

Review of: "Two-Dimensional PtS2/MoTe2 van der Waals Heterostructure: An Efficient Potential Photocatalyst for Water Splitting"

Yazhou Wang

Potential competing interests: The author(s) declared that no potential competing interests exist.

The authors investigated the electronic band structures, and optical absorption of van der Waals heterojunction PtS2/MoTe2 by using the first-principles calculation and explored the photocatalytic hydrogen production performance.

- 1. The thermal stability of the heterostructure should be confirmed by molecular dynamics simulations because the photocatalytic performance does not occur at 0 K.
- 2.The author mentioned that the lowest binding energy is about –28.10 meV Å–2 for PM-6 stacking style. The authors should give corresponding data about these structures.
- 3. The author emphasized The PtS2/MoTe2 vdW heterostructure obviously can improve the optical ability of the monolayered PtS2, MoTe2 in visible regions. However this result is not sufficient to be supported by figure 6.
- 4.As edited that One can see that the PtS2/MoTe2 vdW heterostructure also is a semiconductor by an indirect bandgap of 1.26 eV that the CBM is located between the Γ and M points, while the CBM exists at K point. This sentences should be written as while the VBM exists at K point.
- 5. I'm curious about the PE are excited by the CB of the PtS2 and MoTe2 layers

Qeios ID: W8PSFE · https://doi.org/10.32388/W8PSFE