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Biological and artificial intelligence (BI and AI) share the fundamental

principles of space-time information processing based on symmetry

transformation. Therefore, cognitive-science-inspired AI represents a

promising area of exploration. A convincing example is the fractal structure of

human languages and protein assembly. The temporal and spatial plasticity of

biological processes links them to the basic laws of physics. Continuous

advances in fundamental physical theories allow for the understanding of all

aspects of space-time symmetry (STS) natively intertwined with the principles

of relativity and causality.

Spatial aspects of symmetry, represented by three sub-domains such as

chirality, fractality, and topology, are widely studied in biology. The role of

chirality in biology has been analyzed in several recent reviews. However, the

fractals and topological states of biological structures are a relatively new and

fast-developing branch of science. Here, we trace publications exploring the

role of fractal symmetry in all hierarchical states of biological organization,

including at the molecular, cellular, morphological, physiological, perceptual,

cognitive, and psychological levels. The coverage of the above-listed areas in

current studies is sharply unequal and unsystematic. A broad view of

biological fractality opens a unique opportunity to discriminate between a

healthy state and a wide range of disease conditions. Psychiatric, neurological,

and immune disorders are associated with aberrant molecular assembly and

morphological changes in neural circuits, suggesting that the chain of

chirality/fractality transfer through all levels of physiological organization

deserves persistent attention.
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Introduction

Biological and artificial intelligence (BI and AI) research are becoming more

intertwined in the search for methods of mutual information transfer and

adaptation. Notably, the fundamental principles of such interaction are based on

the conservative space-time symmetrical transformations [1][2][3][4][5]. Biological

symmetry (BS) comprises an enormous network of incidents covering

physiologically relevant space-time scales. Proper navigation in this

multidimensional continuum requires researchers to stand on the generalized

(i.e., philosophical) frame of reference. The first necessary step of generalization

is the notion of the universe's integrity, which allows for distinguishing the

timing of the prebiotic and biotic periods, pointing to the origin of (BS). Second

is understanding the evolution of the biological world from the time of molecular

condensation to the appearance of bilateral organisms possessing consciousness

and the mind  [3]. The time-dependent unfolding of the universe from the pre-

biotic to biotic state assumes the existence of the fundamental determinants

common to both evolutionary periods. The appearance of journals devoted to

biological and molecular psychiatry (1969-1997) opened a new era in the study of

the link between molecular physiology, cognitive functions, the psychological

state of the human being, and the fundamental laws of Nature. This review

explores the long-time efforts of interpretation (analysis) of key events of

biological evolution through reference to the fundamental determinants of

matter space-time symmetry. The mathematical concepts and theorems

utilizing this approach discriminate the contribution of chiral  [3][4],

topological  [6], and fractal  [7]  symmetry interacting and competing along the

evolutionary time scale.

In the 1980s, mathematician Benoit Mandelbrot published the seminal work

titled The Fractal Geometry of Nature [8]. Currently, fractal theories are adopted

by scientists from diverse branches of knowledge, including aesthetics,

astrophysics, economics, protein folding, neuroscience, medicine, social media,

climatology, human physiology, and psychology [9][10][11][12][13][14][15][16].

Impressive success is grounded on the universal significance of space-time

symmetry and relativity (STSR) principles  [15][16]. The significance of manifold

space-time symmetry (STS) is recognized practically in all branches of science.

The symmetry determinants in biology are studied (known) in many sub-fields,

starting from molecular X recognition to the physiological, perceptual, cognitive,

and psychological functions of humans. From a geometrical perspective,

symmetry determinants can be segregated into different categories, the main

ones of which are devoted to chirality, fractality, and topology. Chirality is the

most studied form of biological symmetry, spreading its impact from molecular

biology to psychology [3][4][14][16]. The possibility of mutual transformation of an

achiral to a chiral tetrahedron suggests the distinction between absolute and

relative chirality. Experimentally observed artificial modulation of molecular

chirality by “chiral switches” points to the possibility of regulation of molecular,

physiological, and psychological processes by internal (genetic) and external

(such as the natural and social environment) factors [17][18]. Fractal psychology is

on the way to its mature state.
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Fractal Physics

A generalized approach to STSR points to fundamental determinants of

biological symmetry (Fig. 1) [13][14]. Symmetry-based physical theories, including

standard model theory (SMT) and string theory (StT), contain chiral, fractal, and

topological branches  [17][18][19]. The dominance of string theories in physics,

achieved by mathematical definitions and experimental exploration of direct

and indirect isometries and chirality (mirror symmetry I), works for any metric

space [20][21][22][23]. Not surprisingly, the same categories of patterning are found

in biological objects. The link between physical and biological space-time fractal

symmetry is the main point of our interest. Fractal geometry describes the

symmetry of structures based on the concept of scale invariance, frequently

referred to as "scale-symmetry," "self-similarity," "similarity, or symmetry up to

scale," and "similarity in the small and in the large"  [24]. The fractality is a

distinct, discrete symmetry of physical and chemical interactions, providing self-

similarities of the complex systems of different natures and hierarchies  [24].

Considering fractals in space-time physics is necessary for a broader view of the

general theory of relativity (GTR)  [25][26], standard model theory (SMT), and

gauge field theories [23]. Gauge theory is, in fact, a consequence of the inclusion

of fractal dimension in the space-time symmetry structure  [27]. The theory of

scale relativity describes space-time as a non-differential "manifold," which

implies that its geometry is fractal [28][29]. The mathematical apparatus of SMT

links the internal properties of elementary particles (EPs), their interactions with

each other, and the features of corresponding fundamental forces of nature to the

concept of STSR [30]. The family of EPs adequately describes the physical world at

microscopic and cosmological scales  [4][31]. Many natural phenomena exhibit

repeating patterns of similarity across a wide range of spatial scales. The

illustrative example is the chain of chirality transfer from the molecular, cellular,

and morphological levels to the level of physiological, cognitive, and

psychological functions  [3][4][14]. This similarity across the scale is traditionally

associated with diverse symmetry transformation forms, including chirality,

fractality, topology, and the principle of relativity  [4][32][33][34]  and causality  [35]

[36]. The geometrical representation of gravitational force in Einstein's SRT and

GTR showed that space-time was curved. Both theories are based on the notion

that position, orientation, movement, and acceleration cannot be defined in an

absolute way but only relative to a frame (system) of reference. The scale

relativity theory of Nottale overcomes the limitations of the principle of relativity

associated with SRT and GRT by extending space-time geometry to fractal

dimensions—an approach that allows mathematical interpretation of quantum

physics  [37]. The theory of scale relativity and fractal space-time extend the

principle of relativity to scale transformations of the reference system  [38][39].

The scale-symmetry (as well as chirality) is observable in the galaxy shape

evolution [32] and structures formed by the interaction of EPs [40] complemented

by the various intermediate scales, including all domains of biological levels of

organization (Fig. 2) [41]. Re-evaluation of the STS appearance in cosmology [42]

[43][44]  and the micro world  [45]  highlights symmetry's determining role in all

biology domains  [13], including perception, cognition, and physiology  [46]  and

ecology  [25]. The universal significance of spatial determinants suggests EPs as

the root of the origin of biological symmetry.
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Fig. 1. (GA Legend). Allegorical/metaphorical representation of four fundamental

determinants (driving forces) of biological evolution. Space, time, symmetry, and

relativity are considered as the elements of a tetrahedral meta-structure (adopted

from [3] with alteration.

Fig. 2. The dimensions of the Universe {from extremely small (right part) to

unthinkably large (left part), with humans seemingly in the middle} revealing

different forms of space-time-symmetry. Adopted from [47] with modification.

Biological Symmetry

Biological symmetry occurs in numerous unique forms and refers to the

conjunct dynamics of geometrical patterns including mirror symmetry

(chirality), fractality, and topology. All the above-mentioned forms of
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symmetries are observed in the structure of organisms (including plants,

animals, fungi, and bacteria) and viruses. Our consideration is primarily focused

on the fractal biology of humans, where the fine morphology of multiple neural

circuits underlies cognitive abilities and psychological functions  [48]. Highly

prevalent in physical and biological objects, fractal patterns possess self-similar

components that repeat at varying size scales. Increasing attention to fractal

physiology  [11][49]  and fractal neuroscience  [50][51]  opens a window to studying

fractality perception and related cognitive and psychological effects  [52][53]. All

living organisms contain splendid examples of fractal structures at different

hierarchical levels of biological organization. The most known include

glycogen's structure, the cytoskeleton network, the axonal-dendritic complex,

the lung alveolar structure, and the capillary network [46][54][55]. Fractality at the

molecular level is observed in the assembly of peptides adopting the beta-sheet

conformation experimentally  [56][57][58]. This observation suggests that at the

molecular level, we could expect the interaction of different forms of STSR  [59].

The symmetry determinants are evident in the prevalent chirality of DNA,

proteins, and lipids. Homochiral protein systems are made from the chiral

structure of DNA [60]. Proteins of all organisms contain mostly the L-isoform of

amino acids (AAs).

However, a small quantity of selected AAs  [4][14]  plays a critical role in

development and biological information processing. Currently, the impact of AAs

and protein handedness on molecular fractality is practically overlooked. Many

actual questions, such as the impact of protein racemization on fractal-based

molecular assembly or the structure-function link in pyramidal neurons, still

need to be systematically addressed. At the organism level, the symmetry

determinants are observed in the structures of physiological systems and the

bilateral morphology and functions of higher animals. Recently, complex

physiological systems (e.g., neurological, respiratory, visual, and cardiovascular)

have been shown to exhibit fractal dimensions. The quantitative assessment of

spatiotemporal fractality allows for distinguishing between physiological

function and dysfunction [46]. The interplay of continuous and discrete forms of

symmetry in living organisms is responsible for the networks of links between

the prevalence of bio-molecular handedness and the bilateral morphology and

functions. The bilateral design of the nervous system in humans exhibits

balanced patterns of symmetry and asymmetry, culminating in the laterality of

perceptual, cognitive, and psychological functions. Notably, at all levels of

organization from molecular, morphological, and functional, biological

symmetry is always not absolute (i.e., relative). In bilateral organisms,

predominant molecular chirality (the most studied form of biological symmetry)

is traditionally considered to contribute to anatomical handedness and nervous

system laterality. The transfer of chirality from the enzyme-protein level to the

higher levels of biological organization is a well-studied process  [60][61][62][63].

Spontaneous racemization was shown to disrupt proteins' physiological

functions  [4][14][61], leading to age-associated neurodegeneration. The less

studied form of biological symmetry at the organism level is fractality. The

transfer of fractality from molecular to higher levels of biological organization is

rarely addressed. We will analyze (currently limited) publications tracing the

possible contribution of fractal geometry to biological symmetry at the

molecular, cellular  [64][65], morphological  [66], and perceptual  [67][68]  levels at

physiological  [46]  and disease conditions  [69]. The interaction of chiral and
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fractal-based assembly is a promising pathway in molecular biology  [54][55].

Fractality at the morphological level is studied in microorganisms (including

viruses  [70], bacteria  [71], fungi  [72], parasites  [73], plants, and organs of

animals  [74][75][76]. Animal evolution, on the demand for information about the

spatial and temporal structure of the external world, provided the mechanisms

of the common and domain-specific perception of time and space determinants.

At the level of brain information processing, time-space perception exhibits

hemispheric asymmetry. Spatial and temporal stimuli predominantly activate

the right cortical hemisphere, preserving the opportunity for discrimination

between spatial and temporal inputs  [77][78][79]. A broader view of fractality is

provided in systems biology. The scale relativity theory (SRT), (known as the

theory of biological relativity), explores bi-directional causation in the hierarchy

of biological events. SRT is based on the assumption that the space-time

geometry has a fractal dimension (i.e., explicitly scale-dependent) [80][81][82].

Conclusion

According to Meijer, the fundamental building blocks of Nature constitute a triad

of energy, matter, and information  [47]. In the development of his idea, we

conclude that the fractal symmetry of space-time, evident in non-biological and

biological objects, is associated with the scale-invariant laws of Nature. STSR is

closely associated with Heisenberg’s uncertainty principle  [83][84]. The

implication of space-time relativity for other fields of inquiry, including topics in

biological information processing, cognition, and social science, is at the front

line of neuroscience and psychology [29][84]. Convincing results are presented at

the molecular level. Over 500 Protein Data Bank entries show the fractal-like

structure  [85]  associated with molecular surface irregularity at the ligand-

binding site involved in protein-protein interfaces  [86]. For the small amyloid

beta fragments (40 and 42 amino acids), fractal structures are predicted in the

plaque-forming aggregates  [87][88]. However, the specific role of fractal

symmetry in the mechanism of protein aggregation, biological aging, and the

pathology of cognitive and psychological functions remains to be studied. The

coherent appearance of fractal determinants at the neuronal network

connectivity [52], physiological functions [46] and in all lower levels of biological

organization, including molecular and cellular assembly patterns, suggests the

crucial role of fractal symmetry in physiological, perceptual [67][68], cognitive [89]

[90][91], and psychological  [9][15]  levels. At the molecular level, actin network

assembly participates in many critical cellular processes, including the

establishment and maintenance of cell junctions and cell shape. Relatively

recently, it was discovered that an actin cytoskeleton (human embryonic kidney

(HEK 293) cells) comprises a fractal structure [92]. In the neuronal dendritic spine,

the actin network is organized into fractal patterns [93][94][95]. It is reasonable to

assume that in pyramidal neurons (PyrNs), the actin cytoskeleton contributes to

the formation of the soma shape. However, so far, there is no experimental

support for this idea. The appearance of fractal determinants at all lower levels of

biological organization  [46][55]  is in agreement with the evidence that the

immune system, represented by the complex network of organs, cells, and

molecular assemblies (proteins, DNA, lipids), exhibits distinct fractal patterns in

health and disease conditions [96][97]. Many actual questions, such as the impact

of protein racemization on fractal-based molecular assembly or the structure-
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function link in pyramidal neurons, still need to be systematically addressed.

Returning to the broad view, we can restate that, highly persistent in non-

animate and animate nature, fractal patterns possess self-similar components

that repeat across varying spatial and temporal scales. Fractal geometry

encompasses physical, biological, and psychological realms. Not surprisingly,

biological evolution selects a complex of the molecular, sensory, cognitive, and

psychological mechanisms of corresponding perceptions and responses [98]. The

environmental and human-made spaces, exhibiting fractal patterns, are

associated with the spectrum of physiological  [99], perceptual  [100], and

psychological experiences  [101][102]. Until recently, experimental observation of

molecular assembly into fractals was restricted to synthetic systems. The

discovery of the fractal structure of protein aggregates opens a new dimension in

studying pyramidal neuron soma genesis [3] and molecular psychology [7].
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Footnotes

I. Mirror symmetry is a particular incident of a more generalized mathematical

property of STS (referred to as T duality) [20].

In scale relativity theory, space-time geometry is considered continuous but non-

differentiable; therefore, it is fractal (i.e., explicitly scale-dependent). A fundamental

result of scale relativity is to propose a minimum and maximum scale in physics,

invariant under dilations, in a very similar way as the speed of light is an upper limit

for speed.
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