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This paper investigates the performance and sensitivity analysis of the finite-capacity 

 queue, where service times follow a phase-type distribution. Using a matrix-analytic

formulation of the underlying Markov chain, we derive transition probabilities and stationary

distributions for the embedded process. To assess the effect of small perturbations in arrival and

service parameters, we develop a Taylor expansion framework, providing both univariate and

multivariate approximations of performance measures such as the blocking probability and mean

queue length. Theoretical results are complemented by numerical experiments on exponential,

Erlang, hyperexponential, and Coxian service-time distributions. In particular, we validate the

accuracy of linear and quadratic Taylor approximations through Monte Carlo simulations. The results

show that blocking probability exhibits greater sensitivity to parameter variations than mean queue

length, offering valuable insights for system design under uncertainty. The proposed methodology

provides a tractable and accurate tool for analyzing finite-buffer queueing systems with general

service-time variability.
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1. Introduction

Queueing models are widely used to analyze performance in systems where limited resources must

accommodate random arrivals and services. Applications span communication networks, computer

systems, and manufacturing processes. While Markovian models (e.g., M/M/1 queues) admit tractable

solutions, real-world systems often feature non-exponential service times that lead to analytical

complexity.
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Phase-type (PH) distributions provide a powerful framework for approximating general service-time

distributions with arbitrary accuracy. This makes    queues a natural modeling choice for

finite-buffer systems. However, the analysis of their stationary behavior is challenging due to the lack of

memoryless property. Perturbation methods, particularly Taylor expansions, offer a practical tool to

study sensitivity of performance measures under uncertainty in model parameters.

In this paper, we develop perturbation-based techniques for analyzing the    queue. After

establishing the Markovian representation of the embedded chain, we derive transition probabilities and

stationary distributions. We then propose univariate and multivariate Taylor expansions to quantify the

impact of perturbations in phase-type parameters on system performance. Finally, we present numerical

experiments on Erlang, hyperexponential, and Coxian service distributions to validate the effectiveness

of the proposed sensitivity analysis.

2. Model Description

Consider an   queueing system where:

Arrivals follow a Poisson process with rate 

Service times are i.i.d. with PH distribution   (mean  )

System capacity is   (including service position)

Excess arrivals when full are lost

Service discipline is FCFS

Let    denote the number of customers at time  . Since the service time lacks memoryless

property,   is non-Markovian. However, due to the finite buffer, its stationary distribution 

  exists. Consider the embedded Markov chain    where    represents the queue length

immediately after the   departure. This chain has state space   (since departures leave 

 customers) with transition matrix:

where the transition probabilities are given by:
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The PH distribution with representation   has:

where    is an    subgenerator matrix,    is a probability row vector,  , and    is an 

 vector of ones.

The transition probabilities simplify to:

where   and  .

Proposition 1. For any matrix   with   and  , define:

Then the recurrence holds:

Proof. Using the binomial identity  :

Rearranging yields  , proving the claim. 

Corollary 1. The closed-form expression for   is:

Substituting (8) into (5) yields:
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∞
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(α,S)

Distribution: 
Density: 

PH(t) = 1 − α 1eSt

ph(t) = αeStS 0

(3)
(4)

S m × m α = −S1S 0
1

m × 1

= αG(k,λ) ,k = 0, … ,N − 2ak
1
λ

S 0 (5)

G(k,λ) = ( )∑∞
n=0

n+k
k

An A = Sλ−1

A ∥A∥ < 1 k ∈ N

= ( ) .Bk ∑
n=0

∞
n + k

k
An (6)

= .Bk+1 (I − A)−1
Bk (7)

( ) = ( )+ ( )n+k+1
k+1

n+k
k

n+k
k+1

Bk+1 = ( )∑
n=0

∞
n + k + 1
k + 1

An

= [( ) + ( )]∑
n=0

∞
n + k

k

n + k

k + 1
An

= + ( )Bk ∑
n=1

∞
n + k

k + 1
An

= + A ( ) (m = n − 1)Bk ∑
m=0

∞
m + k + 1
k + 1

Am

= + A .Bk Bk+1

(I − A) =Bk+1 Bk □

Bk

= .Bk (I − A)−(k+1) (8)

= α ,k = 0, … ,N − 2.ak
1
λ

(I − A)−(k+1)
S 0 (9)

qeios.com doi.org/10.32388/W6CHDS 3

https://www.qeios.com/
https://doi.org/10.32388/W6CHDS


The transition probabilities for the embedded chain are:

This irreducible, aperiodic Markov chain is ergodic with unique stationary distribution 

 satisfying   and  , provided  .

3. Sensitivity Analysis via Taylor Expansion

3.1. Problem Formulation

Consider performance measures of the form   where  . We

address epistemic uncertainty in   using the statistical model:

where   is the nominal estimate and   almost surely as   (sample size). Our goal is to

quantify how   and   respond to perturbations in  .

3.2. Univariate Taylor Expansion

Assume    is  -times continuously differentiable in  . The stationary distribution admits the Taylor

expansion:

In particular, for the first two cases:

3.3. Multivariate Taylor Expansion

Assume    is  -times continuously differentiable in  . The stationary distribution admits the Taylor

expansion:
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where    is a multi-index with  ,  ,  , and 

.

3.4. Derivative Computations

The transition matrix derivatives follow from (9):

where   is the   standard basis vector. Higher-order derivatives vanish since (14) is independent of  .

Stationary distribution derivatives are computed via the fundamental matrix  :

Higher-order terms follow recursively using the product rule for the   derivative:

where   is any component of  .

3.5. Performance Measure Approximation

The performance measure   expands as:

where gradients and Hessians are efficiently computed using (15) and  .

4. Numerical Application

In this section, we investigate the sensitivity of the performance measures with respect to variations in

the arrival and service parameters. For each case, we compare the first-order Taylor approximation with

the exact numerical values obtained by direct computation. The analysis is performed for different

phase-type (PH) service-time distributions in order to highlight the impact of distributional

assumptions.
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4.1. Erlang-2 Service Distribution

We first consider the M/E2/1/  queue with baseline parameters  ,  , and buffer size  .

The results are reported in Table 1.

Param Change  (Taylor)  (Exact)  (Taylor)  (Exact)

+10% 1.40% 1.36% 20.8% 21.1%

-10% -1.25% -1.21% -19.0% -19.2%

+10% -1.12% -1.11% -17.4% -17.6%

-10% 1.50% 1.52% 23.7% 23.5%

Table 1. Sensitivity analysis for M/E2/1/10: Taylor prediction vs direct computation.

The Taylor expansion provides an excellent approximation, even for perturbations as large as  . The

blocking probability is significantly more sensitive than the mean queue length.

4.2. Hyperexponential-2 Service Distribution

Next, we consider the M/H2/1/   queue under the same traffic load. The service distribution has two

phases with rates  ,   and probabilities  ,  . The results are summarized

in Table 2.

10 λ = 0.8 μ = 1 N = 10

ΔL ΔL ΔPb ΔPb

λ

λ

μ

μ

±10%

10

= 1.5μ1 = 0.5μ2 p = 0.7 1 − p = 0.3
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Param Change  (Taylor)  (Exact)  (Taylor)  (Exact)

+10% 0.91% 0.90% 15.2% 15.4%

-10% -0.84% -0.83% -15.0% -15.0%

+10% -0.75% -0.76% -13.5% -13.6%

-10% 1.00% 1.00% 17.3% 17.1%

Table 2. Sensitivity analysis for M/H2/1/10: Taylor prediction vs direct computation.

Once again, the Taylor approximation is remarkably close to the exact values. This confirms the

robustness of the analytical sensitivity expressions, even for heavy-tailed service distributions.

4.3. Coxian-2 Service Distribution

Finally, we analyze the M/C2/1/   queue with service distribution defined as follows: with probability 

  the service is completed after an exponential phase with rate  , otherwise with

probability    the service continues to a second exponential phase with rate  . The

results are displayed in Table 3.

Param Change  (Taylor)  (Exact)  (Taylor)  (Exact)

+10% 1.05% 1.02% 16.4% 16.7%

-10% -0.96% -0.94% -15.7% -15.9%

+10% -0.88% -0.86% -14.1% -14.3%

-10% 1.23% 1.20% 18.6% 18.4%

Table 3. Sensitivity analysis for M/C2/1/10: Taylor prediction vs direct computation.

ΔL ΔL ΔPb ΔPb

λ

λ

μ

μ

10

p = 0.6 = 1.2μ1

1 − p = 0.4 = 0.8μ2

ΔL ΔL ΔPb ΔPb

λ

λ

μ

μ
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The results for the Coxian-2 model further confirm that the Taylor series sensitivity analysis is accurate

across different PH distributions. This is particularly important since the Coxian class is dense in the

space of all distributions on the positive real line.

4.4. Discussion

From the above experiments, two important conclusions can be drawn:

The blocking probability    is consistently more sensitive to perturbations than the mean queue

length  , across all PH distributions considered.

The Taylor expansion provides a reliable and computationally efficient approximation of performance

changes, making it a useful tool for optimization, design, and robustness analysis of M/PH/1/

 systems.

4.5. Multivariate Taylor expansion Examples

We illustrate the multivariate Taylor expansion for perturbations of the PH initial vector   with concrete

examples.

Example 1. Consider a Hyperexponential-2 PH with  ,  , arrival

rate   and buffer  . Baseline performance measures are

Choose the perturbation    (so that the perturbed vector is  ). Using

the derivatives computed via  , we obtain:

Gradients and Hessians For  :

For  :

Taylor approximations vs exact recomputation. Using   the first- and second-order approximations

are:

Pb

L

N

α

= (0.7, 0.3)α̂ S = diag(−2.0, −0.461538)

λ = 0.8 N = 10

L( ) = 5.084555005924749, ( ) = 0.08722176076209641.α̂ Pb α̂

ε = (0.02, −0.02) = (0.72, 0.28)αpert

∂π/∂ = π(∂P/∂ )Zαℓ αℓ

L

L = ( ), L = ( ).∇α
−0.50448378
0.28022532

∇2
α

7.85700693
8.24972914

8.24972914
7.24558751

Pb

= ( ), = ( ).∇αPb
−1.25701295
−0.99661730

∇2
αPb

−4.56215776
−3.34808350

−3.34808350
−2.34415937

δ = ε
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Absolute and relative errors are small: for   the linear relative error is  , for   the linear relative

error is  .

Remarks.

- The test shows the Taylor expansion (using derivatives computed in Section 3) provides accurate local

approximations of performance measures under small perturbations of  .

- For performance measures with small baseline values (e.g. blocking probability) relative errors are

naturally larger it is advisable to present both absolute and relative errors.

We repeat the multivariate Taylor demonstration for two further PH models.

Example 2 (Erlang-2): Let    and  . Use perturbation    (so 

 after renormalization). For the mean   we obtain

with Taylor approximations

(the linear relative error is  ). For the blocking probability    the linear and quadratic

approximations yield relative errors of a few percent.

Example 3 (Coxian-2): Let  , Coxian parameters  ,  ,  , and

perturbation   (so  ). For the blocking probability we find

while the Taylor approximations give    and  , which correspond to

relative errors of about  . This example shows that for some PH structures (here, Coxian) the local

Taylor approximation can be inaccurate for perturbations of the size considered; in such cases either

smaller perturbations or higher-order treatments are recommended.

We ran the Monte–Carlo comparisons and produced tables for each PH example (Hyperexponential-2,

Erlang-2, Coxian-2) comparing the exact recomputed mean with the first-order and second-order Taylor

Measure

L

Pb

Exact~ηtrue

5.069352079181098
0.08262993483085583

Linear~ηlin

5.068860824089992
0.08201384780243709

Quadratic~ηquad

5.068581451322265
0.08197181777575296

L 0.0097% Pb

0.746%

α

= (1, 0)α̂ S = ( )
−2
0

2
−2

δ = (−0.02, 0.02)

= (0.98, 0.02)αpert L

L( ) = 5.1831476019,L( ) = 5.1759093577,α̂ αpert

= 5.1512761307, = 5.1514889821,Llin Lquad

0.476% Pb

= (0.6, 0.4)α̂ p = 0.6 = 1.2μ1 = 0.8μ2

δ = (0.02, −0.02) = (0.62, 0.38)αpert

( ) = 0.141876492, ( ) = 0.142194935,Pb α̂ Pb αpert

≈ 0.158706Pb,lin ≈ 0.158376Pb,quad

11%
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approximations. We used   Monte–Carlo samples per   and perturbations   with

renormalization to the simplex.

Below are the tables include comparisons for both performance measures   and  , and cover all three

PH models.

Quantity Value

Baseline 

Baseline  5.0845550059

Baseline  0.0872217608

Table 4. Derivatives of performance measures w.r.t.   for Hyperexponential-2.

n = 2000 σ ε ∼ N (0, I)σ2

L Pb

α = [0.7, 0.3]

L

Pb

L∇α [−0.5044837755, 0.2802253162]

L∇2
α ( )

7.8570069330
8.2497291430

8.2497291430
7.2455875144

∇αPb [−1.2570129484, −0.9966173005]

∇2
αPb ( )

−4.5621577600
−3.3480835000

−3.3480835000
−2.3441593700

α
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Quantity Value

Baseline 

Baseline  5.1831476019

Baseline  0.0890882855

Table 5. Derivatives of performance measures w.r.t.   for Erlang-2.

Quantity Value

Baseline 

Baseline  5.3439936235

Baseline  0.1418764920

Table 6. Derivatives of performance measures w.r.t.   for Coxian-2.

α = [1.0, 0.0]

L

Pb

L∇α [0.0000000000, −1.5935735598]

L∇2
α ( )

0.0000000000
0.0000000000

0.0000000000
1.0642568163

∇αPb [0.0000000000, −0.3281061991]

∇2
αPb ( )

0.0000000000
0.0000000000

0.0000000000
0.5956124465

α

α = [0.6, 0.4]

L

Pb

L∇α [−0.9491472415, −1.6648805212]

L∇2
α ( )

0.0511507871
0.5956124465

0.5956124465
2.0906144365

∇αPb [−0.7917136709, −1.6331793575]

∇2
αPb ( )

−1.6859942932
−3.3720975000

−3.3720975000
−6.7054337229

α
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RelErrlin(%) RelErrquad(%)

0.01 5.08455501 5.08480021 5.08459381 5.08455211 0.0041 0.0049

0.05 5.08455501 5.08489954 5.08438027 5.08331821 0.0102 0.0311

0.10 5.08455501 5.08579101 5.08367715 5.07892923 0.0416 0.1349

Table 7. Monte Carlo comparison for Hyperexp-2: mean number  . (n=2000)

RelErrlin(%) RelErrquad(%)

0.01 0.08722176 0.08722553 0.08723170 0.08723133 0.0047 0.0047

0.05 0.08722176 0.08718864 0.08721466 0.08719586 0.0301 0.0108

0.10 0.08722176 0.08698149 0.08697405 0.08688022 0.0084 0.1139

Table 8. Monte Carlo comparison for Hyperexp-2: blocking probability  . (n=2000)

RelErrlin(%) RelErrquad(%)

0.01 5.18314760 5.18194264 5.18161995 5.18167392 0.0060 0.0057

0.05 5.18314760 5.17837184 5.17553298 5.17562193 0.0556 0.0544

0.10 5.18314760 5.16607368 5.15655324 5.15678513 0.1856 0.1834

Table 9. Monte Carlo comparison for Erlang-2: mean number  . (n=2000)

σ η0 E[ ]ηtrue E[ ]ηlin E[ ]ηquad

L

σ η0 E[ ]ηtrue E[ ]ηlin E[ ]ηquad

Pb

σ η0 E[ ]ηtrue E[ ]ηlin E[ ]ηquad

L

qeios.com doi.org/10.32388/W6CHDS 12

https://www.qeios.com/
https://doi.org/10.32388/W6CHDS


RelErrlin(%) RelErrquad(%)

0.01 0.08908829 0.08907164 0.08906737 0.08907386 0.0047 0.0021

0.05 0.08908829 0.08896266 0.08890537 0.08891495 0.0643 0.0546

0.10 0.08908829 0.08839257 0.08816813 0.08822210 0.2533 0.1968

Table 10. Monte Carlo comparison for Erlang-2: blocking probability  . (n=2000)

RelErrlin(%) RelErrquad(%)

0.01 5.34399362 5.34417920 5.34428709 5.34428694 0.0020 0.0020

0.05 5.34399362 5.34504442 5.34608755 5.34608585 0.0193 0.0193

0.10 5.34399362 5.35006692 5.36017662 5.36016769 0.1882 0.1882

Table 11. Monte Carlo comparison for Coxian-2: mean number  . (n=2000)

RelErrlin(%) RelErrquad(%)

0.01 0.14187649 0.14187685 0.14188490 0.14188484 0.0057 0.0056

0.05 0.14187649 0.14187540 0.14183612 0.14183464 0.0277 0.0287

0.10 0.14187649 0.14191882 0.14286806 0.14286099 0.6689 0.6639

Table 12. Monte Carlo comparison for Coxian-2: blocking probability  . (n=2000)

The Monte–Carlo comparisons confirm the accuracy of the Taylor approximations for all three PH

examples (Hyperexponential-2, Erlang-2, Coxian-2). Several observations can be made:

σ η0 E[ ]ηtrue E[ ]ηlin E[ ]ηquad

Pb

σ η0 E[ ]ηtrue E[ ]ηlin E[ ]ηquad

L

σ η0 E[ ]ηtrue E[ ]ηlin E[ ]ηquad

Pb
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For small perturbation levels ( ), both the first-order and second-order Taylor

approximations are extremely accurate across all models and both performance measures. Relative

errors are typically below  , showing that local linearization captures the system behaviour very

well.

As the perturbation variance increases (  and  ), the approximation error grows, which is

consistent with the local validity of Taylor expansions. In most cases, the linear and quadratic

approximations remain close to the true mean, with relative errors still moderate (generally below 

 for Erlang-2 and Hyperexponential-2).

For the Coxian-2 model, the sensitivity is higher: at  , both   and   exhibit noticeably larger

errors (around   for   and up to   for  ). This illustrates the stronger nonlinearity of Coxian

distributions, which makes the Taylor expansion less accurate when the perturbations are not small.

Interestingly, the quadratic approximation is not always superior to the linear one. For

Hyperexponential-2 and Erlang-2, the quadratic terms slightly improve accuracy in some cases, but

for Coxian-2 at larger  , the quadratic approximation can deviate as much as the linear one. This

suggests that the benefit of including second-order terms depends on the curvature of the

performance measure under perturbations.

Overall, the experiments demonstrate that the Taylor-based sensitivity analysis provides reliable

approximations for moderate perturbations, and that the method is particularly accurate in the local

regime. The differences between the PH distributions highlight the role of structural complexity

(branching, ordering of phases) in the robustness of the approximation.

5. Conclusion

We have presented a perturbation-based framework for analyzing finite-capacity   queues.

By combining the matrix-analytic representation of phase-type distributions with Taylor expansions, we

obtained tractable sensitivity results for stationary distributions and performance measures. The

numerical experiments confirmed the accuracy of first-order approximations across different service-

time distributions, highlighting the robustness of the approach.

The results demonstrate that blocking probability is generally more sensitive than mean queue length to

changes in arrival and service parameters. This insight is valuable for system design and capacity

planning under uncertainty. Future work may extend this methodology to multi-server PH queues,
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priority systems, and networks of queues, where parameter perturbations are even more critical for

performance evaluation.
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