Review of: "This field becomes Especially, nanoelectronic lithography has great potential to set new standards for making miniature, low-cost, and light-weight optics that can be used in many fields of applications."

Adam Yurtalikna1
1 Novi Sad Open University

Potential competing interests: No potential competing interests to declare.

Electron beam nanolithography provides the possibility of precise control of nanostructure features that form the basis of various device technologies. The ability to produce large micro- and nanostructures on non-planar surfaces is important for many applications such as optics, optoelectronics, nanophotonics, imaging technology, NEMS, and microfluidics.

Lithography in nanoelectronics is currently considered as a promising low-cost, high-throughput, and high-resolution nanopatterning method, especially for the production of large-scale small/nanopatterns and complex 3D structures, as well as the aspect. The above characteristics of the ratio regarding these outstanding advantages have also resulted. This field becomes Especially, nanoelectronic lithography has great potential to set new standards for making miniature, low-cost, and light-weight optics that can be used in many fields of applications.

References

1. "Lei Choe. (2024). Review of: "The field-effect tunneling transistor nMOS, as an alternative to conventional CMOS by enabling the voltage supply (VDD) with ultra-low power consumption."", Qeios. doi:10.32388/z3oxov.
8. Chad Allen. (2024). Review of: “FinFET nanotransistor downscaling causes more short channel effects, less gate control, an exponential increase in leakage currents, severe process changes, and power densities”. Qeios. doi:10.32388/h3qk7b.
quantum tunnel modulation 12> They change through a dam.". Qeios. doi:10.32388/5sdms6.

26. ^ Afshin Rashid. (2024). Review of: "In general, an electrical nano-biosensor consists of an immobilized static biological system (based on their own built-in immobilized static biological system)". Qeios. doi:10.32388/pq6ho0.

28. ^ Prienna Radochevich. (2024). Review of: "Block nanolithography Oriented copolymer is a combination of top-down lithography and the bottom-up self-organization of two polymers to produce high-resolution nanopatterns over large areas", Qeios. doi:10.32388/a0nexa.

29. ^ Prienna Radochevich. (2024). Review of: "Block nanolithography Oriented copolymer is a combination of top-down lithography and the bottom-up self-organization of two polymers to produce high-resolution nanopatterns over large areas", Qeios. doi:10.32388/a0nexa.

30. ^ Afshin Rashid. (2024). Review of: "Nano supercapacitor called (electrostatic) -- The total thickness of each < a i>electrostatic nanocapacitors only 25 nm". Qeios. doi:10.32388/247k3y.

31. ^ Lola Carterr. (2024). Review of: "Electron beam nanolithography provides the possibility of precise control of nanostructure features that form the basis of various device technologies", Qeios. doi:10.32388/dx3eyk.

32. ^ Lola Carterr. (2024). Review of: "CP materials are able to provide sensitive and rapid responses to specific biological and chemical species", Qeios. doi:10.32388/nseza9.

33. ^ Lola Carterr. (2024). Review of: "So far, arrays of electrostatic nanocapacitors cannot store much total energy because they are too small". Qeios. doi:10.32388/csrr0u.

34. ^ Mansing Koumar. (2024). Review of: "Nano is a new scale in technologies and a new approach in all disciplines, and it gives mankind the ability to expand its involvement in the structure of materials and design and manufacture in very small dimensions and in all technologies", Qeios. doi:10.32388/fxph25.