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We study the concept of Economic Productivity of Energy (EPE), defined as the ratio of GDP produced and

energy consumed at country or groups of countries level. We examine its behaviour over time using

both historical data and recent, detailed databases. Our study compares the EPE for three different

groups: underdeveloped, developing, and advanced countries. The underdeveloped countries exhibit

the highest EPE, while an inversion occurs between developing and advanced countries around 2004,

driven by a steady growth in EPE of the advanced economies from 1980 to 2018. Notably, during the

onset of the first industrial revolution in England and Wales, the EPE decreased dramatically, with the

trend reversing only decades later. We argue that, given AI’s current status as an energy-intensive

technology, the risk of a collapse in EPE is significant, in analogy with the first industrial revolution.

However, AI is projected to generate GDP growth several times greater than the one seen in the first

postwar (WW2) decade in Western societies. Additionally, AI’s impact and adoption are expected to be

more pronounced in advanced economies. We stress the need to investigate further these crucial

questions: whether, when, and how the AI revolution will affect the currently positive global trend in

EPE.
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1. Introduction

Climate change and the sustainability of our lifestyles occupy nowadays the news in most countries

worldwide and, by consequence, their governments agendas. On one hand, modern economies need large

amounts of energy, hundreds of times higher than in the pre-industrial era, to keep GDP growing or at
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least non-decreasing. On the other hand, the intensive use of fossil resources is causing the depletion of

non-renewable sources and an increase in CO . While waiting for the discovery of new clean energy

sources, like nuclear fusion, we face the challenge of decreasing energy consumption by making our

global economies more efficient. From that perspective, several studies[1][2][3][4][5][6] have appeared about

the relation between GDP and energy consumption. In particular, the works by Jancovici et al.[4][5]

[7]  observe that, on average, GDP production, a crucial index—albeit not the only one—relating to the

quality of life, grows approximately linearly with energy consumption. Several studies have further

evidenced a strong positive correlation between energy consumption and GDP[2][4][6]. This correlation

suggests that, generally, wealthier countries tend to consume more energy per capita than their less

affluent counterparts. However, the direction of causality remains a subject of debate. While some

analyses propose that increasing energy consumption facilitates GDP growth, others suggest that

economic expansion drives higher energy use. Empirical investigations into this relationship have

yielded inconclusive results, often depending on specific economic and regional contexts[2][4][8].

A country’s or group of countries’ GDP-energy ratio, which we call the Economic Productivity of Energy

(EPE), measures the amount of GDP generated per unit of energy consumed in a specific year. EPE is thus

a macro-index influenced by a country’s economic and societal organization, domestic energy

consumption, energy efficiency, industrial sector structure, and other factors. Notably, EPE is simply the

reciprocal of the more commonly used energy intensity in economics literature[3][6]. Moreover, EPE has

been considered a rough proxy for measuring the energy efficiency of a country’s economic sector[9].

From an economic standpoint, energy intensity is a natural quantity, as it links production to energy

consumption and facilitates the assessment of energy-related costs. However, we adopt a different

perspective and focus on EPE, which we regard as a more natural measure of societal-level “efficiency”,

especially in light of its thermodynamic analogies. Taking the inverse is a shift from reasoning in terms

of “how much energy do I require to make a definite profit?” to “with this limited energy, how much

profit do I make?”. Taking the inverse can reveal some relations that were hidden otherwise: for example,

we find that (see Figure 2) EPE of advanced countries grows linearly over time, a behavior not observed

when considering energy intensity.

Given the significance of EPE in assessing economic efficiency and energy consumption patterns which

has impact on the environment, we aim to explore its historical evolution and recent trends. In this paper

we address the following question: How has EPE evolved over time, and what are its recent trends across

countries with different levels of economic development?
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We are currently in the era of artificial intelligence (AI), which is revolutionizing and already changing

our economic and social paradigms. The modern machines that learn from huge databases with deep

learning techniques by synthesizing raw information into knowledge play a similar role to that of heat

engines had in the old industrial revolution, where they produced work by extracting it from an energy

source[10]. It might seem, in retrospect, that during the early days of the first industrial revolution, the

only relevant technological advance was the “engine.” Yet, a closer look reveals a rich landscape of diverse

technologies at play: various types of steam engines, more efficient mechanical devices, and a range of

innovative applications. The first industrial revolution, beginning in Britain around the 1760s, ushered in

an era of factories, mass production, and a fundamental shift from agrarian to industrial societies. In a

comparable way, AI is reshaping our world by automating tasks, altering labor markets, and transforming

entire sectors. AI stands at the core of the fourth industrial revolution, alongside the Internet of Things,

robotics, and other emerging technologies. Together, they promise to drive radical change through

automation, advanced data analysis, and increased efficiency[11]. Historically, industrial revolutions have

led to a decrease in EPE during the early stages of the transition[12]. This can be caused by different

reasons: technological devices are not scientifically well-developed, economic pressure to make profit

prioritizes GDP generation while disregarding energy consumption and its environmental impact and,

most importantly, society is not yet sufficiently organized to efficiently use the new technology. The

analogy with today’s developments is grounded in a key commonality: technological adoption depends

on profitability. This principle holds true both for the 18th century and for our present time.

In this work, we analyze the historical and recent evolution of EPE for various clusters of countries. This

analysis sets the foundation for a future research program aimed at answering key questions about the

impact of AI on EPE trends: having established that traditionally, technological revolutions come with

non-optimal performances, what future do we face with the AI revolution? In other words, will AI

technology improve global EPE, and if so, on what time scale? The few data points that we know as of

today indicate that AI, as in 18th-century machines, is extremely eager for energy[13]. Nevertheless, since

the forecasts of AI’s impact largely agree on GDP growth of the same order as that in the postwar years

for Western countries, it seems unthinkable to stop or slow down the race toward its adoption. Therefore,

the risk of going down the same path as in the past, following only GDP maximization without

considering how the new technology impacts the correlation between GDP and energy, is very high.

On the other hand, it is also true that the AI revolution is the only industrial revolution, so far,

accompanied by a global concern about the danger of climate change due to the intensive use of non-
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renewable energy sources and massive water consumption[14]. Furthermore, AI has the advantage of

potentially solving a complex problem like the optimization of EPE, even without the advent of new

energy sources. This could be done with improvements at a technological and societal level, devoting

large efforts and investments to fundamental research in AI[15]. In the near future, once robust data

become available, we plan to repeat the analysis presented in this paper to determine which of the

potential effects of AI discussed here has played the predominant role in influencing the EPE trend.

The paper is organized as follows: In Section 2, we introduce the main quantity of interest, the EPE and

discusses its trends from historical to recent data; AI and its associated economic growth and energetic

impact are discussed respectively in Sections 3 and 4; Section 5 gives a general conclusion and

perspective on the topic.

2. EPE Trends

In this section we introduce the mathematical formula for EPE and apply it to data by considering the

EPE index for an entity, which can be, e.g., a country or a set of countries, fixing a time interval. The EPE

measure is given by the total GDP produced, measured in US , over the total energy consumed, measured

in kWh (kilowatt-hour) yearly 

 Thus, EPE indicates how well a society converts energy into monetary output. An entity has higher EPE

if a smaller amount of energy is used to generate more goods and services. On the other hand, an entity

has lower EPE if it needs to use more energy to generate income.

Drawing an analogy with the thermal efficiency of a heat engine (work or heat) in thermodynamics

seems reasonable, and similar ideas have already been explored by studies aiming to transfer

thermodynamic concepts into economics[16][17][18]. Yet, it is essential to note that the EPE is not a pure,

dimensionless, number; rather, it is an empirical measure of dollars per kilowatt-hour (US ).

It is worth highlighting that EPE plays a crucial role in considerations of global warming and enters the

well-known Kaya identity[5][19], which measures the global CO  emissions from human sources.

$

EP E := .
GDP

Energy
(1)

$/kWh
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2.1. Historical trends

Studies conducted on European aggregate data report that historically (16th-21th century) energy

consumption per capita experiences an almost permanent growth over time[20][21]. Such growth is

particularly consistent in the period after the outbreak of a technological revolution, with some latency

time: the different revolutions coincide with the introduction and diffusion of respectively coal-steam,

electricity-oil, and information and communication technologies (ICT).

The work in[12] focuses on per capita energy and per capita GDP trends in the time period 1560-1900 in

Central and Northern Italy and in England and Wales. By analyzing the data in the study, we observed

that EPE values were substantially lower (around   $/kWh) than the current ones in both areas.

Moreover, EPE consistently decreased in England and Wales at the time of the first industrial revolution:

it nearly halved, passing from a pre-industrial EPE of around   $/kWh to   $/kWh during the early

stages of the revolution and   in the successive period. On the other hand, in Italy, where the industrial

revolution arrived much later, EPE stayed steady. This suggests that EPE significantly decreases at the

start of a technological revolution, when the adoption of the innovative technology is profitable

regardless of its energetic impact. At the beginning, indeed, the new technology is still unregulated and

its use is lead by the private sector which is naturally driven by profit maximization. On the other hand,

EPE starts to grow when the revolution is more mature and the energy consumption of the new

technology plays a more important role.

In the second half of the 20th century, in general, both total energy use and EPE have increased over time,

globally[1][3][6]. In these years, citing[6], “although efficiency has increased, per capita energy use has

increased over time, and when we also take population growth into account total energy use has risen

strongly, though at a slower pace than total world economic output".

The consistent variation of the quantities in the game, both energy consumption and economic growth,

during every technological revolution in the past justifies our spotlight on EPE trends during the current

technological revolution, driven by AI machines.

2.2. Recent trends

The data used for this study is obtained from the following databases: the U.S. Energy Information

Administration (2023)[22]; Energy Institute - Statistical Review of World Energy (2024)[23]; Bolt and van

Zanden - Maddison Project Database 2023[24] – with major processing by Our World in Data[25]. There,
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GDP measures are adjusted for inflation and differences in the cost of living between countries

(Purchasing Power Parity). Energy use refers to the use of primary energy before transformation to other

end-use fuels, which is equal to indigenous production plus imports and stock changes, minus exports

and fuels supplied to ships and aircraft engaged in international transport. The data used in this study

was analysed using the Julia Programming software version 1.9.3. Figure 1 displays the log-log

relationship between total energy consumption in kWh and total GDP in USD from 1965 to 2018. An

almost linear relation between GDP and energy consumption is found on the log-log scale. Furthermore,

a very high Spearman correlation[26] indicates that the two variables are strongly monotonically related.

Figure 1. Countries’ GDP vs Energy consumption, over time. Different years are represented by different

colors as shown by the colorbar. Different countries have different markers. The measured Spearman

coefficient value is  .

We analyze EPE trends based on a country’s classification into one of three macro groups: advanced,

developing, or underdeveloped economies. To do so, we consider representative economies from each

category. The division into these three clusters is performed following[27][28][29]. The ISO alpha-3 codes

for the countries used in our analysis are as follows:

0.94
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Advanced Economies: AUS, AUT, BEL, CAN, CYP, CZE, DNK, FIN, FRA, DEU, GRC, HKG, ISL, IRL, ISR,

ITA, JPN, LUX, MLT, NLD, NZL, NOR, PRT, PRI, SGP, KOR, ESP, SWE, CHE, TWN, GBR, USA.

Developing Economies: ALB, DZA, ARG, BHR, BRB, BOL, BWA, BRA, BGR, CMR, CPV, CHL, CHN, COL,

COG, CRI, CIV, DMA, DOM, ECU, EGY, SLV, GNQ, SWZ, GAB, GHA, GTM, HND, HUN, IND, IDN, IRN, IRQ,

JAM, JOR, KEN, KWT, LBN, LBY, MYS, MUS, MEX, MNG, MAR, NIC, NGA, OMN, PAK, PAN, PRY, PER,

PHL, POL, QAT, ROU, LCA, SAU, SYC, ZAF, LKA, SYR, THA, TTO, TUN, TUR, URY, VEN, VNM, ZWE.

Underdeveloped Economies: AFG, AGO, BGD, BEN, BFA, BDI, KHM, CAF, TCD, COM, COD, DJI, ETH,

GMB, GIN, GNB, HTI, LAO, LSO, LBR, MDG, MWI, MLI, MRT, MOZ, MMR, NPL, NER, RWA, STP, SEN,

SLE, TZA, TGO, UGA, YEM, ZMB.

These countries were selected based on the availability of data. Here, we are interested in two aggregate

measures of EPE: one considers the total GDP of the countries in the cluster over the total energy, 

while the other considers the weighted average by country’s population: 

Here  , and    are respectively the gross domestic product, the population, and the energy

consumption of country  , belonging to cluster  . The two measures [eff_country] and [eff_Pop] can

generally be different. Equation [eff_country] is the ratio of the total GDP of all countries in cluster   to

the total energy consumption of all countries in  . It represents the average GDP generated per unit of

energy used by the entire cluster  , giving more importance to countries that consume more energy.

This gives an idea of how efficiently an entire cluster is converting energy into GDP, with a focus on total

energy use. The second measure, equation [eff_Pop], is the weighted mean of GDP per energy, where the

weighting factor is the population of each country. Here, countries with larger populations have more

influence on the overall average. For instance, highly populated countries with relatively low values of

GDP and energy are more influential in   than in  . If their EPE is high with respect to the

other countries in the cluster, then  .

EP =EC

GD∑i∈C Pi

∑i∈C Ei

(2)
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Figure 2. Mean EPE for different clusters of countries over time, without (solid lines) and with (dashed

lines) human energy consumption. The trend of the advanced economies is given by the blue curve, the
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developing economies by orange, and the underdeveloped economies by red.

We find that the mean EPE of the advanced economies has increased monotonically in the last 40 years in

both Figure [mean efficiency cluster] and [mean efficiency weighted by pop] almost linearly. It can be

observed from Figure [mean efficiency cluster] that around 2004 the mean EPE of the advanced

economies surpassed the developing economies. The EPE of the latter exhibits a persistent growth only

after around 2005.

Globally, world EPE grew monotonically in the last 40 years, and the growth was driven by the

improvement of the EPE of the advanced economies. Furthermore, we find that the underdeveloped

economies have the highest values of EPE. The nearly constant trend of the mean EPE of the

underdeveloped economies in Figure [mean efficiency cluster] suggests that, overall, the cluster’s ability

to generate GDP relative to its energy consumption has remained stable over time. Nevertheless, in Figure

[mean efficiency weighted by pop], we observe that when weighted by countries’ populations, the

average EPE is generally higher and exhibits a decreasing trend. That means that countries with

relatively low values of energy consumed and GDP with respect to their population have typically higher

values of EPE. If we assume that the GDP of the underdeveloped countries is produced mainly by human

work, the data suggests that, in general, organized human work at a societal level requires less energy to

generate the same amount of income as industrial machines.

In order to account for the energy consumed by human labour, we modify the measure of energy

consumption in a country by adding a term proportional to the country’s population. Considering a daily

energy use per individual of  [30], we modify the measure of energy

consumption as follows: 

where   denotes the total energy accounting for human consumption, and   is the energy consumed

by machines. The value of 2.9 kWh per day is based on the world average energy consumed by a human

being. We emphasis that, this correction does not restrict the added term to the working-age population,

as every individual, regardless of age, consumes energy for basic biological functions. The goal is to

account for the total societal metabolic energy, not just the economically productive share. The impact of

incorporating human energy consumption is illustrated by the dashed lines in Figure 2, where one

observes a significant decrease in the mean EPE for underdeveloped economies. The perturbation is

2500 kcal/day = 2.9 kWh

= + 2.9 ⋅ 365 ⋅ P o ,E′
i Ei pi

E′
i Ei
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more pronounced for underdeveloped and developing economies, whose GDP and energy consumption

values are lower, while the EPE of advanced economies remains almost unchanged. Taking human

energy consumption into account, we find that the EPE of the three clusters generally exhibits less

dispersion, demonstrating that equation [ene_pop_with human] provides a robust definition of energy

consumption. Finally, we note that these results are not highly sensitive to the specific measure chosen.

3. AI and Economic Growth

Several reports from business consulting companies such as the McKinsey Global Institute 2018[31],

2019[32], and 2023[33], the Goldman Sachs Economics Research report 2023[34], and PWC[35] have made

predictions of the overall impact of AI on the economy globally. These consulting firms make use of

expert surveys (i.e., experts in AI, economics, and other fields to provide insights into the different ways

that AI is likely to impact the economy) or econometric models to estimate the impact of AI on GDP by

simulating the effects of AI on productivity, economic growth, and job creation. Additionally, they use

case studies of specific industries and companies to see how AI is being used to improve productivity,

reduce costs, and create new products and services.

It was estimated in[34] that the annual US labor productivity due to generative AI could grow by about 1.5

percentage points over a 10-year period following widespread adoption. This leads to double the recent

1.5% average growth pace, roughly the same-sized boost that followed the emergence of prior

transformative technologies like the electric motor and personal computer. Additionally, at the global

level, there will be an economically significant boost to labor productivity, and it is estimated that AI

could eventually increase annual global GDP by 7%. A 2-3 percentage point increase in labor productivity

growth on average following AI adoption was found in[33][36][37][38][39][40]. However, it is important to

note that the growth attributed to AI can exhibit highly non-linear patterns, heavily influenced by the

rate of adoption[32][41], akin to the delayed effects observed with personal computers on labor

productivity growth. While personal computers were invented in 1981, their impact on productivity only

became significant in the late 1990s[34].

According to[34], AI will boost GDP by increasing productivity directly by increasing labor quality and

indirectly by increasing labor automation and, thus, through worker re-employment in other sectors. AI

will impact different sectors differently[34]. Nevertheless, the predictive analysis generally does not take

into account in their estimation the potential of AI creating new sectors. On the other hand, among the
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several limitations of such predictions, survey answers depend on the knowledge and perceptions of

respondents, and the sample of customers of the business consulting firms may be biased towards early

movers, thus overestimating the impact of AI[31][32][33][34].

Importantly, the studies predict a gap between developed and developing countries in terms of AI-driven

growth and labour productivity[31], highlighting how AI boosts mainly the economies of developed

countries. Indeed, adoption in developed countries is enforced by the need to increase productivity. As

wages are high, there is an incentive to substitute a human workforce. Nevertheless, countries like China

established national strategies to become global leaders in the field[42]. AI may also widen the gaps

between companies (gap between front-runners on one side and slow adopters and non-adopters on the

other) and workers (ones with digital skills and ones doing repetitive labours)[31]. The PWC

report[35]  predicts a boost to the GDP due to AI by 2030 of (   of the current GDP):    for China, 

  for North America,    and    respectively for Northern Europe, Southern Europe,

and developed Asia,   for Latin America, and   for the rest of the world.

The AI revolution is not in its infancy, but the majority of the economic impact is yet to come (step-

change improvements in computing power and capacity, explosion of data, progress in algorithms).

Indeed, after the advent of large language models (e.g., ChatGPT) and in general generative AI, the

estimations of AI’s impact on GDP and productivity have been revised to include a further addition of 0.1–

0.6 percentage points to the annual growth of productivity from 2023 to 2040, according to the McKinsey

Global Institute[33].

4. The Energetic Impact of AI

Artificial intelligence (AI) is poised to revolutionize various domains, rivaling the impact of the internet’s

emergence. However, this breakthrough in AI comes with a significant drawback: the substantial energy

consumption and associated carbon footprint, for which there is an increasing concern (see[43]). For

instance, research by the University of Washington[44]  and others[13]  has shown that AI models like

OpenAI’s ChatGPT can consume enormous amounts of energy, equivalent to that used by tens of

thousands of households.

These AI models, such as ChatGPT, rely on extensive computational resources, comprising large

networks of processing units housed in data centers. Unlike conventional cloud computing workloads,

which are less computationally intensive, AI models require massive amounts of computation during

% 26.1%

14.5% 9.9%, 11.5%, 10.4%

5.4% 5.6%
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training and inference phases. This computing demand necessitates data center infrastructure, leading to

substantial electricity consumption.

Training a single large language model, like ChatGPT-3, can consume up to 10 gigawatt-hours (GWh) of

power, equivalent to the yearly electricity consumption of over 1,000 U.S. households[13]. Moreover, a

significant portion of AI-related energy consumption stems from inference, with Google reporting that

60% of energy usage from 2019 to 2021 was during the inference phase. The training phase for ChatGPT

uses approximately 1,287 MWh in total and 564 MWh per day for its inference phase (1 MWh = energy

provided by an electric power of 1 Watt for 1 hour). Other models of generative AI have different energetic

impacts than ChatGPT, which nowadays has the largest market.

Today there are hundreds of millions of daily queries on ChatGPT, Google’s Brad, Bloom and others[45].

This many queries can cost around 1 GWh each day, which is the equivalent of the daily energy

consumption for about 33,000 U.S. households. Alphabet’s chairman indicated in February 2023 that

interacting with an LLM could likely cost 10 times more than a standard keyword search (see Figure 1

of[13]  for data on energy per query for Google without AI, ChatGPT, Bloom and estimations for Google

search with AI).

Tech giants like Google, Microsoft, and Amazon have recently signed agreements for production of

energy with nuclear power[46][47][48][49]. Moreover, efforts are underway to mitigate AI environmental

impact, striving to achieve sustainability goals, including carbon neutrality and reliance on renewable

energy sources[50][51][52][53][54], as well as investments in nuclear fusion research[55].

Arijit Sengupta, CEO of Aible, an enterprise AI solution company, warns that AI adoption is only at 1% of

its potential, highlighting the looming energy crisis if corrective measures are not implemented[44].

Suggestions include optimizing AI models and machines to minimize carbon footprints and

incorporating emissions considerations into machine learning papers to incentivize environmental

responsibility[56]. In any case, the rapid adoption and development of AI models underscore the urgent

need for energy-efficient solutions to prevent an impending energy crisis.

5. Conclusions and Perspectives

In this work, we provide a new perspective on the potential impacts of the AI revolution, combining

economic growth and environmental sustainability through the defined measure of Economic Productivity

of Energy (EPE). The latter measures the income generated by a unit of energy used, at a country or group
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of countries level. Our central aim has been to understand how EPE has evolved over time and across

different economic clusters, and to assess what future scenarios may emerge under the influence of AI

technologies. Our choice to focus on EPE, rather than the more conventional energy intensity, reflects a

conceptual inversion: instead of asking how much energy is needed to generate income, we ask how

much income can be extracted from a fixed energy budget. This shift provides a sharper lens for

examining energy efficiency in the age of constrained resources. EPE, as the inverse of energy intensity,

is also directly related to the Kaya identity, which decomposes CO  emissions into population, GDP per

capita, energy intensity, and carbon intensity. While we do not apply the Kaya framework explicitly in

this paper, our results offer indirect insight into the energy-efficiency component of that identity.

We are interested in its historical and recent trends; specifically, we investigate the behaviour of the EPE

for different groups of countries divided according to their degree of economic development. We find that

the advanced economies have monotonically increased their aggregate EPE in the last 30 years (see

Figure 2), and their EPE is currently higher than that of the developing economies and converse when

weighted by the population. Nevertheless, the economies that generate more income per unit of energy

are those of underdeveloped countries. Furthermore, by interpreting historical data during the first

industrial revolution in England and Wales and in Italy[12], we deduce that at the start of the revolution,

EPE drastically lowers and starts growing only when the revolution is more mature.

This is very much of interest if we notice that the AI revolution, like the first industrial revolution guided

by heat or steam engines, is pre-scientific, in the sense that the technological development arrives before a

deep scientific understanding. For the first industrial revolution, the building of the steam engine came

decades before the discovery of the second law of thermodynamics. For the AI revolution, while large

language models are already at work, the scientific community is currently deeply involved in

understanding the new thermodynamic of learning[57]. The relevance of fundamental research oriented

toward pure science is a must within this context[58]. A different path has been followed by other

industrial revolutions where technology has followed science. For example, the second industrial

revolution guided by electricity in the late 19th century is post-scientific: the technologies developed at

the time are applications of the consolidated Maxwell’s theory of electromagnetism. Another example of

a post-scientific revolution is the one based on quantum mechanics, which led to the construction of

micro-electronic devices, the building blocks of modern computer science.

The lack of a scientific understanding would lead to the diffusion of suboptimal technologies, even from

an energy perspective. Thus, if the analogy to the first industrial revolution holds also in terms of the EPE

2
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(the AI is extremely energy-consuming; see section 4), we may face a period of unsustainable growth

when the AI adoption is profitable at any energetic cost, the energetic impact is disregarded, and the EPE

lowers. Moreover, economic growth is not infinite, even with highly efficient machines, as it is

constrained by fundamental thermodynamic limits that may become more significant in the future. For

example, waste heat, the byproduct of all energy use (including "clean" energy from renewable sources or

nuclear fusion), is currently negligible but could pose a threat as energy-demanding technologies

proliferate[59].

However, the good news is (a) that AI can help in optimizing industrial processes and economic and

societal organization, and (b) that nowadays there is a strong pressure from the public opinion towards a

more sustainable economy, especially in the advanced countries. Indeed, AI has the potential to improve

energy systems by enhancing its integration and management. The advanced countries are those that

will experience the largest AI-driven boosts (see section 3) and are also the ones with the largest

influence on global EPE.

While our analysis does not yet segment AI by application or energy profile due to data limitations, we

recognize the importance of this step. Once more granular data becomes available, our framework can

serve as a foundation for tracking the differentiated impact of various AI technologies on EPE and

sustainability.

Will this be enough to keep or even improve the current positive trend of EPE in every stage of the actual

or upcoming AI era? This remains an open and pressing question. The historical analogy suggests a risk

of decline in EPE during the early phase of rapid AI adoption, but the outcome will depend on

technological choices, policy interventions, and societal priorities. Future data analysis of EPE trends,

when AI adoption becomes significant, will provide valuable insights to evaluate the direction in which

we are heading.
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