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Electroencephalogram (EEG) signals play a pivotal role in biomedical research and clinical

applications, including epilepsy diagnosis, sleep disorder analysis, and brain-computer interfaces.

However, the effective analysis and interpretation of these complex signals often present signi�cant

challenges. This paper presents a novel approach that integrates computer graphics techniques with

biological signal pattern recognition, speci�cally using Markov Transfer Fields (MTFs) for EEG time

series imaging. The proposed framework (STEAM-EEG) employs the capabilities of MTFs to capture

the spatiotemporal dynamics of EEG signals, transforming them into visually informative images.

These images are then rendered, visualised, and modelled using state-of-the-art computer graphics

techniques, thereby facilitating enhanced data exploration, pattern recognition, and decision-making.

The code could be accessed from GitHub.

Corresponding authors: Jiahao Qin, jiahao.qin19@gmail.com; Feng Liu, lsttoy@163.com

1. Introduction

Electroencephalogram (EEG) signals play a crucial role in neuroscience, clinical diagnosis, and brain-

computer interfaces due to their non-invasive nature and high temporal resolution[1][2][3][4]. However,

EEG signal analysis presents signi�cant challenges owing to its complex, non-stationary nature, and the

presence of noise and artifacts. Traditional approaches, relying on manual feature engineering and

conventional machine learning algorithms[5][6][7][8], often fail to capture the intricate spatiotemporal

dynamics inherent in EEG signals. Recent advancements in deep learning, particularly convolutional
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neural networks (CNNs), have revolutionized this �eld by automatically learning hierarchical

representations from raw data[9][10][11], addressing many limitations of traditional methods.

The evolution of EEG signal analysis has seen the integration of various advanced techniques. Attention

mechanisms have been introduced to focus on relevant parts of the input signal, enhancing the model’s

ability to capture critical information[12][13][14]. Markov Transfer Fields (MTFs) have demonstrated

promise in modeling complex spatiotemporal patterns, providing a more comprehensive representation

of EEG dynamics[15][16][17]. Additionally, Singular Spectrum Analysis (SSA) has been employed to

decompose EEG signals into trend, seasonal, and noise components, facilitating more nuanced feature

extraction[18][19][20][21][22].

Despite these advancements, there remains a need for a comprehensive approach that effectively

integrates these diverse techniques to address the multifaceted challenges of EEG signal analysis. To

address this gap, we propose a novel framework that combines Trend-Seasonal Decomposition using

SSA, parallel 1D-CNNs with modi�ed attention mechanisms, and MTF imaging. This approach integrates

advanced signal processing, deep learning, and computer graphics techniques for enhanced EEG signal

analysis. Figure 1 illustrates the performance of our proposed method compared to existing state-of-the-

art approaches across a diverse range of EEG datasets. The radar chart clearly demonstrates the superior

accuracy of our method across all evaluated datasets, highlighting the effectiveness of our integrated

approach in capturing and analyzing the complex spatiotemporal dynamics inherent in EEG signals. Our

main contributions are:

We propose a a novel integrated framework (STEAM-EEG) for EEG signal analysis that synergistically

combines Singular Spectrum Analysis (SSA) for trend-seasonal decomposition, parallel 1D-CNNs with

a modi�ed attention mechanism, and Markov Transfer Field (MTF) imaging. This unique

combination allows for more effective capture and analysis of complex spatiotemporal dynamics in

EEG signals.

We introduce a modi�ed attention mechanism speci�cally designed to capture cross-channel

dependencies in parallel 1D-CNNs, enhancing the model’s ability to focus on relevant features across

multiple EEG channels.

We leverage MTF imaging to model spatiotemporal dynamics and generate informative visual

representations of EEG patterns, improving both the analysis and interpretability of the results.
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We conduct extensive evaluations on diverse EEG datasets, demonstrating signi�cant improvements

in accuracy and robustness compared to state-of-the-art methods across various EEG analysis tasks.

Figure 1. Performance comparison of our proposed SOTA method against baseline

approaches across various EEG datasets. The radar chart illustrates the superior accuracy of

our method (in orange) compared to FCNN, EEGNet, DeepConvNet, and STFT-CNN across ten

different EEG datasets.

2. Related Work

EEG signal analysis has evolved from traditional time-domain and frequency-domain techniques[23][24]

[25] to more sophisticated machine learning approaches. Support vector machines, k-nearest neighbors,

and decision trees have shown promise in various EEG classi�cation tasks[9][10][11], enhancing diagnostic

accuracy[26][27]. Recent years have seen a shift towards deep learning, particularly convolutional neural

networks (CNNs). These models have achieved state-of-the-art performance in seizure detection[9][10],

emotion recognition[28][8], and motor imagery classi�cation[29][30]. To address temporal dependencies,

attention mechanisms have been integrated into EEG analysis models[12][13][14][31][32][33][34], allowing for

focus on relevant signal components.
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Markov Transfer Fields (MTFs) have emerged as a powerful tool for capturing complex spatiotemporal

patterns in EEG data[15][16][35][17]. Concurrently, Singular Spectrum Analysis (SSA) has been employed to

decompose EEG signals, facilitating more re�ned feature extraction[18][19][20][21][22]. Visualization

techniques have also played a crucial role in EEG analysis. Topographic maps[36][37], connectivity

graphs[38][39], and 3D brain models[40][41]  have enhanced the interpretability of EEG data and analysis

results.

Despite these advancements, there remains a need for comprehensive approaches that effectively

integrate advanced signal processing, deep learning, and visualization techniques. Our work addresses

this gap by combining SSA, attention-enhanced CNNs, and MTF imaging for improved EEG signal

analysis.

3. Methodology

In this section, we present the proposed methodology for enhancing EEG signal analysis through the

integration of Trend-Seasonal Decomposition using Singular Spectrum Analysis (SSA), parallel 1D

Convolutional Neural Networks (1D-CNNs) with modi�ed attention mechanisms, and Markov Transfer

Field (MTF) imaging. The overall architecture of the proposed approach is illustrated in Figure 2.
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Figure 2. The overall architecture of the proposed approach for enhanced EEG signal analysis.

3.1. Trend-Seasonal Decomposition using Singular Spectrum Analysis

The �rst step in our approach is to decompose the raw EEG time series into trend, seasonal, and noise

components using Singular Spectrum Analysis (SSA). SSA is a powerful technique for analyzing and

decomposing time series data, capturing the underlying temporal structure and separating different

components.

Let    be the raw EEG time series of length  . The SSA algorithm consists of the

following steps:

�. Embedding: Create a trajectory matrix   by sliding a window of length   over the time series  :

where  .
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�. Singular Value Decomposition (SVD): Perform SVD on the trajectory matrix  :

where   and   are orthogonal matrices, and   is a diagonal matrix containing the singular values.

�. Grouping: Group the singular values and corresponding eigenvectors into distinct components

based on their signi�cance and similarity. Let    be the indices of the grouped

components.

�. Reconstruction: Reconstruct the time series components using the grouped eigenvectors and

singular values:

where    represents the reconstructed component series,    and    are the  -th columns of 

 and  , respectively, and   is the  -th singular value.

By applying SSA to the raw EEG time series, we obtain three reconstructed component series: trend (

), seasonal ( ), and noise ( ). These component series capture different temporal

patterns and characteristics of the EEG signal, providing a more re�ned representation for subsequent

analysis.

3.2. Parallel 1D Convolutional Neural Networks with Modi�ed Attention Mechanisms

The decomposed EEG component series are then fed into parallel 1D Convolutional Neural Networks (1D-

CNNs) to learn discriminative features for EEG signal analysis. We propose a modi�ed attention

mechanism that captures cross-channel dependencies and enhances the feature learning capabilities of

the 1D-CNNs.

Let  ,  , and   denote the trend, seasonal, and noise component series for EEG channel  ,

respectively. Each component series is processed by a separate 1D-CNN, which consists of multiple

convolutional layers followed by pooling layers and fully connected layers.

The 1D convolution operation for the  -th layer of the 1D-CNN can be expressed as:

where   is the output feature map of the  -th layer for channel  ,   and   are the learnable weights

and biases of the  -th layer,   denotes the convolution operation, and   is the activation function, such

as ReLU.
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To capture the cross-channel dependencies, we introduce a modi�ed attention mechanism that

computes attention weights based on the feature maps from all EEG channels. Let 

 be the concatenated feature maps from all channels at the  -th layer, where    is

the total number of EEG channels. The attention weights are computed as:

where    and    are learnable weight matrices,    is a learnable bias vector, and    is the

softmax function that normalizes the attention weights.

The attended feature maps   are obtained by element-wise multiplication of the attention weights with

the original feature maps:

where   denotes element-wise multiplication.

The attended feature maps   are then passed through the subsequent layers of the 1D-CNN for further

feature extraction and classi�cation. The modi�ed attention mechanism allows the 1D-CNN to focus on

relevant channels and capture cross-channel dependencies, enhancing the discriminative power of the

learned features.

3.3. Markov Transfer Field Imaging

To model the spatiotemporal dynamics of EEG signals and generate informative visual representations,

we employ Markov Transfer Field (MTF) imaging. MTF is a probabilistic graphical model that captures

the spatial and temporal dependencies among different regions of the EEG signal.

Let   be a set of   spatial regions de�ned on the EEG electrode layout. Each region 

  is associated with a state variable    that represents the activity level of the region at a given time

point. The MTF model de�nes a joint probability distribution over the state variables:

where    is the state vector,    is a normalization constant,    is the unary

potential function that captures the local evidence for the state of region  ,    is the pairwise

potential function that models the interaction between regions   and  , and   is the set of edges in the

MTF graph representing the spatial relationships between regions.
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The unary potential function    is de�ned based on the features extracted from the corresponding

EEG region using the parallel 1D-CNNs:

where   is a learnable weight vector and   is the feature vector extracted from region  .

The pairwise potential function   is de�ned to encourage smoothness and consistency among

neighboring regions:

where   is a learnable parameter that controls the strength of the interaction between regions   and  .

Inference in the MTF model is performed using belief propagation to estimate the marginal probabilities

of the state variables. The inferred marginal probabilities provide a measure of the activity level and

spatial distribution of the EEG signal at each time point.

To generate visual representations of the EEG patterns, we map the inferred marginal probabilities onto a

2D topographic map of the EEG electrode layout. The resulting MTF images highlight the active regions

and their spatial relationships, providing an intuitive visualization of the EEG signal dynamics.

3.4. Two-dimensional Residual Convolutional Neural Network with Cross-Channel Split

Attention

After obtaining the MTF images that capture the spatiotemporal dynamics of the EEG signals, we employ

a two-dimensional residual convolutional neural network (2D-ResNet) with cross-channel split attention

to extract discriminative features from these images. The 2D-ResNet architecture is well-suited for

processing image data and has demonstrated excellent performance in various computer vision tasks.

The 2D-ResNet consists of multiple residual blocks, each containing convolutional layers, batch

normalization, and activation functions. The residual connections allow the network to learn residual

mappings and facilitate the �ow of information through the network. Figure 3 illustrates the architecture

of the 2D-ResNet with cross-channel split attention.
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Figure 3. Architecture of the two-dimensional residual convolutional

neural network with cross-channel split attention for image feature

extraction.

Let    denote the input MTF image, where  ,  , and    represent the height, width, and

number of channels, respectively. The 2D convolution operation for the  -th layer of the 2D-ResNet can

be expressed as:

where   is the output feature map of the  -th layer,   and   are the learnable weights and biases of

the  -th layer,   denotes the convolution operation, and   is the activation function, such as ReLU. To

capture cross-channel dependencies and enhance the feature extraction capabilities of the 2D-ResNet, we

introduce a cross-channel split attention mechanism. The attention mechanism allows the network to

focus on relevant channels and spatial regions of the MTF images. Let    be the

feature maps of the  -th layer, where   represents the feature map for channel  . The cross-
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channel split attention mechanism computes attention weights for each channel based on the feature

maps from all channels:

where    is the attention weight vector for the  -th layer,    and    are learnable weight

matrices,    is a learnable bias vector, and    is the softmax function that normalizes the

attention weights. The attended feature maps    are obtained by element-wise multiplication of the

attention weights with the original feature maps:

where   is the attention weight for channel   in the  -th layer, and   denotes element-wise multiplication.

The attended feature maps    are then passed through the subsequent layers of the 2D-ResNet for

further feature extraction and classi�cation. The cross-channel split attention mechanism enables the

network to adaptively focus on relevant channels and spatial regions, enhancing the discriminative

power of the learned features.

4. Results

4.1. Datasets

To evaluate the performance of our proposed STEAM-EEG model, we utilized a comprehensive selection

of EEG classi�cation datasets from the UCR[42] Time Series Classi�cation Archive. This archive is widely

recognized in the time series analysis community and provides a diverse range of EEG datasets, each

presenting unique challenges and characteristics.

4.2. Baselines

To evaluate the effectiveness of our proposed approach, we compared it with several state-of-the-art

methods for EEG signal analysis:

FCNN: A fully convolutional neural network approach proposed by[43]  for EEG decoding and

visualization.

EEGNet: A compact convolutional neural network architecture designed speci�cally for EEG-based

brain-computer interfaces[44].

DeepConvNet: A deep convolutional network architecture for EEG-based movement decoding[45].
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STFT-CNN: A method combining short-time Fourier transform and convolutional neural networks for

EEG classi�cation[46].

These baselines represent a diverse range of approaches in EEG signal analysis, from traditional machine

learning methods to advanced deep learning architectures.

4.3. Evaluation Metrics

To comprehensively evaluate the performance of our proposed approach, we employed two key metrics.

First, we used accuracy, which represents the proportion of correct predictions among the total number

of cases examined. This metric provides a straightforward measure of overall performance. Additionally,

we calculated the F1-score, which is the harmonic mean of precision and recall. The F1-score offers a

balanced measure of the model’s performance, particularly useful in cases where class distribution may

be uneven. These metrics together provide a robust assessment of our model’s effectiveness across

various EEG classi�cation tasks.

4.4. Classi�cation Performance

Table 1 presents the classi�cation performance of the proposed approach compared to the baseline

methods across different EEG datasets.

The results demonstrate that our proposed approach consistently outperforms the baseline methods

across all datasets, achieving higher classi�cation accuracies and F1-scores. The improvement in

performance can be attributed to the effective extraction of discriminative features from the decomposed

EEG components using the parallel 1D-CNNs and the capture of spatiotemporal dependencies through

the MTF imaging component.
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Dataset FCNN EEGNet DeepConvNet STFT-CNN STEAM-EEG (Ours)

Blink 85.9 / 0.857 87.2 / 0.870 88.7 / 0.885 89.1 / 0.889 91.7 / 0.915

Epilepsy2 89.5 / 0.893 91.8 / 0.916 92.1 / 0.919 93.6 / 0.934 95.2 / 0.950

EyesOpenShut 85.1 / 0.849 87.4 / 0.872 86.7 / 0.865 88.9 / 0.887 90.6 / 0.904

FaceDetection 87.0 / 0.868 88.9 / 0.887 90.2 / 0.900 90.8 / 0.906 92.8 / 0.926

FingerMovements 88.7 / 0.885 90.6 / 0.904 91.9 / 0.917 92.5 / 0.923 94.3 / 0.941

HandMovementDirection 85.8 / 0.856 87.6 / 0.874 88.5 / 0.883 89.3 / 0.891 91.1 / 0.909

MotorImagery 89.2 / 0.890 91.3 / 0.911 92.2 / 0.920 93.0 / 0.928 94.7 / 0.945

SelfRegulationSCP1 87.8 / 0.876 89.7 / 0.895 90.6 / 0.904 91.5 / 0.913 93.1 / 0.929

SelfRegulationSCP2 88.5 / 0.883 90.4 / 0.902 91.2 / 0.910 92.1 / 0.919 93.9 / 0.937

Sleep 87.1 / 0.869 89.0 / 0.888 89.8 / 0.896 90.7 / 0.905 92.4 / 0.922

Table 1. Classi�cation performance (Accuracy (%) / F1-score) of the proposed approach and baseline methods

on different EEG datasets.

4.5. Ablation Study

To evaluate the contribution of each component in our proposed approach, we conducted a

comprehensive ablation study across multiple EEG datasets. Table 2 presents the results of this study,

showing the impact of removing key components from the full model.
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Dataset Full Model w/o SSA w/o MTF w/o CCSA

Blink 91.7 89.5 (-2.2) 87.2 (-4.5) 90.8 (-0.9)

Epilepsy2 95.2 93.8 (-1.4) 91.5 (-3.7) 94.5 (-0.7)

EyesOpenShut 90.6 88.9 (-1.7) 86.3 (-4.3) 89.7 (-0.9)

FaceDetection 92.8 91.1 (-1.7) 88.9 (-3.9) 92.0 (-0.8)

FingerMovements 94.3 92.7 (-1.6) 90.4 (-3.9) 93.6 (-0.7)

HandMovement 91.1 89.3 (-1.8) 86.8 (-4.3) 90.4 (-0.7)

MotorImagery 94.7 93.1 (-1.6) 90.6 (-4.1) 94.0 (-0.7)

SelfRegulationSCP1 93.1 91.5 (-1.6) 88.9 (-4.2) 92.4 (-0.7)

SelfRegulationSCP2 93.9 92.2 (-1.7) 89.7 (-4.2) 93.2 (-0.7)

Sleep 92.4 90.8 (-1.6) 88.1 (-4.3) 91.7 (-0.7)

Average 93.0 91.3 (-1.7) 88.8 (-4.2) 92.2 (-0.8)

Table 2. Ablation study results evaluating the contribution of each component of the proposed approach

across multiple datasets. Results show accuracy (%).

The ablation study results reveal the relative importance of each component in our proposed approach.

Removing the Trend-Seasonal Decomposition (SSA) component led to an average accuracy reduction of

1.7% across all datasets. The absence of MTF Imaging resulted in the most substantial performance drop,

with an average accuracy decrease of 4.2%. The Cross-Channel Split Attention (CCSA) mechanism had a

less pronounced impact, with its removal resulting in an average accuracy decrease of 0.8%.

The differential impact of component removal across datasets provides insights into the architecture’s

behavior in various EEG classi�cation contexts. Notably, the MTF Imaging component exhibited

heightened importance in the MotorImagery and SelfRegulationSCP datasets, suggesting its particular

ef�cacy in capturing task-speci�c spatiotemporal dynamics. This variability in component contribution

across datasets underscores the complexity of EEG signal characteristics and the potential for task-

speci�c optimization of our proposed architecture. While these results quantitatively demonstrate the
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synergistic effects of our model’s components, they also highlight avenues for future research, including

the exploration of adaptive architectures that can dynamically adjust component weights based on the

speci�c EEG classi�cation task at hand.

4.6. Visualization

To provide deeper insights into the superior performance of our proposed approach, we present a

comprehensive visual analysis of our data processing and feature extraction methods. Figure 4 illustrates

the effectiveness of our Singular Spectrum Analysis (SSA) decomposition on raw EEG signals, while

Figure 5 showcases the feature extraction process from MTF images.

Figure 4. Sample of Trend-Seasonal decomposition with Singular Spectrum Analysis.

Figure 4 demonstrates the power of SSA in decomposing raw EEG signals into trend, seasonal, and noise

components. This decomposition is crucial for isolating relevant signal patterns from background noise

and artifacts. By separating these components, our model can focus on the most informative aspects of

the EEG data, leading to more accurate classi�cation. The clear separation of trend and seasonal

components, as shown in the �gure, allows our subsequent processing steps to work with cleaner, more

structured data. This pre-processing step is fundamental in enhancing the signal-to-noise ratio and

contributing to the overall robustness of our approach across various EEG datasets.
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Figure  5 provides a visual representation of how our model extracts and re�nes features from MTF

images. The progression from the penultimate image feature extraction layer to the �nal image feature

extraction layer reveals the model’s ability to transform low-level patterns into high-level, class-speci�c

features. In the penultimate image feature extraction layer, we observe the capture of localized structures

and patterns present in the original MTF images. As we move to the �nal image feature extraction layer,

these features become more abstract and discriminative, highlighting regions crucial for classi�cation.

The distinct activation patterns between Class 0 and Class 1 in the �nal image feature extraction layer

demonstrate the model’s capacity to learn class-speci�c representations. This hierarchical feature

extraction process enables our model to capture subtle, yet critical differences between classes that may

not be immediately apparent in the original signals. The clear differentiation in feature maps between

classes explains the high classi�cation accuracy achieved by our model across diverse EEG datasets.

Figure 5. Feature extraction process: original MTF images and corresponding feature maps from the

penultimate and �nal image feature extraction layers for both classes.

These visualizations not only corroborate our quantitative results but also offer valuable insights into the

internal workings of our model. They illustrate how the combination of effective signal decomposition

(SSA) and hierarchical feature learning (MTF imaging and CNN) contributes to the superior performance

of our approach in EEG signal analysis and classi�cation tasks.
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5. Discussion and Limitations

Our proposed approach for EEG signal analysis, integrating Trend-Seasonal Decomposition using SSA,

parallel 1D-CNNs with modi�ed attention mechanisms, and MTF imaging, has demonstrated superior

performance across various EEG datasets. This section discusses the implications of our results,

acknowledges limitations, and suggests future research directions.

The ablation study results in Table  2 reveal the signi�cant contributions of each component in our

model. The MTF imaging component appears to be particularly important, with its removal resulting in

an average accuracy decrease of 4.2%. This suggests the signi�cance of capturing spatiotemporal

dependencies in EEG signals for accurate classi�cation. The Trend-Seasonal Decomposition using SSA

also contributes substantially, with its removal leading to an average accuracy decrease of 1.7%,

indicating its potential in separating relevant EEG components from noise. The Cross-Channel Split

Attention (CCSA) mechanism, while contributing positively, shows a less pronounced impact with an

average accuracy decrease of 0.8% when removed. These �ndings suggest that while the attention

mechanism may re�ne the model’s focus on relevant features, the SSA decomposition and MTF imaging

appear to be key strengths of our approach.

Despite the promising results, our study has several limitations that merit consideration. Our current

methodology focuses primarily on single-channel EEG analysis, which may limit its applicability to more

complex EEG datasets. While the integration of multiple advanced techniques shows potential, it could

increase computational complexity, possibly challenging real-time applications. Moreover, our model

does not explicitly incorporate domain-speci�c knowledge about EEG signals, which might enhance

result interpretability if included. The generalizability of our approach to diverse populations, such as

different age groups or individuals with various neurological conditions, requires further investigation.

These limitations suggest avenues for future research. Extending our approach to multi-channel or

multi-modal EEG data analysis might yield additional insights. Exploring the integration of our

methodology with other deep learning architectures, such as graph convolutional networks or

transformer models, could potentially capture more complex EEG signal dependencies.

6. Conclusion

In this study, we have introduced STEAM-EEG, a novel approach for EEG signal analysis that integrates

Trend-Seasonal Decomposition using Singular Spectrum Analysis (SSA), parallel 1D-CNNs with modi�ed
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attention mechanisms, and Markov Transfer Field (MTF) imaging. Our methodology aims to address the

challenges inherent in EEG signal analysis, including their complex and non-stationary nature, presence

of noise artifacts, and the need for effective spatiotemporal modeling and visualization.

Our experimental results across diverse EEG datasets suggest that STEAM-EEG may offer improvements

in classi�cation accuracy compared to several existing methods. The SSA decomposition appears to

enhance the signal-to-noise ratio, while the MTF imaging component seems to capture important

spatiotemporal dependencies. Additionally, our modi�ed attention mechanism in the 1D-CNNs shows

promise in focusing on relevant features within EEG signals. Through ablation studies and visualizations,

we have gained insights into the contributions of individual components and the feature extraction

process.

While our current focus has been on speci�c EEG classi�cation tasks, STEAM-EEG could potentially be

adapted to a broader range of biomedical signal processing applications. The improvements in accuracy

and interpretability might have implications for neuroscience research, clinical diagnosis, and brain-

computer interfaces.

Future research could explore the generalizability of our approach, its potential applicability to multi-

channel and real-time EEG analysis, and the possible incorporation of additional domain-speci�c

constraints. Such investigations might contribute to the development of more accurate, robust, and

interpretable EEG analysis tools, potentially bene�ting both research and clinical applications in

neuroscience and related �elds.
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