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Classical physics is based on the mathematical analysis of differential equation models of 

physical systems. Yet, because differential equations are an advanced topic, they are typically 

not taught until the second or third year at the university. This paper describes a new approach to 

teaching calculus that covers differential equations in the tenth week. 

 

1. Introduction 

Calculus and modern physics were developed simultaneously by Newton with his study of 

gravity and planetary motion. 

 Since Newton, the paradigm for the analysis of physical systems has been: 

• State the laws of physics governing the system. Laws of physics governing how things 

change are written as differential equations. 

• Derive a differential equation model of the system from the laws of physics. 

• Solve the differential equation model, with the goal of predicting the performance of the 

system. 

 

The model of a physical system consists of a set of variables, called state variables, that determine 

the state of the system, and a differential, i.e., rate, equation for each state variable. 

 

The laws governing planetary motion are taught in high school, they are Newton’s law of gravity 

F= – G∙m∙mE/r2, and the second law of motion F = m∙A. Starting with the second law of motion, 

and substituting the force of gravity for F, yields G∙m∙mE/r2 = m∙A, where A is the acceleration of 

the falling object, G is the gravitational constant, m is the mass of the object, mE is the mass of the 

earth, and r is the distance from the center of the earth to the object. Dividing by m yields: 

A = – G∙mE/r2. 

The 1-d model for a falling object, e.g., Newton’s apple, consists of state variables r for position 

and v for velocity, and the following rate equations: 

r’(t) = v(t) 

v’(t) = G∙mE/r(t)2 

where r’ is the variable representing the rate of change of r, and v’ is the variable representing the 

rate of change of v. 
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The solution is very difficult and is an infinite series, its derivation is beyond the scope of even 

university physics. A 1-D analytic solution is (https://en.wikipedia.org/wiki/Free_fall): 

 

 

Evaluating this expression yields 

 

The orbit problem is a two-body problem. The three-body problem, e.g., calculating the 

trajectory of a rocket from the Earth to the moon, is analytically unsolvable. This is the problem 

with analytic calculus, the models of almost all physical systems are unsolvable 

(https://pubs.aip.org/aapt/ajp/article/91/4/256/2878657/A-revolution-in-physics-education-was-

forecast-in). 

2. Essential calculus versus traditional calculus 

The problems with the way calculus is currently taught are #1 – it is unmotivated because 

interesting problems are unsolvable, #2 – it is abstract and too rigorous, and #3 – it takes two 

years. From 1985 – 2000 there was a major NSF-sponsored effort to reform calculus education, 

that came to naught. The most popular calculus reform textbook is ‘Calculus’ by Hughes-Hallett, 

et. al. ( https://archive.org/details/HuguesHallettCalculusSingleMultivariable6thEdText_201805) 

Quick overviews of the calculus reform effort are given here 

(https://www.math.arizona.edu/~dhh/NOVA/calculus-conceptual-understanding.pdf) and here 

(https://peer.asee.org/calculus-reform-differential-equations-and-engineering.pdf ) 

The primary purpose of calculus is to solve differential equations, but calculus is taught at the 

university for two or three semesters before differential equations are introduced. The reason is 

that differential equations are typically very difficult to solve, and what’s worse, most are 

unsolvable. 

This paper demonstrates a new approach to calculus education by taking a direct route to solving 

differential equations and eliminating unnecessary material. The following table lists the topics 

covered along with page numbers in this paper and the Hughes-Hallett book. 

Topic starting page # this paper starting page # in 

Hughes/Hallett 

Differentiation 2 65 

Product rule, etc. 3 121 

Integration 5 239 

FTOC 5 256 
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Differential equations 6 521 

Taylor’s theorem 7 486 

Trig functions 10 133 

Exponential functions 13 540 

Euler’s formula 13 591 

Complex numbers 14 990 

Linear 2nd order systems 15 580 

 

The following is everything that the student needs to learn to be able to reach the goal of being 

able to solve linear second-order differential equations. There are only two theorems, the 

Fundamental Theorem of Calculus and Taylor’s theorem, and the proofs are easy and intuitively 

clear. While the many equations in the paper are intimidating at first glance, there is nothing 

complex or ‘advanced’ about the derivations, they represent simple algebraic reasoning. 

3. Differentiating polynomials 

3.1 Differentiation 

Given a function p(t), p’(t) is a function for the rate of change of p or the velocity of p. In 

analytic calculus p’(t) is called the derivative of p(t), and p(t) is an anti-derivative of p’(t). The 

formal definition for the derivative of p(t) is: 

 

 

Given p(t) = t, 

 

 

Given p(t) = t2, 

 

 

 

 

 Given p(t) = t3, 

 

 

 

 

And so on, so that for p(t) = tn 
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The general case follows by using the binomial theorem to expand (p(t) + Δt)n and evaluating the 

resulting expression by setting Δt to 0. 

___________optional technical details __________________________________________ 

 

_____________________________________________________________________________ 

3.2 Product and chain rules 

The product rule for the derivative of p(t)=q(t)∙r(t): 
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Graphically 

 

 

 

 

The chain rule for the derivative of p(t)=q(r(t)): 

 

 

 

 

 

 

Intuitively q(r(t+Δt)) = q(r(t) + r’(t)∙Δt) = q(r(t)) + q’(r(t)) ∙ r’(t)∙Δt 

So (q(r(t+Δt)) - q(r(t)) / Δt = q’(r(t)) ∙ r’(t) 

 

If C is a constant, and p(t) = C*q(t), then p’(t) = C*q’(t). 

If p(t) = q(t) + r(t), then p’(t) = q’(t) + r’(t). 

Now, we can differentiate polynomials. 

Example: p(t) = 10∙t4 + 5∙t2 + 1 

The first order derivative of p is p’(t) = 4∙10∙t3 + 2∙5∙t + 0 = 40∙t3 + 10∙t 

The second order derivative of p is p’’(t) = 3∙40∙t2 + 10 = 120∙t2 + 10 

The third order derivative of p is p’’’(t) = 2∙120∙t = 240∙t 

2.3 Quotient rule and rational functions, i.e ratios of polynomials 

The quotient rule for the derivative of p(t)=q(t)/r(t)? 
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The mnemonic device for the derivative of a quotient is: down-d-up-minus-up-d-down- over-

down-down. 

 

 

Given p(t) = tn 

 

For q(t) = t-n 

p(t)∙q(t) = 1, 

differentiating both sides, 

p’(t)∙q(t) + p(t)∙q’(t) = 0 

hence, 

 

 

Thus (tn)’ = n∙tn-1 for positive and negative values of n. 

Examples: 

p(t) = 10∙t4 

p’(t) = 4∙10∙t3 = 40∙t3 

p(t) = 10∙t-3 

p’(t) = -3∙10∙t-4 = 30∙t-4 

 

4. Integration and The Fundamental Theorem of Calculus 

The integral of a function f(t) over the interval t1 to t2 is denoted by 
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The value of the integral is the signed area under f(t) over the interval t1 to t2. 

 

The Fundamental Theorem of Calculus states that if g is an anti-derivative of f, i.e., g’(t) = f(t), 

then 
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Given a step function f(t) we can construct a corresponding piece-wise linear anti-derivative g(t). 

Note that the slope of g(t) equals f(t). 

 

 

 

 

 

 

 

 

 

 

 

 

The signed area for each subinterval of the graph equals the value of f in the subinterval times the 

length of the subinterval, and this equals the change in g over the subinterval, from the formula 

for constant velocity motion, i.e., distance equals velocity times time. 

 

ti - ti+1 signed area g(ti) g(ti) g(ti+1) – g(ti) 

0 - 2 4 0 4 4 

2-4 0 4 4 0 

4-6 -8 4 -4 -8 

6-8 -4 -4 -8 -4 

8-10 0 -8 -8 0 

 

Thus the signed area under the graph above is given by the sum of the signed areas for each 

subinterval, which is given by 

 

g(2)-g(0) + g(4)- g(2) + g(6)- g(4) + g(8)- g(6) + g(10)- g(8) 

 

= g(10) – g(0). 

Hence the FTOC,  −=
2

1 
12 )()()(

t

t
tgtgtf , is true when f(t) is a step function. 

Let f(t) be any function, e.g., f(t) = -t2 + 10∙t. Then we can approximate f(t) with a step function 

p’(t) by dividing the time interval 0 - 10 into n subintervals of length Δt = 10/n, with 0 = t1, t2 = 



 

 

Δt, t3 = 2∙Δt …. tn∙Δt = 1 and construct its piecewise linear anti-derivative p(t), with p(ti) = f(ti) 

for i = 1 to n. The graphs show f and p’, and g and p, for n = 10, and n = 100. 

 
 

By the FTOC the signed are under p’(t) = p(10) – p(0). 

 

As n increases the limit of the signed area under p’ equals the signed area under f. 

As n increases the velocity of p (i.e., p’) approaches the velocity of g (i.e., f), therefore the 

‘distance traveled’ by p equals the distance traveled by g, and p(10) – p(0) = g(10) – g(0). 

 

So area under f(t) ~ area under p’(t) = p(10) – p(0) ~ g(10) – g(0), and so 

 

 

 

 

and the FTOC is true for all functions. 

 

_________optional technical details____________________________________________ 

Given that f ’(t) < M, then over 1 subinterval |f(t) – p’(t)| < M∙Δt, 

and hence the difference in the areas under f(t) and p’(t) for that 

subinterval is < M∙Δt∙Δt 

 

With n subintervals Δt = 1/n, so the sum of the difference in the area 

under f(t) and p’(t) < n∙ M∙Δt∙Δt = M∙Δt which goes to 0 as n 

increases. 

 

 

At the start of a subinterval, p(t) doesn’t necessarily equal g(t), but 

p’(t) = g’(t). Given that g’’(t) < M, then over 1 subinterval |g’(t) – 

p’(t)| < M∙Δt and so the difference between g(tk+1) – g(tk) and 

p(tk+1) – p(tk) is < M∙Δt∙Δt, so the sum of the difference in distance 

traveled by g(t) and p(t) < n∙ M∙Δt∙Δt = M∙Δt which goes to 0 as n 

increases. 

 

_____________________________________________________________________________ 

 

 

Note that a function p(t) has only one derivative, p’(t), but p’(t) has many antiderivatives, since 

g(t) = p(t) + C, where C is a constant, is also an antiderivative of p’(t). 

 

Example: 

)()()( 12
 

2

1

tgtgtf
t

t
−=



 

 

?)85(
10 

0 

2 =− t  

An antiderivative of 5∙t2 – 8 has the form g(t) = (5/3) ∙ t3 - 8∙t + C, so: 
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An antiderivative of 2∙t-4 has the form g(t) = 2/-3 ∙ t-3 + C, so: 
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5 Differential equations. 

The primary purpose of calculus is to solve differential equations. A differential equation is an 

equation for a derivative function, in physics the differential equations are first order and second 

order. 

For example, a spring-block-damper system is shown in the figure: the block is at position p(0) = 

0 and the spring is relaxed. We will ignore gravity and assume that the rolling friction is 0. 

 

There are only two forces acting on the block, the spring force and the damper force. 

The spring force is a function of the position of the block, and is given by 

fs(t) = –k ∙ p(t) 

where k is the spring constant. 

The damper force is proportional to the velocity of the block and is given by 

fd(t) = –d ∙ p’(t) where d is a coefficient of damping. 

From Newton’s Second Law of Motion, the acceleration of the block at time t is given by 

p’’(t) = (fs(t) +fd(t)) / m = ( –k ∙ p(t) – d ∙ p’(t)) / m 

So, with m = 1 for simplicity, 

p’’(t) = - k ∙ p(t) – d ∙ p’(t)) 

 



 

 

We will solve this differential equation later in this paper. Note that it is a functional equation, 

and the function p(t) and its derivatives are unknown. A differential equation is solved by finding 

a definition of p(t) that satisfied the differential equation, that is, makes it true. 

As you might expect, the differential equation above does not have a polynomial function 

solution. Note that the unknown function appears on both sides of the equation, this suggests that 

solution p(t) and its derivatives have a similar shape. 

Looking forward a bit, we’ll see that the functions that resemble their derivatives are the 

trigonometric sine and cosine functions, and the exponential function. We need the theorem in 

the following section to use these functions. 

 

 

6. Polynomial approximation and Taylor’s theorem 

Going beyond polynomials, the next step is to differentiate and integrate trigonometric and 

exponential functions. In order to even calculate, like your calculator does, values for these 

functions, we need Taylor’s theorem, because there are no closed-form expressions that calculate 

these functions exactly, they are calculated using Taylor series polynomial approximations. 

We start with an arbitrary function g(t) that has 1st, 2nd, … (n+1)st order derivatives. The idea is 

to approximate g in a neighborhood of 0 (for convenience, it could be any point) with an nth-

order polynomial whose value at 0 matches g and whose derivatives at 0 up to order n match 

those of g. We will define the approximating polynomial, p, such that p(0) = g(0), and 

derivatives of p up to order n match those of g at 0. 

With p(t) defined as p(t) = P0 + P1∙t + P2∙t2+ P3∙t3 + … + Pn∙tn 

p(0) = P0, 

p’(0) = P1 

p’’(0) = P2∙2 

p’’’(0) = P3∙3∙2 

p’’’’(0) = P3∙4∙3∙2 

… 

p(n)(0) = Pk∙n! 

note: p(n)(0) is the notation for the nth derivative of p. 

So, if we define Pk = g(k)(0)/k! for k = 0,1,2,3, …. n, then 

p(k)(0) = g(k)(0) for k = 0,1,2,3, …. n and we have our polynomial approximating g. 

The error function for our approximation is err(t) = g(t) – p(t). Note that: 

err(k)(0) = g(k)(0) - p(k)(0) = 0 



 

 

for k = 0,1,2,3, …. n, and 

err(n+1)(0) = g(n+1)(0) - p(n+1)(0) = g(n+1)(0) – 0 = g(n+1)(0) 

Now we will determine a limit for the error of the approximation. We need a limit for the n+1st 

derivative of g, call it M. We’ll start with a first-order approximation p(t), a linear 

approximation. 

 

 

 

 

 

 

 

 

 

 

 

And so on, thus given that g(n+1)(t) < M on the interval of interest the error of the nth order Taylor 

Taylor approximation for g, i.e.: 

p(t) = g(0) + g’(0)∙t2/2 + g’’(0)∙t2/2+ g’’’(0)∙t3/(3∙2) + …. + g(n)(0)∙tn/n!, 

is bounded by err(t) < M∙tn+1/(n+1)! 

 

7. Trig functions 

Consider the sine function, in the figure below as the radius of length 1 sweeps out h radians, the 

arc length of the corresponding section of the circle 

is h, and is approximately a straight line, and as h 

gets smaller the line gets straighter. 

From the diagram, when h is small 

sin( + h) – sin() = x as shown in the diagram, and 

x/h ~ cos(), thus 
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The graph below shows plots of sin() and cos (), note that sin(0) = 0 and cos(0) = 1. 

Also note that the cos graph lags the sin 

graph by /2 radians. That is cos() = sin( + 

 /2), so 

cos’() = sin’( + /2) = cos( + /2) 

Also, the inverted sin graph lags the cos 

graph by p/2 radians, that is 

 - sin() = cos( + /2). 

Thus 

cos’() = - sin(). 

 

sin(0) = 0, sin’(0) = cos(0) = 1, and cos(0) = 1, cos’(0) = -sin(0) = 0. 

Since we know the kth derivative of sin at 0, we can write its Taylor series approximation at 0. 

sin(t) = sin(0) + sin’(0)∙t + sin’’(0)∙t2/2 + sin’’’(0)∙t3/3! + sin’’’’(0)∙t4/4! + sin’’’’’(0)∙t5/5! + … 

= sin(0) + cos(0)∙t - sin(0)∙t2/2 - cos(0)∙t3/3! + sin(0)∙t4/4! + cos(0)∙t5/5! + … 

= 0 + 1∙t – 0∙t2/2 – 1∙t3/3! + 0∙t4/4! + 1∙t5/5! + … 

= t – t3/3! + t5/5! – t7/7! + t9/9! – 

Similarly, the Taylor series expansion of cos(t) is 

cos(t) = cos(0) + cos’(0)∙t + cos’’(0)∙t2/2 + cos’’’(0)∙t3/3! cos’’’’(0)∙t4/4! + cos’’’’’(0)∙t5/5! + …. 

= 1 – sin(0)∙t – cos(0)∙t2/2 + sin(0)∙t3/3! + cos(0)∙t4/4! – sin(0)∙t5/5! + 

= 1 – 0∙t + 1∙t2/2 – 0∙t3/3! + 1∙t4/4! + 0∙t5/5! + 

= 1 – t2/2! + t4/4! – t6/6! + t8/8! – ……… 



 

 

7th-order Taylor series approximation to the sine function 

 

 

 

 

 

 

 

With trig functions, we can solve differential 

equations of the form 

p’’(t) = –C∙p(t) 

Let  = √C and p(t) = sin(∙t), then 

p’’(t) = sin’’(∙t) = [∙cos(∙t)]’= – ∙sin(∙t) = –C∙p(t) 

p(t) = cos(∙t) also solves the differential equation 

p’’(t) = cos’’(∙t) = [–∙sin(∙t)]’= – ∙cos(∙t) = –C∙p(t) 

The general solution is 

A1∙ sin(∙t) + A2∙ cos(∙t) 

Example: 

A spring-block-damper system is shown in the figure: the block is at position p(0) = 0 and the 

spring is relaxed. We will ignore gravity and assume that the rolling friction is 0. 

 

As shown earlier, with m = 1 for simplicity, the differential for the system is: 

p’’(t) = - k ∙ p(t) – d ∙ p’(t)) 

With d = 0, this becomes: 

p’’(t) = - k ∙ p(t) 

The general solution to this differential equation is A1∙ sin(∙t) + A2∙ cos(∙t). 



 

 

If k = , p(0) = 10, and p’(0) = 0, we guess  = √k = 3 and solve for A1 and A2: 

p(0) = 10 = A1∙ sin(∙t) + A2∙ cos(∙t) = A1∙ sin(0) + A2∙ cos(0) = A2 

p’(0) = 0 = A1∙ ∙cos(0) - A2∙ ∙sin(0) = A1∙3 so A1 = 0 

Plotting p(t) = 10 ∙ cos(∙t) 

 

 

 

 

 

 

8. Exponentials 

A function f(t)   bt, where b is any positive number is called an exponential function with base 

b. The derivative of f at t, that is f ’(t), is 

 

 

We’d like for f ’(t) = f (t) which will be the case if f ’(0) = 1, that is: 

 

 

 

 

 

 

e = 2.718… is known as Euler’s number, and the exponential function exp is defined as 

exp(t) = et, 

and exp’(t) = exp(t) 

Using Taylor’s theorem, we can approximate exp(t) by 

exp(t) = exp(0) + exp’(0)∙t + exp’’(0)∙t2/2!+ exp’’’(0)∙t3/3! + … + exp(n)(0)∙tn/n! … 

= 1 + t + t2/2! + t3/3! + … + tn/n! … 

5th-order Taylor series approximation to the exp function 
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The exponential function can be used to solve a differential equation of the form 

p’(t) = k∙p(t) 

The solution is given by 

p(t) = P0∙exp(k∙t), 

since 

p’(t) = P0∙exp’(k∙t) = P0∙k∙exp(k∙t) = k∙p(t) 

The differential equation p’(t) = k∙p(t) models exponential growth for k > 1 and exponential 

decay if k < 1. 

 

 

 

 

 

Solutions to p’(t) = p(t) and p’(t) = – p(t) 

9. Logs 

The natural log function ln(t) is the inverse of the exponential function, that is, ln(t) = x such that 

exp(x) = t. 

Thus ln(exp(t)) = t 

Taking the derivative on both sides of ln(exp(t)) = t , and using the chain rule: 

[ln(exp(t))]’ = t’ 

ln’(exp(t)) ∙ exp’(t) = 1 

ln’(exp(t)) ∙ exp(t) = 1 



 

 

ln’(exp(t)) = 1/exp(t) 

So, ln’(y) = 1/y 

9. Roots and Radicals 

An expression of the form xy is evaluated using the exp and ln functions, 

xy = exp(ln(x) ∙ y), 

e.g, 84.5 = exp(ln(8) ∙ 4.5) 

8-4.5 = exp(ln(8) ∙ - 4.5) 

 

 

 

 

10. Complex numbers 

A complex number has the form a + b∙i, where a and b are real numbers, and i is an imaginary 

number having the property that i2 = -1, that is, i is the square root of -1. 

A positive number times a positive number is a positive number, and a negative number times a 

negative number is a positive number, so it is impossible to make sense of an ‘imaginary 

number’ that is the square root of -1, so, we have an alternate definition - a complex number is 

an ordered pair of numbers, a and b, or equivalently (a, b) in a 2D plane. A complex number (a, 

b) can also be written in polar form, (r, )p where r = the square root of a2 + b2, and  = 

arctan(b/a). 

Addition of complex numbers 

a1 + b1∙i + a2 + b2∙i = (a1 + a2) + (b1 + b2) ∙i 

(a1, b1) + (a2, b2) = (a1 + a2, b1 + b2) 

Multiplication of complex numbers 

(a1 + b1∙i) + (a2 + b2∙i) = a1∙a2 – b1∙b2 + (a1∙b2 + b1∙a2)∙i 

(r1, 1)p ∙ (r2, 2)p = (r1∙r2, 1+ 2)p 

Euler’s formula 

For an imaginary number z = b∙i = (0,b) define 

exp(z) = 1 + z + z2/2 + z3/3! + z4/4! + z5/5! … 

= 1 + b∙i + (b∙i) 2/2 + (b∙i) 3/3! + (b∙i) 4/4! – (b∙i) 5/5! …. 

= 1 + i∙b – b2/2 – i∙b3/3! + b4/4! + i∙b5/5! – b6/6! – i∙b7/7! + b8/8! + i∙b9/9! … 

= (1– b2/2 + b4/4! – b6/6! + b8/8! – ….. ) + i∙(b – b3/3! + b5/5! – b7/7! + b9/9! ...) 



 

 

= cos(b) + i∙sin(b) 

Thus ea+b∙i = ea∙∙ eb∙i = exp(a) ∙ exp(b∙i) = exp(a) ∙ (cos(b) + i∙sin(b)) 

This is known as Euler’s formula. 

11. Linear second-order systems 

A spring-block-damper system is shown in the figure: the block is at position p(0) = 0 and the 

spring is relaxed. We will ignore gravity and assume that the rolling friction is 0. 

 

As we’ve seen, the differential equations for this system, with m = 1 for simplicity, is 

p’’(t) + d ∙ p’(t) + k ∙ p(t) = 0 

We expect the motion of the block to oscillate because of the spring, and we expect the 

oscillations to die out because of the damper, so will guess that the solution has the form 

p(t) = A ∙ ert 

where r is a complex number. Substituting this solution into the differential equation gives 

A∙(r2 + d∙r + k) ∙ ert = 0, 

which is true iff r2 + b∙r + c = 0. This is the characteristic equation for the system, and the 

solutions are determined using the quadratic formula 

 

If d2 - 4∙k > 0 then there are 2 distinct real roots and both are solutions to the differential 

equation. If d2 - 4∙k = 0 then there is 1 real root, r = – d/2, to the equation, and ert is the 

corresponding solution, t∙ert is also a solution as we now check. 

With p = t∙ert , p’’ + d∙p’ + k∙p becomes: 

(r∙ert + r∙ert + r2∙t∙ert) + b∙( ert + r∙t∙ert) + c∙t∙ert 

= ert∙(r + r + r2∙t + d +d∙r∙t +k∙t) 

= ert ∙(2r + d + t∙(r2 + d∙r + k)) 

= 0 since 2r + d = 0 and r2 + d∙r + k = 0 

If d2 - 4∙k <= there are two complex solutions. 

Ex. d = 2 and k = 25, r2 +2∙r + 26 = 0 and r1 = -1 + 5∙i and r2 = -1 - 5∙i, 

and the general solution is: 

2

142 kdd
r

−−
=



 

 

p(t) = A1∙e(-1+5∙i)∙t + A2∙e(-1-5∙i)∙t 

Given p(0) = 10 and p’(0) = 0 

p(0) = 10 = A1∙e
(-1+5∙i)∙0 + A2∙e

(-1-5∙i)∙0 = A1 + A2 

When we specify real initial values, the solution is real. 

Given an initial position 

p(0) = 10 = A1∙e(-1+5∙i)∙0 + A2∙e(-1-5∙i)∙0 = A1 + A2 

and initial velocity 

p’(0) = 0 = A1∙(–1+5∙i)∙e(-1+∙5∙i)∙0 + A2∙(–1–5∙i)∙e(-1-5∙i)∙0 = A1∙(–1+5∙i)∙+ A2∙(–1–5∙i) 

Solving for A1 and A2 gives A1 = 5 – i and A2 = 5 + i, so the solution is 

p(t) = (5 – i)∙e(-1+5∙i)∙t + (5 + i) ∙e(-1-5∙i)∙t, which equals, using Euler’s formula 

= (5 – i)∙e-t ∙ (cos(5∙t) + i∙sin(5∙t)) + (5 + i) ∙ e-t ∙ (cos(-5∙t) + i∙sin(-5∙t)) 

= (5 – i)∙e-t ∙ (cos(5∙t) + i∙sin(5∙t)) + (5 + i) ∙ e-t ∙ (cos(5∙t) – i∙sin(5∙t)) 

= 5∙e-t ∙ cos(5∙t) + 5∙e-t ∙i∙sin(5∙t) – i ∙e-t ∙ cos(5∙t) – i∙e-t ∙i∙sin(5∙t) 

+ 5∙e-t ∙ cos(5∙t) - 5∙e-t ∙i∙sin(5∙t) + i ∙e-t ∙ cos(5∙t) – i∙e-t ∙i∙sin(5∙t) 

= 10∙e-t ∙ cos(5∙t) – 2∙i∙e-t ∙i∙sin(5∙t) 

= 10∙e-t ∙ cos(5∙t) + 2∙e-t ∙sin(5∙t) 

 

 

 

 

 

 

 

A 10-week course in analytic calculus 

1 - Differentiating polynomials 

2 - Differential rules 

3 - Rational functions 

4 - Integration and the Fundamental Theorem of Calculus 

5 - Differential Equations 

6 - Taylor’s Theorem 

 

 



 

 

7 - Trig Functions 

8 - Exponentials, Logs, Roots, and Radicals 

9 - Complex Numbers, Euler’s formula 

10 - Second Order Systems 

 


