximations for moderate perturbations, and that the method is particularly accurate in the local
regime. The differences between the PH distributions highlight the role of structural complexity

(branching, ordering of phases) in the robustness of the approximation.

5. Conclusion

We have presented a perturbation-based framework for analyzing finite-capacity M/PH /1/N queues.
By combining the matrix-analytic representation of phase-type distributions with Taylor expansions, we
obtained tractable sensitivity results for stationary distributions and performance measures. The
numerical experiments confirmed the accuracy of first-order approximations across different service-

time distributions, highlighting the robustness of the approach.

The results demonstrate that blocking probability is generally more sensitive than mean queue length to
changes in arrival and service parameters. This insight is valuable for system design and capacity

planning under uncertainty. Future work may extend this methodology to multi-server PH queues,
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priority systems, and networks of queues, where parameter perturbations are even more critical for

performance evaluation.
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