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Abstract

This work uses a new approach to investigate the Riemann hypothesis, drawing conclu-
sions about its trueness. It is based on the more general method presented in a very recent
publication, by the same author, showing in detail how to approach that very well-known
and interesting problem. This is achieved by means of the theory of dynamical systems
(Poincaré index associated to equilibria of 2-dimensional systems) and the study of the ze-
ros of the Dirichlet eta function, defined by a Dirichlet series. By using the well-known
fact that the zeros of the eta function would include all zeros of the Riemann zeta function
in the (open) critical strip, excluded the critical line, ((0,1/2)∪ (1/2,1))× (−∞,∞), the
development proceeds using only the eta function. In addition, the open and simply con-
nected region (1/2,1)×(0,∞) is used along the text, taking into account the symmetries of
zeros of the functions under analysis in the critical strip. The basic line of proof is to find
the mathematical expression for the Poincaré index of the vector field associated to the eta
function, assuming the existence of a zero of the eta function outside the critical line (in
(1/2,1)× (0,∞)), and investigating the resulting unfoldings. Eventually, an inconsistency
occurs and the proof ends by contradiction.

Keywords: Riemann Hypothesis; Riemann Zeta Function; Poincaré index; Dirichlet Eta
function;

1. Introduction

This work uses a new approach to investigate the Riemann hypothesis, drawing conclusions
about its trueness. It is based on the more general method presented in a very recent pub-
lication [21], by the same author, showing in detail how to approach that very well-known
and interesting problem.

The Riemann hypothesis is the conjecture that the Riemann zeta function has nontrivial
zeros just in the set of complex numbers with real part 1/2 (critical line in C). Several
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researchers consider it as the most important unsolved problem in pure mathematics, being
very significant in analytic number theory because of its connections with the distribution
of prime numbers. The so-called trivial zeros occur at all negative even integers {-2, -4, -6,
-8, -10, -12, ...}, and the (supposedly found) nontrivial roots occur at certain points on the
critical line. The Riemann hypothesis is concerned with the locations of these nontrivial
zeros, stating:

The real part of every nontrivial zero of the Riemann zeta function is 1/2.

σ
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t

t = 0

R

Figure 1: Part of open critical strip and critical line

In this fashion, if the hypothesis is true, all nontrivial zeros must be located on the critical
line, that is, the subset of C with real part equal to 1/2 .

In order to start the investigation, it is important to establish the expressions for eta and
zeta in terms of the complex variable s :

ζ (s) =
∞

∑
n=1

1
ns , for Re(s) > 1, and its analytic continuation, in other regions. (1)

η(s) =
∞

∑
n=1

(−1)n−1 1
ns , for Re(s) > 0. (2)

So, considering the clean relationship between zeta (ζ ) and eta (η) functions, often it may
be easier to work with eta, considering the coincidence of their roots inside the critical strip.
They are related by:

ζ (s) =
1

1−21−s η(s). (3)
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Furthermore, as cited above, the study will be conducted only in the open half-strip (1/2,1)×
(0,∞). This is valid because roots are vertically symmetric (the conjugate of a zero is a zero
as well), and horizontally symmetric relatively to the critical line - please, for more details,
refer to [4] Therefore, the discovery of one root in A ∆

= (1/2,1)× (0,∞) results in finding
four roots, symmetrically located relatively to the x axis and the critical line.

In general lines, the underlying idea in this work is to face the eta function as a map-
ping, associating to each element of A one vector in R2 , that is to say, a 2-dimensional
vector field usually referred to as the field associated to η [15, 19], namely, η : A → R2,
using the same designation for both entities. This unusual viewpoint gives rise to a nonlin-
ear autonomous system


Ẋ(t) = η(X(t))

X(t) ∈ A ⊂ R2
(4)

which will be the basis for the development of the proof.

Obviously, the state space of system (4) can be extended to the full domain of η .

2. Dirichlet Eta function and associated vector field

By identifying s = σ + i.t and (σ , t) , the Dirichlet Eta function can be written

f(σ , t) ∆
= Re(η(σ + i.t)) =

∞

∑
n=1

(−1)n−1 × cos(t.ln(n))
nσ

(5)

g(σ , t) ∆
= Im(η(σ + i.t)) =−

∞

∑
n=1

(−1)n−1 × sin(t.ln(n))
nσ

(6)

η(σ , t) =
[

f(σ , t)
g(σ , t)

]
(7)

already seen as a vector field with components given by its real and imaginary parts, re-
stricted to 0.5 < σ < 1 and 0 < t < ∞, due to posterior developments.

As is widely known, η is a holomorphic function, therefore its components are C∞ and
have partial derivatives of all orders. In addition, it satisfies Cauchy-Riemann equations
[15].
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The total differentials of f and g are given by

df =
∂ f
∂σ

dσ +
∂ f
∂ t

dt (8)

dg =
∂g
∂σ

dσ +
∂g
∂ t

dt (9)

and taking into account that

∂ f
∂σ

=−
∞

∑
n=1

(−1)n−1 × ln(n).cos(t.ln(n))
nσ

(10)

∂ f
∂ t

=−
∞

∑
n=1

(−1)n−1 × ln(n).sin(t.ln(n))
nσ

(11)

∂g
∂σ

=−∂ f
∂ t

(12)

∂g
∂ t

=
∂ f
∂σ

(13)

we have

df =
∞

∑
n=1

(−1)n.ln(n)
nσ

× [cos(t.ln(n))dσ + sin(t.ln(n))dt] (14)

dg =
∞

∑
n=1

(−1)n.ln(n)
nσ

× [−sin(t.ln(n))dσ + cos(t.ln(n))dt] (15)

3. Poincaré index for 2-dimensional dynamical systems

Given a 2-dimensional vector field V, defined in a simply connected region A ⊂ R2, con-
sider any closed curve C fully contained in it and not enclosing any equilibrium points of
the dynamical system originated by V in its interior.{

Ẋ(t) = V(X(t))
X(t) ∈ A ⊂ R2 (16)

By restricting V to the closed curve C we obtain a vector field along it, as displayed in
Figure 2.

4



C

Figure 2: Vector field along closed curve

In general, after moving along C in the anti-clockwise, positive sense, the vectors with
origin in C rotate and, after a full excursion, an angle 2πk is traversed, where k ∈ Z - the
integer k is called the Poincaré index of the curve C . The index of a closed curve with no
equilibria inside it can be obtained by integrating the change in the angle of the vectors at
each point of C.

For a vector field given by

V(σ , t) =
[

f(σ , t)
g(σ , t)

]
(17)

the index of C is

k ∆
=

1
2π

˛
C

dφ =
1

2π

˛
C

d arctan
(g

f

)
=

1
2π

˛
C

fdg− gdf
f2 +g2 (18)

The Poincaré index of an equilibrium point of V, (xe,ye), is defined to be the index of
a closed curve C which surrounds only this specific point, not existing equilibria on the
closed curve.

The Poincaré index features some very significant properties [24, 22, 2, 17, 1]:

• It is invariant under homotopical transformations of C, provided equilibria do not
”clash” with curves.

• When C is a simple closed curve, V is a C2 vector field defined on C and its interior,
and there are no critical points of V inside C , the index of C relative to V is 0.
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• The index of a sink, a source, or a center is +1.

• The index of a periodic orbit is +1.

• The index of a hyperbolic saddle point is -1.

Figure 3: One isolated equilibrium (center) inside the closed curve =⇒ index = 1

Figure 4: One isolated equilibrium (source) inside the closed curve =⇒ index = 1
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Figure 5: One isolated equilibrium (sink) inside the closed curve =⇒ index = 1

Figure 6: No equilibrium point inside the closed curve =⇒ index = 0

4. Detailed proof

4.1. Preliminary information and proof directives

The proof will be by contradiction (principle of non-contradiction). Therefore, it will be as-
sumed that there is a nontrivial and isolated zero Pe = (xe,ye) of the η function, located out-
side the critical line (and inside the open and simply connected region (0.5,1.0)× (0,∞)),
and the proof will proceed until a contradiction arises, demonstrating that the assumption
is false, and the inexistence of nontrivial roots of η and ζ functions outside the critical line.
In addition, the curve C will be a circle with center at Pe, radius R, and parameterized by
the angle θ , indicated in Figure 7. In this fashion, we have
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0.5 < xe < 1.0
ye ∈ R+

0 < R < ∞,

Pe = (xe,ye)

s = σ + i.t
σ = xe +R.cosθ

t = ye +R.sinθ

dσ

dθ
=−R.sinθ

dt
dθ

= R.cosθ

(19)

where s is a generic point in C.

σ

σ = 0 σ = 1σ = 0.5

t

t = 0

θ

xe

ye

Figure 7: Relevant part of open critical strip and critical line
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4.2. Final transformation

Now, a final change of variables is about to take place, and it will allow us to arrive at
the final expression for the Poincaré index, this time including θ and further relevant pa-
rameters. Please, note that for the sake of better understanding, a notation ”overloading”
occurs in the following - although f and g are 2-variable functions, the same identification
is kept for both after the change of variables, replacing (σ , t), is done. For example, f(θ)
and f(σ , t) are formally distinct as functions, but related as objects.

f(θ) =
∞

∑
n=1

(−1)n−1 × cos((ye +R.sinθ).ln(n))
nxe+R.cosθ

(20)

g(θ) =−
∞

∑
n=1

(−1)n−1 × sin((ye +R.sinθ).ln(n))
nxe+R.cosθ

(21)

df =
∞

∑
n=1

(−1)n.ln(n)
nxe+R.cosθ

× [cos((ye +R.sinθ).ln(n))(−R.sinθ)dθ + sin((ye +R.sinθ).ln(n))(R.cosθ)dθ ] (22)

dg =
∞

∑
n=1

(−1)n.ln(n)
nxe+R.cosθ

× [−sin((ye +R.sinθ).ln(n))(−R.sinθ)dθ + cos((ye +R.sinθ).ln(n))(R.cosθ)dθ ](23)

or

df = R×
∞

∑
n=1

(−1)n.ln(n)
nxe+R.cosθ

× [−cos((ye +R.sinθ).ln(n)).sinθ + sin((ye +R.sinθ).ln(n)).cosθ ]dθ (24)

dg = R×
∞

∑
n=1

(−1)n.ln(n)
nxe+R.cosθ

× [sin((ye +R.sinθ).ln(n)).sinθ + cos((ye +R.sinθ).ln(n)).cosθ ]dθ (25)

Therefore

fdg = R×

(
∞

∑
n=1

(−1)n−1 × cos((ye +R.sinθ).ln(n))
nxe+R.cosθ

)
×(

∞

∑
n=1

(−1)n.ln(n)
nxe+R.cosθ

× [sin((ye +R.sinθ).ln(n)).sinθ + cos((ye +R.sinθ).ln(n)).cosθ ]dθ

)

gdf =−R×

(
∞

∑
n=1

(−1)n−1 × sin((ye +R.sinθ).ln(n))
nxe+R.cosθ

)
×(

∞

∑
n=1

(−1)n.ln(n)
nxe+R.cosθ

× [−cos((ye +R.sinθ).ln(n)).sinθ + sin((ye +R.sinθ).ln(n)).cosθ ]dθ

)
(26)
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and

f2(θ) =

(
∞

∑
n=1

(−1)n−1 × cos((ye +R.sinθ).ln(n))
nxe+R.cosθ

)2

(27)

g2(θ) =

(
−

∞

∑
n=1

(−1)n−1 × sin((ye +R.sinθ).ln(n))
nxe+R.cosθ

)
×

(
−

∞

∑
n=1

(−1)n−1 × sin((ye +R.sinθ).ln(n))
nxe+R.cosθ

)

=

(
∞

∑
n=1

(−1)n−1 × sin((ye +R.sinθ).ln(n))
nxe+R.cosθ

)2

(28)

Also

fdg−gdf = R×

(
∞

∑
n=1

(−1)n−1 × cos((ye +R.sinθ).ln(n))
nxe+R.cosθ

)
×(

∞

∑
n=1

(−1)n.ln(n)
nxe+R.cosθ

× [sin((ye +R.sinθ).ln(n)).sinθ + cos((ye +R.sinθ).ln(n)).cosθ ]dθ

)

+R×

(
∞

∑
n=1

(−1)n−1 × sin((ye +R.sinθ).ln(n))
nxe+R.cosθ

)
×(

∞

∑
n=1

(−1)n.ln(n)
nxe+R.cosθ

× [−cos((ye +R.sinθ).ln(n)).sinθ + sin((ye +R.sinθ).ln(n)).cosθ ]dθ

)
(29)

or

fdg−gdf = R×

[ (
∞

∑
n=1

(−1)n−1 × cos((ye +R.sinθ).ln(n))
nxe+R.cosθ

)
×(

∞

∑
n=1

(−1)n.ln(n)
nxe+R.cosθ

×
[
sin((ye +R.sinθ).ln(n)).sinθ + cos((ye +R.sinθ).ln(n)).cosθ

])

+

(
∞

∑
n=1

(−1)n−1 × sin((ye +R.sinθ).ln(n))
nxe+R.cosθ

)
×(

∞

∑
n=1

(−1)n.ln(n)
nxe+R.cosθ

×
[
− cos((ye +R.sinθ).ln(n)).sinθ + sin((ye +R.sinθ).ln(n)).cosθ

]) ]
dθ

(30)
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In order to further simplify the previous expression, the well-known formulas for cos and
sin of sums will be used below. By establishing

K1 = ye +R.sin(θ) (31)
K2 = xe +R.cosθ (32)

a = K1.ln(n) (33)
b =−θ

We have

cos(a+b) = cos(K1.ln(n)−θ) =[
sin((ye +R.sinθ).ln(n)).sinθ + cos((ye +R.sinθ).ln(n)).cosθ

]
and

sin(a+b) = sin(K1.ln(n)−θ) =[
− cos((ye +R.sinθ).ln(n)).sinθ + sin((ye +R.sinθ).ln(n)).cosθ

]
Resulting in

fdg−gdf = R×

[ (
∞

∑
n=1

(−1)n−1 × cos(K1.ln(n))
nK2

)
×(

∞

∑
n=1

(−1)n.ln(n)
nK2

× cos(K1.ln(n)−θ)

)
+

(
∞

∑
n=1

(−1)n−1 × sin(K1.ln(n))
nK2

)
×(

∞

∑
n=1

(−1)n.ln(n)
nK2

× sin(K1.ln(n)−θ)

) ]
dθ (34)

In order to certify that series (35) and (36)

∞

∑
n=1

(−1)n.ln(n)
nK2

× cos(K1.ln(n)−θ) (35)

∞

∑
n=1

(−1)n.ln(n)
nK2

× sin(K1.ln(n)−θ) (36)
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converge, some traditional convergence tests will be used, Dirichlet’s (page 152 of [16])
and direct calculations, for instance.

Starting with (35), define

an
∆
=

ln(n)
nK2

bn
∆
= (−1)n.cos(K1.ln(n)−θ)

According to Dirichlet’s test, if an is monotonic and converges to 0, and BN
∆
= ∑

N
n=1 bn is

bounded for all N, ∑
∞
n=1 anbn ( or expression (35) ) converges.

The condition on an is also provided by Stolz-Cesàro theorem [18], considering that it is
monotonic, K2 ∈ (0.5,1), and

lim
n→∞

an = lim
n→∞

ln(n+1)− ln(n)
(n+1)K2 −nK2

= lim
n→∞

ln((n+1)/n)
(n+1)K2 −nK2

= 0. (37)

The condition on bn is satisfied as well - rearranging BN as the summation

BN =
N

∑
n=1,3,5,...

(bn +bn+1) =

N

∑
n=1,3,5,...

(−cos(K1.ln(n)−θ)+ cos(K1.ln(n+1)−θ))

and using

cn
∆
= (bn +bn+1),n = 1,3,5, ... (38)

cos(A)− cos(B) =−2.sin
(A+B

2

)
.sin
(A−B

2

)
K1.ln(n)−θ = ln(nK1)−θ = ln(nK1)− ln(eθ ) = ln

(nK1

eθ

)
A1

∆
= ln

(nK1

eθ

)
B1

∆
= ln

((n+1)K1

eθ

)
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we obtain an expression for the new general term of cn

cn =−(cos(A1)− cos(B1)) = +2.sin

 ln
(

nK1

eθ

)
+ ln

(
(n+1)K1

eθ

)
2

 .sin

 ln
(

nK1

eθ

)
− ln

(
(n+1)K1

eθ

)
2

=

−2.sin

 ln
(
(n(n+1))K1

e2θ

)
2

 .sin

 ln
(
(n+1)K1

eθ

)
− ln

(
nK1

eθ

)
2

=

−2.sin

 ln
(
(n(n+1))K1

e2θ

)
2

 .sin

(
ln((n+1

n )K1)

2

)

As the third factor of cn converges to zero, the decreasing increments keep the sum BN
bounded, as demanded by Dirichlet’s test. This concludes the proof of convergence for
(35).

A similar reasoning holds for (36) and is presented below.

For the case of (36), define

an
∆
=

ln(n)
nK2

, the same as before

bn
∆
= (−1)n.sin(K1.ln(n)−θ)

According to Dirichlet’s test, if an is monotonic and converges to 0, and BN
∆
= ∑

N
n=1 bn is

bounded for all N, ∑
∞
n=1 anbn ( or expression (36) ) converges.

The condition on an was proved above.

The condition on bn is true as well because, by writing BN as

BN =
N

∑
n=1,3,5,...

(bn +bn+1) =

N

∑
n=1,3,5,...

(−sin(K1.ln(n)−θ)+ sin(K1.ln(n+1)−θ)) ,

and using
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cn
∆
= (bn +bn+1),n = 1,3,5, ... (39)

sin(A)− sin(B) = 2.cos
(A+B

2

)
.sin
(A−B

2

)
A1 and B1 as above.

we obtain an expression for the new general term of cn

cn =−(sin(A1)− sin(B1)) =−2.cos

 ln
(

nK1

eθ

)
+ ln

(
(n+1)K1

eθ

)
2

 .sin

 ln
(

nK1

eθ

)
− ln

(
(n+1)K1

eθ

)
2

=

2.cos

 ln
(
(n(n+1))K1

e2θ

)
2

 .sin

 ln
(
(n+1)K1

eθ

)
− ln

(
nK1

eθ

)
2

=

2.cos

 ln
(
(n(n+1))K1

e2θ

)
2

 .sin

(
ln((n+1

n )K1)

2

)

As the third factor of cn converges to zero, the decreasing increments keep the sum BN
bounded, as demanded by Dirichlet’s test. This concludes the proof of convergence for
(36).

Observation 1. Instead of using the somewhat unconventional expressions (38) and (39),
an alternative way to convey the same ideas could be achieved by defining another general
term γ j by

γ j = (b2 j−1 +b2 j), j ∈ N+

and working with it in the above calculations.

4.3. Considerations about the index of Pe surrounded by the circle C

As defined in expressions (18), the Poincaré index of an equilibrium point (xe,ye) of a given
planar vector field, is defined to be the index (k) of a closed curve C which surrounds only
this specific point, not existing equilibria on the closed curve. It is given by

k ∆
=

1
2π

˛
C

dφ =
1

2π

˛
C

d arctan
(g

f

)
=

1
2π

˛
C

fdg− gdf
f2 +g2 (40)
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and, when used in the present case, assumes a very interesting form, mainly because C is a
circle with radius R and center Pe, as described above.

Some aspects are worth mentioning:

1. Any concentric circle with radius smaller than R will result in the same index for Pe,
because they are homotopic and enclose only one and the same isolated equilibrium,
by hypothesis [17]. So, even for arbitrarily small and positive values of the radius, k
remains constant.

2. According to the particular expression for fdg − gdf, formula (30), the integrand
fdg− gdf

f2+g2 may be written R× H
f2+g2 dθ , resulting in the following formulation for the

index k, where H is a function.

k = R× 1
2π

˛
C

H
f2 +g2 = R× 1

2π

ˆ 2π

0

H
f2 +g2 dθ (41)

3. By analysing the function H, it is possible to see that it is composed of some conver-
gent series and also expressions like (ye+R.sinθ) and (xe+R.cosθ), which approach
constant values when R gets near zero, although always positive. Therefore, expres-
sions like cos((xe +R.cosθ).ln(n)) will tend to K.ln(n), where 0.54 < K < 0.88 is
a constant. Hence, the expression in (41) to the right of R may be made practically
independent of R for sufficiently small radiuses. In addition, the expression

1
2π

˛
C

H
f2 +g2 =

1
2π

ˆ 2π

0

H
f2 +g2 dθ (42)

is bounded, considering its analytical composition, and there must exist a real, posi-
tive constant RC such that

−RC <
1

2π

ˆ 2π

0

H
f2 +g2 dθ < RC (43)

for all R, provided the respective circle remains located inside the correct region.
Choosing R∗ =

1
RC and multiplying the previous expression by it, we obtain
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−1 < k = R∗×
1

2π

ˆ 2π

0

H
f2 +g2 dθ < 1 (44)

As k ∈ Z by definition, it must be equal to zero.

σ

σ = 0 σ = 1σ = 0.5

t

t = 0

θ

xe

ye

Figure 8: Contracting circles with fixed center at Pe

But, as an isolated equilibrium, Pe must have nonzero Poincaré index, leading to a contradiction.

For the sake of illustration, Figure 9 displays the vector field around the equilibrium cor-
responding to the zero ( 0.5 , 21.0220396387715549926284 ) of η and ζ . It is possible to
infer that it represents a source for the overall dynamical system.
Now, Figure 10 displays the vector field corresponding to η in a region without equilibria.
It is possible to infer that the Poincaré index of the circle is zero.
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Figure 9: Configuration of the vector field in the neighborhood of Pe = (0.5,21.0220396387715549926284)

Figure 10: Configuration of the vector field in a region without zeros of η
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5. Conclusions

By leaving the complex numbers’ realm it was possible to arrive at a satisfactory conclu-
sion about the Riemann hypothesis. By using concepts of the theory of dynamical systems
and a specific vector field constructed with basis in the Dirichlet eta function, the negation
of the Riemann hypothesis provoked a logical contradiction, leading to the conclusion it is
true.
The underlying method used in this paper may be directed to any complex function, pro-
vided it satisfies certain (not very restrictive) regularity conditions, including Dirichlet L-
functions and so many others [21].
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