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Abstract

In applied research in general, analysts frequently use variable selection methods
in order to identify independent predictors of an outcome. The bootstrap method
replaces complex analytical procedures by computer intensive empirical analysis. It
relies heavily on Monte Carlo Method where several random resamples are drawn from
a given original sample. The bootstrap method has been shown to be an effective
technique in situations where it is necessary to determine the sampling distribution of
(usually) a complex statistic with an unknown probability distribution using these data
in a single sample. This work investigates the use of bootstrap tools in the context of
variable selection in the generalized extreme value regression model. The treatment is
based specifically upon drawing repeated bootstrap samples from the original dataset
by founding the proportion of bootstrap samples in which each variable was identified
as an independent predictor of the outcome. We performed a real data application and
compared this approch with traditional model selection methods.

Keywords: Regression model, Model selection, Bootstrap, Multivariate analysis, Informa-
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1 Introduction

In public health and in applied research in general, analysts frequently use variable selection

methods such as backward elimination or forward selection in order to identify independent

predictors of an outcome or for developing parsimonious regression models (Miller (2002)).

Model choice is also of primary concern in many areas of applied studies. Becker et al.

(2021) has developped an approch of variable selection in regression models using global

sensitivity analysis. Zhang et al. (2014) proposed propose a new variable selection method

called logistic elastic net for the logistic regression model in pattern recognition. In linear

regression model, there are many methods can solve the problem of variable selection, such

as Lasso proposed by Tibshirani (1996) and many improved lasso methods. It shrinks some

coefficients and sets others to zero, and hence makes it retain the good features of both

subset selection and ridge regression. The lasso has injected great vitality for the area of

variable selection, especially when least angle regression (LARS) algorithm was proposed

by Efron et al. (2004).

In regression model, if the error distribution is heavy tailed or there are a few outliers

in the data, the least squares estimates will give too much weight to the outliers, trying to

fi t the outliers well at the expense of the rest of the data. Outliers have high infl uence

on the regression parameters in that removing them would radically change the estimates.

When the error distribution has heavy tails, robust procedures such as least absolute de-

viations, M-estimation, and repeated medians may be better approaches even though they

are analytically more complex. Regardless of the procedure used to estimate the regression

parameters if we are interested in confi dence regions for the parameters or want prediction

intervals for future cases, we need to know more about the error distribution. However,

when the error distribution is unknown and non - Gaussian, the bootstrap provides a way to

get such estimates regardless of the method for estimating the parameters. Other compli-
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cations in regression modeling can also be handled by bootstrapping. These include model

selection, heteroscedasticity of variances, nonlinearity in the model parameters, and bias

due to transformation (see Chernick and Labudde (2011), Zoubir and Iskander (2004)).

Bootstrap methods introduced by Efron (1979), have been used for assessing the per-

formance of regression models. Both Efron and Tibshirani (1994) and Davison and Hinkley

(1997) described bootstrap methods to assess the prediction error of a specific regression

model. In choosing between competing candidate models, one can select the model with

the lowest bootstrap-corrected prediction error. Similarly, bootstrap sampling allows one

to assess the statistical significance of individual regressors (Efron and Tibshirani (1994)).

The bootstrap method has been applied effectively in a variety of situations. Many

studies have shown that the bootstrap resampling technique provides a more accurate

estimate of a parameter than the analysis of any one of the samples (see forexample Diop

and Deme (2021), Carpenter and Bithell (2000), Zoubir and Iskander (2004), Austin

(2008)). Harrll (2015) and Austin and Tu (2004) had exhibited how bootstrap methods

can be used for variable selection. This included simple bootstrapping and bootstrapping

incorporating automated methods.

In this work we propose a procedure variable selestion in linear regression model using

bootstrap method accordind to the approch proposed by Austin and Tu (2004). The rest

of this paper is organized as follows. In Section 2, we describe the problem of generalized

extreme value regression model and bootstrap method procedure for variable selection.

Section 3 present the obtained results on real data application. A discussion and some

perspectives are given in Section 4.
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2 Method

2.1 Generalized extreme value regression model

Generalized extreme value is widely used to model rare and extreme event (see Coles (2001).

In the case where the dependent variable Y represents a rare event, the logistic regression

model (obviously used for this category of data) shows relevant drawbacks. We suggest the

quantile function of the GEV distribution as link function to investigate the relationship

between the binary response variable Y and the potential predictors X (see Wang and Dey

(2010) and Calabrese and Osmetti (2013) for more details). We use Bootstrapping method

as a tool to implement a variables selection procedure and bootstrapping residuals in the

generalized extreme value regression model in order to develop a parsimonious predictive

model. For a binary response variable Yi and the vector of explanatory variables xi, let

π(xi) = P(Yi = 1|Xi = xi) the conditional probability of infection. Since we consider the

class of Generalized Linear Models, we suggest the GEV cumulative distribution function

proposed by Calabrese and Osmetti (2013) as the response curve given by

π(xi) = 1− exp{[(1− τ(β1 + β2xi2 + · · ·+ βpxip))+]−1/τ}

= 1−GEV (−x′iβ; τ)
(1)

where β = (β1, . . . , βp)′ ∈ Rp is an unknown regression parameter measuring the association

between potential predictors and the response variable Y and GEV (x; τ) represents the

cumulative probability at x for the GEV distribution with a location parameter µ = 0, a

scale parameter σ = 1, an unknown shape parameter τ .

For τ → 0, the previous model (1) becomes the response curve of the log-log model, for

τ > 0 and τ < 0 it becomes the Frechet and Weibull response curve respectively, a particular

case of the GEV one.

The link function of the GEV model is given by

1− [log(1− π(xi))]
−τ

τ
= x′iβ = η(xi) (2)
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The unknown vector parameter β can be estimated with (1 − α)% confidence intervals

(α ∈ [0; 1]) and a test of hypothesis H0: βj = 0 by both classical approch of GEV regression

model and bootstrap methods (see Diop and Deme (2021)).

2.2 Bootstrapping variable selection

The bootstrap is a well-known statistical method used to assess the variability of test

statistics (Efron and Tibshirani (1994), Davison and Hinkley (1997)). The nonparametric

bootstrap allows one to estimate an empirical distribution function by repeated sampling

from the observed data. The use of bootstrap methods allows one to approximate the

distribution of test statistics in settings in which analytic calculations are intractable or in

small samples in which large-scale asymptotic results may not hold.

Austin and Tu (2004) proposed model selection method based upon drawing repeated

bootstrap samples from the original dataset. Within each bootstrap sample, backwards

elimination (by taking a threshold of α = 0.05 for eliminating a variable from the model) is

used to develop a parsimonious predictive model. For each candidate variable, the propor-

tion of bootstrap samples in which that variable was identified as an independent predictor

of the outcome is determined. Candidate variables are then ranked according to the pro-

portion of bootstrap samples in which they were identified as independent predictors of the

outcome. The algorithm is summarize in the following box:
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1. Draw B bootstrap samples {(y(b)
i ,X(b)

i ), i = 1, . . . , n} (b = 1, . . . , B) from the original

data sample, and for each bootstrap sample, compute the last squares estimate β̂(b)
j of

β in the model 1 and its estimate standard error σ̂
β̂

(b)
j

for j = 1, . . . , p.

2. For each bootstrap sample, estimate observed statistic test under the null hypothesis

H0 : βj = 0, tobs
β̂

(b)
j

= β̂
(b)
j /σ̂

β̂
(b)
j

, for j = 1, . . . , p and calculate the p-value for each

variable Xj by: p− value(b)j = P(|tn−p| > |tobs
β̂

(b)
j

| / H0).

3. Taking a threshold of α = 0.05, for b = 1, . . . , B and for each candidate variable Xj,

calculate the proportion pj of bootstrap samples in which that variable was identified

as an independent predictor of the outcome is determined by

pj =
1
B

B∑
b=1

1{
p−value(b)j <α

}, j = 1, . . . , p.

A preliminary selection model would consist of those variables that were identified as

significant predictors in all bootstrap samples. Variables could then be sequentially added

to this preliminary model according to the proportion of bootstrap samples in which they

were selected as significant predictors. Each candidate model can then be assessed for its

predictive accuracy and a final model identified.

3 Real data application

3.1 Data Source

Data for the case study consisted of 162 patients discharged with a diagnosis of stroke (which

is a sudden neurological deficit of vascular origin caused by an infarct or haemorrhage in the
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brain. See Biousse (1994) for more details) from Medical Imagery Service of both Matlaboul

Fawzeini Hospital in Touba and Elhadj Ibrahima Niass regional hospital in Kaolack located

in central Senegal between April 5, 2016, and November 30, 2016. All variables used in the

current study were dichotomous. They denoted the present or absence of a specific condition

or risk factor. The data was collected in the context of a prospective and analytical study.

Patients with stroke confirmation were included in the study and the dependant variable

Y is the patient’s vital prognosis (engaged : yes or no).

We consider the following covariates in the dataset:

3.2 Results

We used the bootstrap model selection method describe in Section 2 to develop parsi-

monious models for predicting stroke patient’s vital prognosis. For the backwards model

selection process, we used a threshold of α = 0.05 for eliminating a variable from the model.

We used 1000 bootstrap samples. The number of times that each variable was identified

as a significant predictor is summarized in Table 2. Four variables (Delay, Intraventricular

haemorrhages, Stroke type and Severity Cerebral commitment) were selected as indepen-

dant predictors of stroke patients’s vital prognosis in at least 70% of the bootstrap samples.

An additional variable (Motor deficiency) was selected in at least 50% of the bootstrap sam-

ples. The remaining seven candidate variables were selected as independent predictors of

stroke patient’s vital prognosis in a minority of the bootstrap samples. A further three

variables (Disturbance of consciousness, Sex and Hemiplegia) were selected as independant

predictors in at least 30% of the bootstrap samples. Four (Age, Cardiopathy, Hypertension

and Diabetes) of the variables were identified as independent predictors of stroke patients’s

vital prognosis in fewer than 15% of the bootstrap,samples using backwards elimination.

Finnaly aach candidate variable was identified as a significant predictor of stroke patient’s

vital prognosis in at least 16.2% of the bootstrap samples.
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Table 1: Explain variables description

Variable Description Abbreviation

Age age of stroke patients Age

Sex sex of stroke patients Sex

Stroke type Ischemic stroke or Hem-

orrhagic stroke

Stroke-Type

Cardiopathy coronary insufficiency Cardiopathy

Diabetes insufficient insulin pro-

duction by the pancreas

Diabetes

Hypertension abnormal increase of

blood pressure on artery

walls

Hypertension

Hemiplegia total or partial paralysis

of one half (left or right)

of the body

Hemiplegia

Disturbance of consciousness any disturbance of

vigilance and conscious

thinking

Disturb-cons

Motor deficiency affected mobility of the

upper and/or lower

limbs

Motor-def

Severity Cerebral commitment displacement of parts of

the nervous structure

contained in the cra-

nium through an orifice

SC-commitment

Intraventricular haemorrhages bleeding into the ventri-

cles of the brain

Ivh

Hospital Admission Delay delay between the first

symptoms and admis-

sion to hospital

Delay

Vital Prognosis vital prognosis Prognosis
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Table 2: Frequency selected variables

Variable Frequency selected

Delay 0.995

Ivh 0.894

Stroke-Type 0.886

SC-commitment 0.730

Motor-def 0.660

Disturb-cons 0.445

Sex 0.372

Hemiplegia 0.367

Age 0.288

Cardiopathy 0.264

Hypertension 0.184

Diabetes 0.162
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Using the results of the bootstrap sampling, we created a series of candidate models for

predicting stroke patient’s vital prognosis. They contained the variables that were selected

in at least 70% (model M1), 50% (model M2), 30% (model M3) and 15% (model M4)

of the bootstrap samples using backwards elimination. Note that the model with selected

candidate variables in at least 15% contain all 12 variables. For each model we assessed its

predictive ability using the probability of concordance between predicted probability and

outcome, the Aikaike’s information criterion (AIC) and Schwartz’s Bayesian information

criterion (BIC). This predictive ability correspond to the area under a receiver operating

characteristic (ROC) curve, a widely used measure of diagnostic discrimination. Results

for each predictive model are summarized in Table 3. The first model (containing variables

Table 3: Goodness of fit and discrimination of each predictive model

Model Area under the ROC curve AIC BIC

M1 0.696 -126.7167 -117.4539

M2 0.720 -113.6718 -101.3215

M3 0.619 -99.6414 -74.9407

M4 0.427 -89.2917 -52.2405

Delay, Intraventricular haemorrhages, Stroke type and Severity Cerebral commitment) had

an area under the ROC curve of 0.696 and the lowest values of AIC and BIC. Once we

included those variables that were identified as significant predictors of mortality in at least

50% of the bootstrap samples (model M2), the area under the ROC curve increased to

0.720. Adding additional variables did not result in a substantial increase in the area under

the ROC curve. We also compared the area under the ROC curve for each predictive model

using an algorithm proposed by Delong et al. (1988). The p-values of the null-hypothesis

testing H0: The area under the ROC curve of M1 is not lower than that for each of the
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other models are summarized in Table 4. We used both Delong and Bootstrap methods.

The Table 4 shows that the area under the ROC curve of the model M1 is significantly

Table 4: Comparaison of Area under the ROC curve

Model Delong-Method Bootstrap-Method

M1 vs M2 0.000512 0.000536

M1 vs M3 0.001048 0.001077

M1 vs M4 0.000824 0.000882

lower than that for each of the other models. The use of either AIC or BIC resulted in

the selection of the model M1 identically to the model selected by the bootstrap model

selection procedure.

4 Discussion and perspectives

The model selection procedure describeb in this work using bootstrap resampling and ap-

plied to clinical dataset in order to develop a predictive models presents good performance.

By combining bootstrap sampling with automated variable selection methods, we were able

to determine the empirical distribution of a variable’s likelihood of being identified as an

independent predictor of stroke patient’s vital prognosis. Several question can be asked

about for example the appropriate value of bootstrap samples for model choice.
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