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Abstract 

The Kibble-Zurek mechanism (KZM) describes the universal formation of topological 

defects in systems undergoing continuous phase transitions. KZM is traditionally applied 

to the study of defects in the early Universe and condensed ma@er phenomena. The goal 

of this brief report is to uncover the remarkable analogy between KZM and the flavor 

composition of particle physics. Our findings suggest that defect formation in particle 

physics and cosmology is rooted in the multifractal topology of the early Universe.   
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According to [1], there is a tentative path leading from Dimensional 

Regularization of Quantum Field Theory to fractal spacetime, on the one hand, 

and to fractional dynamics, on the other. The connection between the 

correlation length of critical phenomena  and the continuous 

dimensional deviation from four spacetime dimensions (  ) is 

given by, 

  (1) 

Relation (1) underlies the idea of criticality in continuous dimensions, as the 

divergence of  necessarily ties in with a vanishing fractality at our 

observation scale ( ). In line with [2], an alternative expression of (1) may 

be presented as, 

  (2) 

Likewise, the relaxation time associated with (2) takes the form, 
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  (3) 

where  denote the critical and dynamic exponents, respectively.  The 

dimensional deviation can be further mapped to a reduced distance 

parameter ,  

  (4) 

such that  when . Under the linear quench assumption, the 

parameter  evolves according to,  

  (5) 

in which the time-dependent dimensional deviation is measured relative to 

the quench time  as in [2],  

  (6) 
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Fig. 1 shows the schematic diagram of KZM, where  with the 

critical point being reached at . The dynamics of the KZ phase transition 

remains adiabatic outside the critical region  and enters the “frozen” 

stage once . In this stage KZM is no longer adiabatic and . 

As a result,  plays the role of a “freeze out” time and marks the crossover 

boundary between the adiabatic and the critical regime of KZM.   

 

Fig1: Schematic diagram of KZM [2]. 
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By (2)-(6), the density of topological defects in the KZM is, 

  (7) 

Here,  and are the dimensions of the underlying space and of the defects, 

respectively, and   

  (8) 

The number of defects  follows by multiplying (7) with the effective space 

volume , which yields, 

  (8) 

It is convenient to cast (8) in the following form, 

  (9) 

where,  
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  (10) 

  (11) 

With reference to Appendix B, a one-to-one correspondence may be 

established between (9) - (11) and the iterative construction of fractal sets.  

Let us assume for simplicity that,  

  (12) 

By (B1) - (B4), (9) can be generalized to the case when there are  

independent species of topological defects, namely, 

  (13) 

In this interpretation, topological defects are considered analogues of the 

independent scales acting on the fractal set defined in Appendix B.  
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Taking  to represent the fractal dimension of the set, the replica of 

(B3) – (B4) amounts to  

  (14) 

With reference to Appendix A and B, (14) recovers the “sum-of-squares” 

relationship of the Standard Model upon recalling that “mass” is the inverse 

of a time parameter or a time scale. Specifically, under the identifications, 

  (15a) 

  (15b) 

  (15c) 

(14) turns into 

  (16) 

with  denoting the Fermi scale of electroweak interactions.  
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We close the report with the following observations, which may turn out to 

be relevant for future developments of the topic:  

1) The choice  matches the fractal dimension of random walks and 

Brownian motion [11]. It also matches the KZ scenario for the genesis of 

vortex lines in three dimensional superfluidity (  and ). [2, 7].   

2) Relation (16), along with (B4) and (B5), matches the geometry of the 

cosmic web, in particular, the multifractal clustering of galaxy masses [5].  

3) It follows from previous observations that the coalescence of 

topological defects in early Universe cosmology shares commonalities with 

particle physics, insofar the generation of cosmic structures and the 

hierarchical composition of the Standard Model are concerned [2 – 4]. 

4) It is known that the Gross-Pitaevskii equation of superfluidity is a 

particular embodiment of the Landau-Ginzburg theory of critical 

phenomena. Along with 1), 4) lends further support to the bifurcation 

mechanism of structure formation in the Standard Model of particle physics 

[12 - 13]. 
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5) At least in principle, observations 1) and 4) open the door for an 

unexplored connection between the spin/chirality of elementary particles 

and vorticity of filaments in superfluidity. 

APPENDIX A: On the “Sum of Squares” Relationship 

The “sum-of-square” relationship of the Standard Model links the square of 

elementary particle masses to the square of the Fermi scale  viz.  

   (A1) 

where  and  stand for the electroweak and the Higgs bosons, 

respectively, and the sum in the left-hand side is taken over the whole 

spectrum of SM fermions [10 - 11]. The contribution of bosons and fermions 

in (A1) is split in nearly equal shares, that is, 

   (A2) 
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(A1) can be cast in a form that highlights its analogy with (16) and (B4), that 

is,      

     (A3) 

APPENDIX B: Construction of a two-scale Cantor set 

Fractals are typically created starting from an elementary geometric object 

(the generator) and allowing its components ( ) to be 

independently scaled by a factor , where  [6]. 

With reference to Fig. 2, consider the simplest case of a Cantor set with two 

scales,   and  . The recursive construction of the Cantor set consists of 

taking the segment of unit mass length, dividing it into segments of lengths 

 and removing the middle segment. The division of segments 

continues indefinitely, generating a scale-reduced replica of the original 

construction. Aside from a scale factor, the subsets lying in the disjoint 

intervals  and  are images of the whole set. Let the whole set be 
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covered with unit segments (or dimensional boxes) of size . The number of 

boxes needed to cover the set is given by,  

    (B1) 

in which  stands for the fractal (Hausdorff) dimension. Upon magnification 

with scales and , the number of boxes covering the interval  and 

 are  and , respectively, which leads to 

   (B2) 

or 

   (B3) 

The generalization of (B3) when the generator is composed by  elements is 

straightforward, namely,  

   (B4) 
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Finally, (B4) can be further extended to generic multifractal distributions, 

   (B5) 

where  are probabilities associated with the scales  and  are the 

characteristic critical exponents [8 – 9]. It is apparent that (B4) represents the 

case when .   

 

Fig. 2: Iterative construction of a two-scale Cantor set  
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