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The rapid advancement of Large Language Models (LLMs) has catalyzed the development of multi-

agent systems, where multiple LLM-based agents collaborate to solve complex tasks. However,

existing systems predominantly rely on centralized coordination, which introduces scalability

bottlenecks, limits adaptability, and creates single points of failure. Additionally, concerns over

privacy and proprietary knowledge sharing hinder cross-organizational collaboration, leading to

siloed expertise. To address these challenges, we propose AgentNet, a decentralized, Retrieval-

Augmented Generation (RAG)-based framework that enables LLM-based agents to autonomously

evolve their capabilities and collaborate ef�ciently in a Directed Acyclic Graph (DAG)-structured

network. Unlike traditional multi-agent systems that depend on static role assignments or centralized

control, AgentNet allows agents to specialize dynamically, adjust their connectivity, and route tasks

without relying on prede�ned work�ows. AgentNet’s core design is built upon several key

innovations: (1) Fully Decentralized Paradigm: Removing the central orchestrator, allowing agents to

coordinate and specialize autonomously, fostering fault tolerance and emergent collective intelligence.

(2) Dynamically Evolving Graph Topology: Real-time adaptation of agent connections based on task

demands, ensuring scalability and resilience. (3) Adaptive Learning for Expertise Re�nement: A

retrieval-based memory system that enables agents to continuously update and re�ne their

specialized skills. By eliminating centralized control, AgentNet enhances fault tolerance, promotes

scalable specialization, and enables privacy-preserving collaboration across organizations. Through

decentralized coordination and minimal data exchange, agents can leverage diverse knowledge

sources while safeguarding sensitive information. Experimental results demonstrate that AgentNet

outperforms traditional centralized multi-agent systems, signi�cantly improving ef�ciency,
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adaptability, and scalability in dynamic environments, making it a promising foundation for next-

generation autonomous, privacy-respecting multi-agent ecosystems.
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1. Introduction

Recently, large language models (LLMs) have demonstrated remarkable capabilities in various domains,

ranging from basic text understanding to complex reasoning and multimodal integration[1][2][3].

Consequently, LLM-based agents have exhibited exceptional performance in numerous tasks, including

scienti�c discovery[4], automated reasoning[5], and website operations[6]. However, due to the lack of

collective intelligence and collaboration, LLM-based Single Agents struggle to address the complex

challenges encountered in the real world. By leveraging collective intelligence through parallel decision-

making or work�ow collaboration, LLM-based Multi-Agent Systems (MAS) have emerged as a promising

framework for tackling complex real-world problems[7][8][9]. However, most MAS following the work�ow

collaboration paradigm rely heavily on a centralized controller or a static, prede�ned work�ow to allocate

tasks among agents with �xed roles[10][11][12][13][14]. While such designs simplify orchestration, they also

introduce inherent constraints—including limited scalability, a single point of failure, and challenges to

cross-organizational collaboration due to privacy and proprietary knowledge concerns.
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Figure 1. The illustration contrasts Pre-De�ned Multi-Agents (hierarchical, static, with centralized control

and single point of failure) against Self-Evolving Agents/AgentNet (adaptive, decentralized, and fault-tolerant

with dynamic expertise development).

A more critical drawback arises from the inability of these systems to adapt to real-time �uctuations in

agent performance or rapidly changing task requirements. Relying on a central controller in�ates

deployment complexity and restricts dynamic role reassignment, rendering the system vulnerable when

the controller fails or becomes overloaded. Furthermore, rigid role de�nitions prevent agents from

�exibly leveraging their full expertise in dynamic environments, ultimately undermining both ef�ciency

and scalability. Taken together, these limitations highlight the need for more decentralized, fault-tolerant

approaches that support dynamic task allocation, enhance adaptability, and safeguard privacy across

organizational boundaries.

Beyond the scalability and failure-tolerance issues previously discussed, centralized architectures

become even more problematic when organizations attempt to collaborate at scale[9][15]. Each institution

—be it an enterprise, research lab, or government agency—typically holds proprietary expertise, sensitive

data, or both. In a centralized setup, concerns over data ownership, privacy regulations, and inconsistent

governance often create barriers that prevent free exchange of knowledge. As a result, LLM-based agents

contributed by multiple organizations remain siloed, unable to fully capitalize on each other’s specialized

capabilities or datasets. This fragmentation not only hampers collective intelligence but also highlights
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the urgency of developing secure, decentralized collaboration mechanisms. By enabling each participant

to maintain and share only the minimal necessary information, these mechanisms address data

con�dentiality requirements while still allowing for a richer, more collaborative multi-agent ecosystem.

To address these challenges in multi-agent systems, we propose AgentNet, a novel framework designed

to foster adaptive agent evolution, optimize task coordination, and preserve privacy. By eliminating the

reliance on a central orchestrator, AgentNet enables agents to dynamically recon�gure their connections

and redistribute tasks, forming a self-organizing, fault-tolerant architecture. Within this architecture,

tasks are ef�ciently routed via a Directed Acyclic Graph (DAG)[16][17], which supports �exible

collaboration and prevents cyclic dependencies.

Unlike traditional MAS frameworks that �x each agent’s role, AgentNet incorporates a retrieval-based

RAG[18][19][6]  memory mechanism to re�ne agent expertise over time. Each agent maintains a limited-

capacity pool of successful task trajectories; when a new task arises, it retrieves the most relevant

trajectories through few-shot learning, thus improving decision-making. To prevent memory over�ow,

agents autonomously prune less pertinent trajectories, ensuring the retention of valuable knowledge.

This dynamic specialization strategy not only streamlines task allocation and agent adaptation but also

supports a highly scalable and privacy-respecting environment for multi-agent collaboration.

AgentNet’s core design is built upon several key innovations:

Fully Decentralized Paradigm: By removing the need for a central orchestrator, AgentNet fosters

emergent collective intelligence. Decision-making authority is distributed across all agents, thereby

eliminating single points of failure and allowing each agent to coordinate, delegate, and specialize as

conditions evolve. This approach leads to a self-organizing and fault-tolerant architecture that can

rapidly respond to new tasks and unforeseen challenges. This decentralized setup also encourages

emergent collective intelligence—in other words, agents can collectively discover and re�ne optimal

strategies rather than waiting for instructions from a central controller.

Dynamically Evolving Graph Topology: AgentNet employs a network structure in which both nodes

(agents) and edges (agent-to-agent connections) adapt in real time based on task demands and agent

performance. Rather than relying on �xed work�ows, the system continuously recon�gures its

topology to optimize information �ow and task distribution, ensuring scalability and resilience in

complex, changing environments.
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Adaptive Learning Mechanism for Expertise Re�nement: AgentNet’s third innovation is its

retrieval-based memory system, enabling agents to capture and update knowledge from successful

task trajectories. This mechanism continuously re�nes each agent’s specialized skills without altering

the network’s topology, allowing agents to avoid over-reliance on outdated information and sustain

high performance in dynamic scenarios.

Moreover, each of these three innovations inherently enhances data privacy. By eliminating a central

orchestrator, every agent stores and processes knowledge locally, sharing only minimal task-relevant

metadata. The dynamic graph topology further con�nes data �ow to necessary agent-to-agent

interactions, reducing the exposure of sensitive information. Meanwhile, the retrieval-based memory

mechanism restricts how much and how long data is retained, pruning outdated trajectories so that only

high-value knowledge persists. Together, these design choices safeguard privacy and intellectual

property, particularly crucial for cross-organizational collaborations.

Our experimental evaluation shows that AgentNet signi�cantly outperforms traditional LLM-based

multi-agent frameworks in dynamic environments, demonstrating improved task ef�ciency,

specialization stability, and adaptive learning speed. These results highlight the effectiveness of

decentralized evolutionary coordination in large-scale AI ecosystems.

2. Related Work

2.1. LLM-based Multi-Agent Systems

The development of LLM-based multi-agent systems (LaMAS)[9]  has advanced rapidly in recent years.

Early frameworks, such as AutoGen[11]  and MetaGPT[10], made signi�cant strides in establishing

foundational architectures for orchestrating multiple LLM agents through structured work�ows.

AutoGen provided a �exible framework for de�ning agent interactions, while MetaGPT incorporated

software development principles to enhance collaboration. These centralized frameworks proved

effective for managing multi-agent interactions. However, they also faced inherent challenges, including

limited scalability, single points of failure, and dif�culty in dynamically adapting to evolving tasks or

incorporating new expertise.

In response to these limitations, more recent frameworks such as AgentScope[20]  and

MegaAgent[12]  have focused on improving robustness and scalability. AgentScope introduced modular

qeios.com doi.org/10.32388/WS0VIM 5

https://www.qeios.com/
https://doi.org/10.32388/WS0VIM


design patterns to enhance system reliability, while MegaAgent employed hierarchical structures to scale

agent interactions. Although these frameworks offer improvements, they still operate under centralized

control paradigms, with a master agent delegating tasks, which continues to lead to scalability

bottlenecks and single points of failure. Moreover, existing LaMAS implementations predominantly

utilize single-source LLMs, lacking the integration of heterogeneous models. Their work�ows are

typically static, unable to dynamically allocate resources based on task complexity, further constraining

adaptability.

In contrast, AgentNet introduces a novel decentralized approach, addressing these challenges by enabling

agents to autonomously re�ne their expertise and dynamically allocate resources. AgentNet supports

scalable, fault-tolerant collaboration without reliance on a central orchestrator, overcoming the

limitations of centralized frameworks.

2.2. Evolutionary Agent Systems

Inspired by natural evolution, recent researchers have explored evolutionary approaches to automate and

optimize agent behaviors and work�ows in LaMAS. Existing efforts can be broadly categorized into the

following areas:

Prompt Evolution and Optimization – Techniques such as PromptBreeder[21], DsPy[22]  and

AgentPrune[23] apply evolutionary algorithms to iteratively re�ne prompt generation, improving task

performance through better input design.

Inter-Agent Topology Optimization – Systems like GPTSwarm[24], DyLAN[25], and G-

Designer[26] focus on evolving the structural organization of agent interactions. These works aim to

optimize communication patterns, task allocation, and collaboration ef�ciency within multi-agent

networks.

Agent Role and Persona Specialization – Frameworks such as AgentVerse and MorphAgent[27]

[28]  re�ne agent roles and pro�les, enabling more effective specialization and coordination among

agents in complex tasks.

While these evolutionary approaches have shown promise, they primarily focus on individual agent

adaptation rather than collective coordination. Additionally, they still tend to operate within centralized

control structures, which limits their scalability and dynamic adaptability. Recent frameworks like

AgentSquare[29] and AFlow[30] have begun to formalize automated design processes for agentic systems,
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improving system-level orchestration and work�ow automation. Another key direction is self-adaptive

agent architectures, where agents adjust their strategies in real-time based on feedback and accumulated

experience. For example, EvoMAC[31] combines reinforcement learning with evolutionary algorithms to

optimize agent decision-making and policy updates.

However, these approaches are often limited to single-agent adaptation and lack mechanisms for

decentralized specialization and coordination across large-scale agent collectives. While EvoMAC and

other systems focus on optimizing individual agents, they are not designed for scalable, multi-agent,

decentralized collaboration. In contrast, AgentNet integrates evolutionary learning with decentralized

control, enabling heterogeneous agents to dynamically evolve their roles, adapt their strategies in real-

time, and collaborate �exibly across a large-scale multi-agent system. This integration of evolutionary

learning with decentralized control makes AgentNet a more suitable framework for real-time, adaptive,

and scalable multi-agent collaboration.

Figure 2. Illutration of AgentNet. Initially, agents are fully connected and equipped with executors and

routers. The system eliminates the need for a central controller, using a DAG for dynamic task routing and

agents leveraging RAG pools and few-shot learning. In the evolved phase, the network adapts with agents

developing private trajectories and diversi�ed abilities, ensuring scalability, fault tolerance, and continuous

evolution of expertise..
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3. Methodology

3.1. Overview of AgentNet Architecture

Unlike traditional MAS frameworks with �xed agent roles and rigid work�ows using central

coordinators, AgentNet creates a privacy-preserving, collective intelligence multi-agent system with high

scalability and failure-tolerance by leveraging an innovative framework, consisting of a fully

decentralized network architecture, a dynamic task allocation mechanism, and an adaptive agent

learning method.

We begin with a brief introduction of AgentNet, including notation and basic architectures of agents

employed.

Formally, we de�ne AgentNet as a tuple  , where    represents the set of

autonomous agents,    represents each agent’s ability, and    represents the

communication connections between agents, speci�cally    referring to a unidirectional

connection from Agent   to Agent  .

For each agent   contains two key components.    is an agent router, responsible for analyzing

received routing queries and making routing decisions.    is an agent executor, responsible for

responding to executing queries through operations and tools.

The two components mentioned above are underpinned by a substantial LLM that leverages its extensive

knowledge and understanding to solve speci�c problems. Furthermore, both    and    in 

  maintain �xed-size memory modules    and  , respectively, providing    with powerful

adaptive evolutionary capabilities by storing and utilizing the agent’s experiences through the RAG

mechanism.

For optimization, AgentNet will be given a series of tasks denoted as    to resolve,

along with an evaluation function  . The optimization goal of AgentNet is to maximize the

evaluated score by   for the solution output by AgentNet, speci�cally optimizing   and  , as the

following formula:

The innovation of AgentNet emerges from the synergistic integration of three key mechanisms: (1)

AgentNet realized a fully decentralized network architecture by distributing decision-making authority
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across all agents, leading to a high failure tolerance and privacy-preserving MAS. (2) By using a dynamic

task allocation mechanism, AgentNet can optimize workload distribution based on agent capabilities and

the current system state �exibly. (3) The adaptive learning in AgentNet can achieve continuous

specialization of agents, making the whole MAS more scalable and adaptive. Therefore, we can create a

self-organizing system capable of handling complex tasks while preserving privacy and adapting to

changing environments.

3.2. Decentralized Network Topology

As illustrated in Figure  3, AgentNet employs a dual-role design. Each agent   is equipped with a router 

  to facilitate routing decisions and an executor    to execute speci�c tasks. We will introduce

details of the router and executor in the following sections. In essence, the router within each agent

endows AgentNet with a fully decentralized network structure because the routing decisions are made

independently by each agent, without relying on a central authority or coordinator.

ai

roui exei
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This contrasts with traditional LLM based Multi-Agent Systems that typically depend on a centralized

controller to manage the coordination and allocation of tasks. Each agent in AgentNet autonomously

determines how to route tasks to other agents based on its local knowledge and the task requirements,

ensuring that decision-making is distributed across the network and that there is no single point of

control, thus achieving full decentralization.

Figure 3. Dual-role agent architecture.

Mathematically, we represent the architecture of AgentNet as   when given the  -th

task   after completing task  , where   represents the states of agents after

task    and    represents the set of directed edges between agents and each edge 

  means a directed edge from    to  . A weight matrix    will be maintained throughout all the

tasks before    to weight the connection between agents, namely  . After completing  , 

 can be updated using the following formula from  :

= ( , )Gm Am Em m + 1

tm+1 tm = { , , … , }Am am1 am2 amn

tm ⊆ ×Em Am Am

emi,j ami amj wm

tm+1 (i, j)wm tm+1

wm+1 wm

(i, j) = α ⋅ (i, j) + (1 − α) ⋅ S( , , ),wm+1 wm am+1
i am+1

j tm+1 (2)
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where    is a decay factor that balances historical performance with recent interactions, and 

  is a success metric for task    routed from agent    to  . This adaptive

weighting mechanism ensures that the network continuously re�nes its structure based on operational

experience.

Over tasks, the weight matrix   will evolve based on collaborative success, and the edges with a lower

weight than a hyper-parameter threshold   are periodically pruned:

This pruning mechanism ensures that the network maintains ef�cient pathways while eliminating

unproductive connections, optimizing both communication overhead and routing ef�ciency.

3.3. Adaptive Learning and Specialization

AgentNet’s adaptive learning mechanism facilitates continuous improvement and specialization of

agents based on their task experiences, without the need for explicit role assignment. This process

enables agents to gradually develop expertise in speci�c domains, differentiating AgentNet from static

multi-agent systems and allowing it to adapt to evolving requirements over time.

Agents in AgentNet follow the ReAct (Reasoning + Acting) framework Yao et al.[32]; Zhou et al.[6], which

empowers agents to reason about a given query and its context before deciding appropriate actions for

the executor modules. In addition to the given query and its context, the agent also retrieves relevant

trajectory fragments from its memory modules to enhance reasoning and acing. The retrieval process is

performed using a Retrieval-Augmented Generation (RAG) mechanism[18][19][6], which allows the agent

to leverage past experiences to generate informed decisions and actions for new tasks.

In the AgentNet, Each agent    maintains two memory modules    and    for its router

module    and  , which store local trajectory fragments from prior tasks corresponding to the

speci�c steps where   was actively involved instead of storing the whole task trajectories cooperated by

all agents.

Formally, each entry in   and   is the local step fragment represented as:  , where 

  represents this entry belongs to    (when  ) or    (when  ).    denotes the

observation, namely the query of the corresponding task, and    represents the context of the

corresponding task so far (i.e., partial trajectory before this step), and   is the action or response of the

α ∈ [0, 1]

S( , , )am+1
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j tm+1 tm+1 am+1
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j
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agent. These step fragments are collected from different tasks in which the agent has participated and

serve as experiential knowledge for future reasoning.

When agent   receives a new task   to solve, it retrieves the   most relevant fragments from both

memory modules. For each module type  , the retrieval process is de�ned as:

Here,   is a semantic embedding function that projects the input context into a high-dimensional

vector space, and the fragments with the highest relevance are retrieved to inform the agent’s reasoning

or action for both routing and execution processes.

Both the reasoning and acting processes are enhanced by the retrieval of historical task fragments,

allowing the agent to make better decisions based on prior experiences. The reasoning function for each

module type is modeled as:

where    represents the large language model that serves as the backbone of the LLM Agent,

processing the inputs to generate reasoned decisions. The reasoning function    takes the current

observation and question  , the historical context   representing the partial task trajectory and

interactions up to the current point, and the retrieved fragments    as input to generate the

reasoning output. The fragments allow the agent to reason based on prior experiences that are most

relevant to the current situation.

Once the reasoning process has been completed, the agent executes the chosen action. The action is

informed by the reasoning output, which can be expressed as:

where    represents the large language model that serves as the backbone of the LLM Agent,

translating reasoning into concrete operations. The   function utilizes the reasoning output 

  along with the retrieved memory fragments to determine the appropriate action. The

speci�c action depends on the module type: for  , the router module may produce actions such as

forwarding the task to another agent or splitting it into subtasks; for  , the executor module

generates a single-step operation or response to directly address the �nal answer.

ami tm+1 k
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To manage memory effectively, each agent employs a dynamic memory management strategy. As the

agent receives new tasks, it evaluates the trajectories stored in its memory modules and decides which to

retain or prune. This evaluation is based on reasoning about the task context, historical usage patterns,

and the relevance of each trajectory to future tasks. Several factors in�uence the decision-making

process, including the frequency of use, recency of tasks, and the uniqueness of the trajectory. The agent

assesses these factors through a prompt-based reasoning process that helps determine the utility of each

trajectory. When a memory module reaches its capacity limit  , the agent compares the new

trajectory with the existing ones in that memory module and selects the least useful trajectory to

remove, thus ensuring the memory pool remains focused on high-quality and relevant knowledge.

Through this adaptive and memory-driven learning process, agents in AgentNet continuously re�ne

their expertise and specialize in the areas where they excel. This specialization occurs naturally over

time, allowing the system to self-organize and adapt to the demands of a wide variety of tasks.

3.4. Dynamic Task Allocation

Figure 4. Details of Dynamic Task Allocation.

The dynamic task allocation mechanism in AgentNet enables ef�cient distribution of tasks without

centralized coordination, creating a responsive system that optimizes both performance and load

balancing. This decentralized approach to task routing represents a signi�cant advancement over static

assignment strategies employed in traditional multi-agent frameworks.

Each task   is formally represented as a tuple  , where   contains the task description

in natural language,    is a vector of capability requirements, and    denotes the priority level. To

ef�ciently process a new task    after completing task  , AgentNet employs a sophisticated

mechanism to select the most suitable initial agent.

Cmax

t ∈ T t = ( , , )ot ct pt ot

ct pt

tm+1 tm
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Agent capability representation and matching form the foundation of task allocation. Each agent  ,

after completing task  , possesses a capability vector    that is dynamically updated through task

performance during system operation. In the initial allocation phase, the system selects an entry agent

for   using the following formula:

where    represents the capability requirements of task  ,    denotes the capability

vector of agent  , and   is a similarity function measuring the match between task requirements

and agent capabilities. The capability requirements are determined through different methodologies

depending on task complexity:

For atomic tasks, the system employs function    that maps task properties to capability

requirements based on prede�ned heuristics. For compound tasks, function    leverages an

instruction set containing carefully crafted prompts that guide the large language model in analyzing

task descriptions and inferring the required capability vectors. The system subsequently ranks all agents

according to capability matching scores and selects the highest-scoring agent as the initial agent.

Once a task is assigned to the initial agent, this agent determines how to process the task based on the

reasoning results from its router module  . As illustrated in Figure 4, the agent can perform three

operations:

�. Forward ( ): Transfer the task unchanged to another more suitable agent, maintaining the

task’s original state and preserving the Directed Acyclic Graph (DAG) property of the routing path.

Forwarding decisions are based on analyzing the gap between the current agent’s capabilities and

the task requirements, as well as evaluating the capability vectors of other agents in the network.

�. Split ( ): Decompose the task into subtasks, execute portions matching the agent’s expertise,

and route the remaining subtasks to an appropriate agents. Subtask routing follows this formula:

where    represents the capability requirements derived from the observation of subtask  ,

determined through the current agent’s task decomposition reasoning, and    denotes the

set of all agents excluding the current one.

�. Execute ( ): Complete the entire task without further delegation.

ami

tm cmi

tm+1

= {sim( , )},ainitial argmax
∈ai Am

ctm+1 cmi (7)

= Φ( )ctm+1 otm+1 tm+1 cmi
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= {ctm+1
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A key design feature in the system is that when an agent chooses to split a task, it only forwards the

results of the subtasks it has completed, and not the reasoning behind the decomposition. This prevents

the transfer of unnecessary information and ensures that task decomposition errors made by one agent

do not propagate to other agents in the network.

The agent capability vector    is updated based on task execution history and success rates, using the

following formula:

where    is a decay factor balancing historical capabilities with newly acquired ones, and 

 represents the new capability contribution demonstrated by the agent in task  , calculated by

analyzing the types of operations successfully executed by the agent and the quality of results.

Furthermore, the task’s state is updated only when an agent completes a part of the task (whether by

executing or splitting it). When the agent completes a subtask, it updates the context and forwards it to

the next agent:

While the task is only being forwarded from one agent to another, its state remains unchanged,

preserving the Directed Acyclic Graph (DAG) structure of the task routing path. This ensures that the

task’s progression avoids being trapped in an in�nite loop during task forwarding, maintaining a

consistent and effective routing process across different agents.

Through this dynamic task allocation mechanism, AgentNet can adaptively optimize task �ow based on

task characteristics and changes in agent capabilities, achieving improved overall system performance

and ef�cient resource utilization.

4. Experiment

4.1. Experimental Setup

Tasks and Benchmarks

We evaluate methods using several benchmarks across three task categories, along with custom

constructed training and test sets for each benchmark:

cmi

= β ⋅ + (1 − β) ⋅ Δ ,cm+1
i cmi cm+1

i
(10)

β ∈ [0, 1]

Δcm+1
i tm+1

= ⊕ result( , ).contextupdated contextoriginal aj ti (11)
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Mathematics: This task involves mathematical problem and is evaluated using MATH Hendrycks et

al.[33], which includes problems with 7 different types. The training set consists of 100 examples per

type (total of 700 problems), while the test set consists of 20 examples per type (total of 140 problems).

Logical Question Answering: This task tests reasoning and logical question answering abilities using

the BBH (Big-Bench Hard) benchmark Suzgun et al.[34]. The training set follows the MorphAgent

setup, selecting 627 examples from 20 tasks. For testing, each task has 5 examples of varying

dif�culty, totaling 100 test problems.

Function-Calling: This benchmark evaluates the agent’s ability to perform tool-augmented task

planning and API usage, based on the API-Bank dataset Li et al.[35]. We construct a training set of 100

tasks and a test set of 100 tasks, randomly sampled from the full API-Bank corpus. Since the original

dataset does not include category labels, we annotate each task using GPT-4o-mini to assign one of

the seven task types: health, account, schedule, information, housework, �nance, and others. Each

task is further categorized into one of three dif�culty levels, determined by prompt complexity and

required toolchain length.

Baselines

We compare AgentNet with two categories of baselines: single-agent and multi-agent frameworks:

Single-agent frameworks: These methods involve a single agent solving tasks independently without

collaboration or coordination with other agents.

Direct: A baseline approach where the LLM directly generates outputs.

React: A prompting technique that elicits step-by-step reasoning from language models Wei et al.

[36]; Yao et al.[32].

Synapse: A trajectory-as-exemplar prompting method, which prompts the LLM with complete

trajectories of the abstracted states and actions to improve multi-step decision-making. Zheng et

al.[37]

Self-Consistency: A decoding strategy that samples multiple reasoning paths and selects the most

consistent answer through majority voting, enhancing reliability Wang et al.[38].

Self-Re�nement: An iterative approach where models critically evaluate and improve their own

solutions over multiple passes, progressively enhancing solution quality Madaan et al.[39].

Multi-agent frameworks: These methods involve multiple agents working collaboratively to solve

tasks, each contributing to different aspects of the task-solving process.
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MorphAgent: A framework featuring self- evolving agent pro�les that dynamically optimize

individual expertise in the pro�le through three metrics Lu et al.[27].

MetaGPT: A software development framework where specialized agents (like product manager,

architect, engineer) collaborate in a waterfall work�ow to complete complex engineering tasks

Hong et al.[10].

AFLOW: A framework that optimizes agent work�ows using Monte Carlo Tree Search over code-

represented work�ows with execution feedback Zhang et al.[30].

GPTSwarm: A framework modeling agents as computational graphs with automatic optimization

of both prompts and agent collaboration patterns Zhuge et al.[24].

Parameter Con�guration

In our implementation, we con�gure the LLM API with a temperature of 0.0, a maximum token limit of

2048, and a top-p value of 1.0, ensuring consistent results throughout our experiments and enabling

reliable comparisons and analysis. For the memory pool experiment, we utilize the "BAAI/bge-large-en-

v1.5" model to compute the similarity between task queries and database trajectories.
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4.2. Main Results

Backbone Category Method MATH(Acc/%) BBH(Acc/%) API-Bank(Acc/%)

DeepSeek-V3

Single Agent

Direct 47.86 69.00 26.00

React 77.14 88.00 29.00

Synapse 89.28 92.00 28.00

Self-Consistency 88.00 85.00 29.00

Self-Re�nement 87.14 84.00 25.00

Multi-Agent

MorghAgent 39.29 56.00 16.00

MetaGPT 92.14 64.00 22.00

AFLOW 91.67 88.00 28.00

GPTSwarm 72.14 90.00 21.00

AgentNet 92.86 94.00 30.00

GPT-4o-mini

Single Agent

Direct 31.43 59.00 15.00

React 55.71 80.00 24.00

Synapse 77.14 79.00 22.00

Self-Consistency 54.28 85.00 22.00

Self-Re�nement 68.57 81.00 23.00

Multi-Agent

MorghAgent 80.71 56.00 16.00

MetaGPT 73.57 53.00 19.00

AFLOW 85.00 75.00 21.00

GPTSwarm 85.00 86.00 13.00

AgentNet 85.00 86.00 29.00

Qwen-turbo Single Agent Direct 37.85 57.00 27.00

React 53.57 69.00 23.00

Synapse 67.14 68.00 24.00
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Backbone Category Method MATH(Acc/%) BBH(Acc/%) API-Bank(Acc/%)

Self-Consistency 64.28 70.00 28.00

Self-Re�nement 76.43 74.00 23.00

Multi-Agent

MorghAgent 16.43 56.00 9.00

MetaGPT 63.57 51.00 20.00

AFLOW 82.14 57.00 22.00

GPTSwarm 79.29 75.00 30.00

AgentNet 81.43 92.00 32.00

Table 1. Performance comparison of different methods across various tasks. In all multi-agent methods, we

set 3 agents for each method to ensure a fair comparison. The best result is in bold, while the second is

underlined.

Table 1 summarizes performance across Math, Logical QA tasks and API-Calling tasks. For Math, Logical

QAs and API-Calling tasks, accuracy is reported. Compared to single-agent methods (e.g., Synapse, ReAct),

AgentNet achieves competitive or superior performance across all tasks. While ReAct performs well on

Math and Logic, its static prompting strategy limits generalization to more complex tasks. Against

multi-agent baselines, AgentNet consistently outperforms centralized frameworks such as MetaGPT,

which suffers from limited scalability—e.g., only 53.00% accuracy on Logical QA. AgentNet’s

decentralized coordination and retrieval-augmented memory contribute to its robustness across

domains, particularly in tasks requiring contextual understanding and adaptive role specialization.

4.3. Experiments on Heterogeneous Agents

To investigate the impact of agent diversity on performance, we designed a heterogeneity experiment

across different settings on the BBH task. Agents were tested under four con�gurations: fully

homogeneous (identical models and capabilities), LLM heterogeneity (different language models, same

capabilities), skill heterogeneity (same model but varied capabilities), and a combination of both. This

design allows us to isolate and analyze how model-level and capability-level diversity in�uence multi-

agent collaboration.
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Setting Fully Homogeneous Skill Hetero. LLM Hetero. Both Hetero.

3 Agents 0.86 0.84 0.81 0.81

5 Agents 0.79 0.86 0.85 0.85

Table 2. BBH Accuracy under Different Heterogeneity Settings (Acc%)

The results show that the impact of heterogeneity on multi-agent performance depends on team size.

With 3 agents, the fully homogeneous setting performs best, while introducing either model or skill

diversity reduces accuracy, suggesting uniform reasoning is more effective in small teams. However, with

5 agents, heterogeneous con�gurations outperform the homogeneous one, indicating that diversity

enhances collaboration and complementary reasoning in larger teams. Overall, heterogeneity may

introduce coordination overhead in small groups but offers clear bene�ts at larger scales.

4.4. Ablation Study

Router Effectiveness in AgentNet

To evaluate AgentNet’s decentralized router, experiments were conducted comparing AgentNet with

ablation con�gurations: "Totally Random", "Random Operations", "Random Next Agent ID" and a

centralized "Global Router". Each router manages external routing (selecting the next agent) and internal

routing (deciding to forward, split, or execute).

Performance was tested on the BBH task (training: 627 problems, testing: 100 problems), with results in

Figure  5. AgentNet outperforms randomized methods, achieving 82.14% accuracy during training and

86.00% during testing. Randomizing operations (forward/split/execute) affects task execution more

directly, randomizing next agent ID primarily results in suboptimal task delegation but does not disrupt

task completion as severely. These results underscore the critical role of effective routing and suggest

that optimizing routing decisions can signi�cantly enhance multi-agent system performance.
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Figure 5. AgentNet’s Router Performance on the BBH (Backbone: gpt-4o-mini)

Impact of Evolution Phase

Results in Table  3 clearly indicate that AgentNet signi�cantly improves performance compared to the

non-evolution baseline. On the MATH task, AgentNet achieves a score of 85.00 versus 77.86. For the

function-calling task, performance improves notably from 23.00 to 32.00. On the BBH task, accuracy

rises from 76% to 86%, demonstrating the impact of evolution phase for AgentNet.

3 Agents

MATH API-Bank BBH

Acc(%) Acc(%) Acc(%)

w/o evolution 77.86 23.00 76.00

AgentNet 85.00 32.00 86.00

Table 3. Performance Comparison of AgentNet vs. Without evolution (Backbone: gpt-4o-mini)
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These results con�rm that AgentNet’s adaptive learning during the evolution phase effectively enhances

agent specialization and task performance, demonstrating its essential role in the system’s optimization

and overall ef�ciency.

4.5. Case Studies

This case study is presented to illustrate the differences between the two methods, based on results

obtained using GPT-4o-mini on the BBH dataset. The left image shows the trajectory produced by the

ReAct method, while the right image illustrates the trajectory generated by AgentNet. In the case of

ReAct, the lack of collective reasoning results in an incorrect response after a single-step inference,

highlighting the limitations of the method in handling tasks that require more complex reasoning. In

contrast, AgentNet uses a multi-step work�ow where agents without the necessary expertise are

bypassed, while those with the relevant skills divide the task into smaller steps, leading to a more

accurate �nal solution.

Figure 6. ReAct Response with Reasoning
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Figure 7. AgentNet Task Breakdown

5. Analysis

5.1. Scalability and Robustness of the System

Based on the experimental results as illustrated in Figure  8, we observed that both training and testing

performance improve slightly as the number of agents and executor pool limit increase. However, the

improvements are incremental, with diminishing returns as the system scales up. Speci�cally,

performance in the training phase increased from 80.38 for 3 agents and 30 executors to 81.18 for 9

agents and 40 executors. In the testing phase, performance �uctuated between 80 and 86, with the

highest performance seen in con�gurations with 40 executors.
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Figure 8. AgentNet Performance with Different Net Parameters. Experiments were conducted with routers

without pool limit, where (A, B) represents A as the number of agents and B as the upper limit of the executor

pool, with performance evaluated on the BBH.

These results suggest that AgentNet’s decentralized coordination model allows for gradual performance

improvement as resources are added. This indicates that AgentNet can scale effectively, enhancing

performance without the dramatic bottlenecks commonly seen in centralized systems. Additionally,

while performance bene�ts from increased resources, the marginal gains suggest there may be an

optimal point where resource allocation reaches its most ef�cient balance. The experiment demonstrates

that AgentNet’s design, which dynamically adjusts agent connections and executor pool sizes, effectively

supports scalable and adaptable multi-agent systems with a high degree of fault tolerance.

5.2. Autonomous Specialization of Agents

Based on the observed results in Figure   9, the experiments demonstrate that AgentNet’s multi-agent

system can naturally specialize agents in a decentralized environment. With varying numbers of agents

and a �xed executor pool of 40 pieces, the ability scores across different tasks such as reasoning,

language, knowledge, and sequence showed signi�cant variation. As the number of agents increased,

specialization became more evident, particularly in complex tasks, with certain agents excelling in

speci�c areas while others focused on different abilities. This highlights AgentNet’s capacity to

dynamically re�ne agent expertise and optimize performance in a decentralized, task-driven system.
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Figure 9. Autonomous Specialization under Different Agent Sets. The upper limit of the executor pool is �xed

at 40, regardless of the number of agents. The experiment was run on the BBH, and the images show the �nal

ability scores of the agents after training.

Notably, with 3 agents, the abilities were more evenly distributed across the agents, but as the number of

agents increased, specialization became more evident, especially in tasks like knowledge and sequence,

where speci�c agents showed notable pro�ciency. In the (5, 40) con�guration, the specialization became

clearer, with some agents excelling in certain abilities, while others lagged behind in different tasks. As

we scaled up to 7 and 9 agents, the system displayed even greater specialization, especially in complex

tasks, demonstrating AgentNet’s ability to allow for dynamic expertise re�nement. This con�rms that

AgentNet supports the hypothesis of autonomous specialization within a decentralized, task-driven

multi-agent system, where agents evolve to optimize task performance independently, without the need

for a central controller.

5.3. Evolution of Agents Networks

The evolution of the agent network in our experiment is illustrated in Figure 10, which demonstrates the

transition of a multi-agent system composed of 5 agents running on the BBH (627 pieces) benchmark.

The �gure captures the network at three key stages: the initial state, an intermediate state, and the �nal

evolved state.
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Figure 10. Evolution Example of Agents Networks.

In the initial state, the network is fully connected with uniform connection values of 1.00, indicating

equal capabilities among all agents. At this stage, there is no specialization, and all agents are equally

equipped to handle tasks.

As the network evolves, agents begin to specialize, and connection values vary, re�ecting the strength of

collaboration. Stronger connections indicate tighter cooperation, while weaker ones suggest less

interaction. This evolution shows how agents naturally adapt and form more ef�cient collaboration

patterns.

By the �nal stage, the network exhibits clear specialization, with agents taking on distinct roles. The

connection values further emphasize the growing cooperation between specialized agents, improving

task performance. This progression demonstrates the effectiveness of decentralized coordination, where

evolving collaboration enhances task allocation, scalability, and fault tolerance.

6. Limitations and Future Work

Despite AgentNet implementing a fully distributed, adaptive learning multi-agent system (MAS) with

dynamic task allocation, several important limitations remain that require further exploration in future

work.

One key challenge is how to improve task performance in heterogeneous agent environments. In real-

world applications, agents often vary signi�cantly in terms of model capabilities, work�ow structures,

tools, and available data. The impact of such heterogeneity on AgentNet’s performance, especially in

terms of task coordination and resource allocation, remains an open question. Understanding how to
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adapt the system to handle such variations ef�ciently will be crucial for its scalability and effectiveness in

complex environments.

Secondly, the decision-making process of the router within each agent, particularly in relation to

exploration and discovery, requires more in-depth study. Currently, the router selects agents from a

relatively small pool of prede�ned candidates. However, in larger-scale systems involving hundreds or

potentially thousands of agents, the challenge of accurately identifying the most suitable agent for task

delegation becomes signi�cantly more complex. This problem is further compounded in heterogeneous

settings, where different agents may possess distinct strengths and weaknesses. To address this, future

research could focus on developing more sophisticated routing mechanisms that can autonomously

identify and delegate tasks to the most appropriate agents, even in large and diverse agent pools.

Additionally, a promising direction for future work involves designing incentives that encourage the

router to explore agents beyond the prede�ned candidate set. By enabling AgentNet to dynamically

discover new agents or specialized capabilities, such an approach would enhance its adaptability and

scalability, ultimately improving the system’s overall performance and autonomy.

7. Conclusion

In conclusion, AgentNet provides an effective approach to addressing the limitations of traditional

centralized multi-agent systems. With its decentralized architecture, dynamic task allocation, and

adaptive learning mechanisms, AgentNet improves scalability, fault tolerance, and task ef�ciency in

collaborative environments. Its privacy-preserving features further ensure secure cooperation across

organizations. Our experimental results highlight the advantages of this approach, demonstrating

improvements in task ef�ciency, adaptability, and specialization. AgentNet offers a practical framework

for developing more �exible and secure multi-agent systems in dynamic, real-world settings.

Statements and Declarations

Funding

This research was supported by Bytedance through a sponsored project that facilitated the execution and

completion of this work.

qeios.com doi.org/10.32388/WS0VIM 27

https://www.qeios.com/
https://doi.org/10.32388/WS0VIM


Ethics Statement

This study did not involve human participants, animal subjects, or the use of personal data. All datasets

and benchmarks employed are publicly available and used in accordance with their respective licenses.

Therefore, no ethics approval was required.

Acknowledgements

The authors gratefully acknowledge the generous support provided by Bytedance, which has been

instrumental in enabling the successful execution of this research. Their sponsorship signi�cantly

contributed to the advancement and completion of this work.

References

�. ^OpenAI, Achiam J, Adler S, Agarwal S, et al. (2024). "GPT-4 Technical Report." arXiv. 2303.08774.

�. ^Touvron H, Martin L, Stone K, et al. (2023). "Llama 2: Open Foundation and Fine-Tuned Chat Models." arX

iv. 2307.09288.

�. ^Yang Y, Huang B, Qi S, Feng C, Hu H, Zhu Y, Hu J, Zhao H, He Z, Liu X, Wang Z, Qiu L, Cao X, Cai X, Yu Y, Zhan

g W (2025). "Who’s the MVP? A Game-Theoretic Evaluation Benchmark for Modular Attribution in LLM Ag

ents." arXiv. 2502.00510.

�. ^Gottweis J, Weng W, Daryin A, Tu T, Palepu A, Sirkovic P, Myaskovsky A, Weissenberger F, Rong K, Tanno R,

Saab K, Popovici D, Blum J, Zhang F, Chou K, Hassidim A, Gokturk B, Vahdat A, Kohli P, Matias Y, Carroll A, K

ulkarni K, Tomasev N, Guan Y, Dhillon V, Vaishnav ED, Lee B, Costa TRD, Penadés JR, Peltz G, Xu Y, Pawlosky

A, Karthikesalingam A, Natarajan V (2025). "Towards an AI Co-Scientist." arXiv. 2502.18864.

�. ^Putta P, Mills E, Garg N, Motwani S, Finn C, Garg D, Rafailov R (2024). "Agent Q: Advanced Reasoning and

Learning for Autonomous AI Agents." arXiv. 2408.07199.

�. a, b, c, dZhou R, Yang Y, Wen M, Wen Y, Wang W, Xi C, Xu G, Yu Y, Zhang W (2024). "TRAD: Enhancing LLM Ag

ents With Step-Wise Thought Retrieval and Aligned Decision." arXiv. 2403.06221.

�. ^Guo T, Chen X, Wang Y, Chang R, Pei S, Chawla N, Wiest O, Zhang X (2024). "Large Language Model Based

Multi-Agents: A Survey of Progress and Challenges." In International Joint Conference on Arti�cial Intellige

nce. S2CID 267412980.

�. ^Sun C, Huang S, Pompili D (2024). "LLM-Based Multi-Agent Reinforcement Learning: Current and Future

Directions." arXiv. abs/2405.11106. S2CID 269921354.

qeios.com doi.org/10.32388/WS0VIM 28

https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2502.00510
https://arxiv.org/abs/2502.18864
https://arxiv.org/abs/2408.07199
https://arxiv.org/abs/2403.06221
https://api.semanticscholar.org/CorpusID:267412980
https://arxiv.org/abs/2405.11106
https://api.semanticscholar.org/CorpusID:269921354
https://www.qeios.com/
https://doi.org/10.32388/WS0VIM


�. a, b, cYang Y, Peng Q, Wang J, Wen Y, Zhang W (2024). "LLM-Based Multi-Agent Systems: Techniques and Bu

siness Perspectives." arXiv. 2411.14033.

��. a, b, cHong S, Zhuge M, Chen J, Zheng X, Cheng Y, Zhang C, Wang J, Wang Z, Yau SKS, Lin Z, Zhou L, Ran C, Xi

ao L, Wu C, Schmidhuber J (2024). "MetaGPT: Meta Programming for a Multi-Agent Collaborative Framew

ork." arXiv. 2308.00352.

��. a, bWu Q, Bansal G, Zhang J, Wu Y, Li B, Zhu E, Jiang L, Zhang X, Zhang S, Liu J, Awadallah AH, White RW, Bur

ger D, Wang C (2023). "AutoGen: Enabling Next-Gen LLM Applications Via Multi-Agent Conversation." arXi

v. 2308.08155.

��. a, bWang Q, Wang T, Li Q, Liang J, He B (2024). "MegaAgent: A Practical Framework for Autonomous Cooper

ation in Large-Scale LLM Agent Systems." arXiv preprint arXiv:2408.09955.

��. ^Ye R, Tang S, Ge R, Du Y, Yin Z, Chen S, Shao J (2025). "MAS-GPT: Training LLMs to Build LLM-Based Multi

-Agent Systems." arXiv. 2503.03686.

��. ^Chen G, Dong S, Shu Y, Zhang G, Jaward S, Börje K, Fu J, Shi Y (2023). "AutoAgents: The Automatic Agents G

eneration Framework." arXiv preprint.

��. ^Shi Z, Wan G, Huang W, Zhang G, Shao J, Ye M, Yang C (2025). "Privacy-Enhancing Paradigms Within Fede

rated Multi-Agent Systems." arXiv. 2503.08175.

��. ^Kahn AB (1962). "Topological Sorting of Large Networks." Commun ACM. 5(11):558–562.

��. ^Ahuja RK, Magnanti TL, Orlin JB, et al. (1993). Network Flows: Theory, Algorithms, and Applications. Vol. 1.

Englewood Cliffs, NJ: Prentice Hall.

��. a, bLewis P, Perez E, Piktus A, Petroni F, Karpukhin V, Goyal N, Küttler H, Lewis M, Yih W, Rocktäschel T, et al.

(2020). "Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks." Adv Neural Inf Process Sys

t. 33:9459–9474.

��. a, bGao Y, Xiong Y, Gao X, Jia K, Pan J, Bi Y, Dai Y, Sun J, Wang H, Wang H (2023). "Retrieval-Augmented Gener

ation for Large Language Models: A Survey." arXiv preprint arXiv:2312.10997.

��. ^Gao D, Li Z, Pan X, Kuang W, Ma Z, Qian B, Wei F, Zhang W, Xie Y, Chen D, Yao L, Peng H, Zhang Z, Zhu L, Ch

eng C, Shi H, Li Y, Ding B, Zhou J (2024). "AgentScope: A Flexible Yet Robust Multi-Agent Platform." arXiv. 24

02.14034.

��. ^Fernando C, Banarse D, Michalewski H, Osindero S, Rocktäschel T (2023). "Promptbreeder: Self-Referential

Self-Improvement Via Prompt Evolution." arXiv preprint arXiv:2309.16797.

��. ^Khattab O, Singhvi A, Maheshwari P, Zhang Z, Santhanam K, Vardhamanan S, Haq S, Sharma A, Joshi TT,

Moazam H, et al. (2023). "DSPy: Compiling Declarative Language Model Calls Into Self-Improving Pipeline

qeios.com doi.org/10.32388/WS0VIM 29

https://arxiv.org/abs/2411.14033
https://arxiv.org/abs/2308.00352
https://arxiv.org/abs/2308.08155
https://arxiv.org/abs/2503.03686
https://arxiv.org/abs/2503.08175
https://arxiv.org/abs/2402.14034
https://arxiv.org/abs/2402.14034
https://www.qeios.com/
https://doi.org/10.32388/WS0VIM


s." arXiv preprint arXiv:2310.03714.

��. ^Zhang G, Yue Y, Li Z, Yun S, Wan G, Wang K, Cheng D, Yu JX, Chen T (2024). "Cut the Crap: An Economical C

ommunication Pipeline for LLM-Based Multi-Agent Systems."

��. a, bZhuge M, Wang W, Kirsch L, Faccio F, Khizbullin D, Schmidhuber J (2024). "GPTSwarm: Language Agents

as Optimizable Graphs." In International Conference on Machine Learning.

��. ^Liu Z, Zhang Y, Li P, Liu Y, Yang D (2024). "A Dynamic LLM-Powered Agent Network for Task-Oriented Age

nt Collaboration." arXiv. 2310.02170.

��. ^Zhang G, Yue Y, Sun X, Wan G, Yu M, Fang J, Wang K, Chen T, Cheng D (2024). "G-Designer: Architecting Mu

lti-Agent Communication Topologies Via Graph Neural Networks." arXiv preprint arXiv:2410.11782.

��. a, bLu S, Shao J, Luo B, Lin T (2024). "MorphAgent: Empowering Agents Through Self-Evolving Pro�les and

Decentralized Collaboration." arXiv preprint arXiv:2410.15048.

��. ^Chen W, Su Y, Zuo J, Yang C, Yuan C, Qian C, Chan C, Qin Y, Lu Y, Xie R, et al. (2023). "Agentverse: Facilitating

Multi-Agent Collaboration and Exploring Emergent Behaviors in Agents." arXiv preprint arXiv:2308.10848

2 (4), pp. 6.

��. ^Shang Y, Li Y, Zhao K, Ma L, Liu J, Xu F, Li Y (2024). "AgentSquare: Automatic LLM Agent Search in Modula

r Design Space." arXiv preprint arXiv:2410.06153.

��. a, bZhang J, Xiang J, Yu Z, Teng F, Chen X, Chen J, Zhuge M, Cheng X, Hong S, Wang J, et al. (2024). "A�ow: Aut

omating Agentic Work�ow Generation." arXiv preprint arXiv:2410.10762.

��. ^Hu Y, Cai Y, Du Y, Zhu X, Liu X, Yu Z, Hou Y, Tang S, Chen S (2024). "Self-Evolving Multi-Agent Collaboration

Networks for Software Development." arXiv preprint arXiv:2410.16946.

��. a, bYao S, Zhao J, Yu D, Du N, Shafran I, Narasimhan K, Cao Y (2023). "ReAct: Synergizing Reasoning and Acti

ng in Language Models." arXiv. 2210.03629.

��. ^Hendrycks D, Burns C, Kadavath S, Arora A, Basart S, Tang E, Song D, Steinhardt J (2021). "Measuring Math

ematical Problem Solving With the MATH Dataset." NeurIPS.

��. ^Suzgun M, Scales N, Schärli N, Gehrmann S, Tay Y, Chung HW, Chowdhery A, Le QV, Chi EH, Zhou D, Wei J

(2022). "Challenging Big-Bench Tasks and Whether Chain-of-Thought Can Solve Them." arXiv. 2210.09261.

��. ^Li M, Zhao Y, Yu B, Song F, Li H, Yu H, Li Z, Huang F, Li Y (2023). "API-Bank: A Comprehensive Benchmark f

or Tool-Augmented LLMs." arXiv. 2304.08244.

��. ^Wei J, Wang X, Schuurmans D, Bosma M, Ichter B, Xia F, Chi E, Le Q, Zhou D (2023). "Chain-of-Thought Pro

mpting Elicits Reasoning in Large Language Models." arXiv. 2201.11903.

qeios.com doi.org/10.32388/WS0VIM 30

https://arxiv.org/abs/2310.02170
https://arxiv.org/abs/2210.03629
https://arxiv.org/abs/2210.09261
https://arxiv.org/abs/2304.08244
https://arxiv.org/abs/2201.11903
https://www.qeios.com/
https://doi.org/10.32388/WS0VIM


��. ^Zheng L, Wang R, Wang X, An B (2024). "Synapse: Trajectory-as-Exemplar Prompting With Memory for C

omputer Control." arXiv. 2306.07863.

��. ^Wang X, Wei J, Schuurmans D, Le Q, Chi E, Narang S, Chowdhery A, Zhou D (2023). "Self-Consistency Impr

oves Chain of Thought Reasoning in Language Models." arXiv. 2203.11171.

��. ^Madaan A, Tandon N, Gupta P, Hallinan S, Gao L, Wiegreffe S, Alon U, Dziri N, Prabhumoye S, Yang Y, Gupt

a S, Majumder BP, Hermann K, Welleck S, Yazdanbakhsh A, Clark P (2023). "Self-Re�ne: Iterative Re�nemen

t With Self-Feedback." arXiv. 2303.17651.

Declarations

Funding: This research was supported by Bytedance through a sponsored project that facilitated the

execution and completion of this work.

Potential competing interests: No potential competing interests to declare.

qeios.com doi.org/10.32388/WS0VIM 31

https://arxiv.org/abs/2306.07863
https://arxiv.org/abs/2203.11171
https://arxiv.org/abs/2303.17651
https://www.qeios.com/
https://doi.org/10.32388/WS0VIM

