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“All diseases originate in the gut.” Hippocrates (400 BC)

A healthy gut microbiome via the gut-brain-axis elevates heart rate variability

(HRV), a general measure of health and well-being. A dysbiotic gut

microbiome, low in biodiversity and butyrate producers, can alter tryptophan

metabolism (ATM) and increase the kynurenine to tryptophan ratio (KTR)

with release of proinflammatory cytokines, predominantly TNF-α, IL-6, and

IL-1β. These also characterize chronic inflammation, oxidative stress, and a

multitude of diseases. Also proposed is the gut-lung dysbiosis concept and

consequent degradation of ACE2 (richest in lungs and gut). Leaky gut (and

lung) induced autoantibodies (AAs) related to G-protein coupled receptors

(GPCRs) in combination with increased Ang II further potentiate oxidative

stress. The underappreciated pathogenic role of these receptors on invading

Candida hyphae is explored. The efficacy of fecal microbiome transplantation

(FMT) in treating dementia, cancer, and autoimmunity supports the

plausibility of success with “FMT-lite”. This triple play of prebiotic (d-

mannose), probiotic (bifidobacteria and lactobacilli), and postbiotic (butyrate)

might improve intestinal barrier integrity, oppose entry of GPCR antigens

(epitopes), suppress the inflammatory cytokine triad, balance IFN-γ and TGF-

β, suppress oxidative stress, depress KTR, elevate HRV, and extend lifespan and

its quality.

Corresponding author: Patrick Chambers, pwc@gte.net

Hypothesis

1. Gut dysbiosis (and SARS CoV2) depresses ACE2,

vital to intestinal barrier integrity and tryptophan

absorption

2. Tryptophan and vitamin D deficiencies promote

pathogenic hyphal transition of commensal

Candida yeast forms

3. Estrogen facilitates immune evasion by Candida

4. Invasive Candida hyphae are rich in surface GPCRs

(only present on eukaryotes) and can trigger GPCR

AAs

5. LC symptoms are primarily due to GPCR AAs

(~800 different candidates in humans)

6. Candida elicits a robust IFN-γ response that drives

ATM and females produce a more robust IFN-γ
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response

7. ATM upregulates IDO, linked to dementia and

autoimmunity in females (IFN-γ) and

cancer/organ fibrosis in males (TGF-β)

8. TGF-β (reciprocal cytokine to IFN-γ) regulates

tolerogenesis; too little, self antigens targeted, too

much, tumor antigens not targeted

9. D-mannose enhances intestinal barrier integrity

and butyrate immuno-modulates IFN-γ, TGF-β
10. Candida potentiates gut dysbiosis and is a major

player in determining long term health

1. Introduction

Pursuit of a healthier and happier lifestyle is a universal

goal.

Better diet and more exercise are at the top of New

Year’s resolutions. But eating favorite foods is one of the

great joys in life and exercise, not so much. Balance is

the key to achieving these goals, whether it be between

the opposing enzymes ACE and ACE2 or the pleiotropic

cytokines IFN-γ and TGF-β. However, several

supplements readily available may assist in this pursuit

of balance.

Although this article cites an abundance of recent

research supporting its content, it is speculative and the

inferences are in part theoretical. It attempts to connect

pleiotropic cytokines, gut dysbiosis, GPCR AAs, and

disease with oxidative stress under the HRV umbrella

(see figure 1). Prebiotic d-mannose (a dietary fiber

substitute), a probiotic rich in bifidobacteria and

lactobacilli, and postbiotic butyrate (best short chain

fatty acid or SCFA) are proposed as partial solutions.

HRV, a function of beat to beat interval, is proposed as a

monitor of efficacy. It is the “fifth vital sign” and is

more comprehensive and predictive in its assessment

than those of the four traditional vital signs.

Figure 1. Pathways to a healthy HRV and enhanced

lifespan are demonstrated. The Western Lifestyle

includes an increased calcium to magnesium ratio,

vitamin D deficiency, decreased antioxidants, toxins,

e.g., smoking. TNF-α, IL-6, IL-1β comprise the triad.

The trigger for the pleiotropic switch is not yet clear.

Biologic individuality is also a prime determinant of

differential pathway traffic.

2. Oxidative Stress and Gut

Dysbiosis

Aging reflects the accumulated damage over a lifetime

wrought by oxidative stress. This stress arises when

energy needs increase and reactive oxygen species

(ROS) generated within mitochondria remain

unquenched due to insufficient onboard antioxidants.

Psychological stress induces oxidative stress by

increasing circulating cortisol and norepinephrine,

which generate mitochondrial ROS[1]. Mental stress is

also linked with gut dysbiosis[2], which upregulates

oxidative stress[3]. Excess ROS compromise

mitochondrial efficiency and gut microbial diversity.

Gut microbes themselves impact ROS generation.

Gut dysbiosis occurs when the gut microbiome is

unbalanced, i.e., gut microbiota are not diverse and

SCFA producing bacteria are in short supply. SCFAs are

the end products of fermentation of dietary fibers by

anaerobic intestinal bacteria and exert multiple

beneficial effects on energy metabolism[4].

They are the primary energy substrate for colonic

epithelial cells. Propionate and butyrate comprise 25%

and 15% respectively of these SCFAs[5]. Acetate, which

comprises ~60%, promotes obesity by stimulating
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insulin secretion and hyperphagia[6][7]. Propionate and

butyrate stimulate secretion of insulin and glucagon-

like peptide 1 (GLP-1), which suppresses appetite[8][9].

Ozempic is a GLP-1 agonist. On the other hand,

oxidative stress enhances acetate dependent

lipogenesis, i.e., promotes obesity[10]. Excess weight

gain and obesity are features of Covid-19 and LC, which

share the same gut microbiome, low in butyrates.

Persistent low grade oxidative stress is tightly linked to

excitatory glutamate neurotransmission[11]. Glutamate

producing gut bacteria outperform their butyrate/γ-

amino butyric acid producing counterparts and create

an imbalance in excitatory and inhibitory

neurotransmission in the autonomic nervous

system[12].

3. ATM and KTR

Tryptophan, an essential amino acid, from diet or

synthesized by intestinal bacteria can follow one of

three major metabolic pathways: 1) intestinal bacterial

indole synthesis, 2) the kynurenine pathway in immune

and epithelial cells (95% of tryptophan), or 3) the

serotonin pathway (90% of total body serotonin) in

enteroendocrine aka enterochromaffin cells and

initiation of vagal afferent signals[13]. During ATM

tryptophan pivots away from the serotonin pathway

and synthesis of serotonin and melatonin to the

kynurenine pathway (see figure 2). Inhibitory

parasympathetic signals are suppressed due to the

increase in excitatory glutamate activity. This pivot

down-regulates bacterial indole synthesis with loss of

indole induced GLP-1. Benefits of GLP-1 include appetite

suppression, stimulation of insulin[14], decrease in

fasting blood sugar[15], suppression of obesity and

T2DM[16]. Many of the same bacteria that produce

SCFAs, e.g., bifidobacteria and lactobacilli, also

synthesize indoles from tryptophan[17]. Although the

end product NAD+ (see figure 2) assists dysfunctional

mitochondria in ATP production, what drives the ATM

pivot is not clear. However, IFN-γ, upregulated in

females, is a cofactor for many enzymes in the

kynurenine pathway and may drive this pivot[18]  (see

figure 2). Tryptophan depletion lowers HRV (and

increases KTR)[19]. Increased tryptophan intake (eggs)

increases HRV, which appears to be due to the

subsequent increase in serotonin[20]. KTR, an indicator

of rate-limiting IDO activity, is positively correlated

with cardiovascular disease mortality[21][22],

depression, bipolar disorder, schizoprenia,
[23]  Alzheimer’s disease, fronto-temporal dementia,

[24] Parkinson's disease[25], and neurological disease in

general[26]. Increased KTR has also been reported in

cancer[27], autoimmune disease, including rheumatoid

arthritis (RA)[28], and systemic lupus erythematosis

(SLE)[29]. Infectious diseases are also linked to an

elevated KTR[30]  with a ratio that directly reflects

severity[31][32]. This includes SARS CoV2[33]. SARS CoV2

induced loss of ACE2 receptor bearing intestinal

epithelial cells depresses absorption of the essential

amino acid tryptophan[34] and depressed tryptophan

levels promote yeast-to-hyphal transition[35].

Figure 2. Altered tryptophan metabolism is

demonstrated. NMDA-R=N-methyl-D-aspartate

receptor is an excitatory glutamate receptor. Note the

upregulating presence of the proinflammatory

cytokine IFN-γ[36][23][37].

4. IFN-γ and TGF-β
IFN-γ and TGF-β are polarizing cytokines (reciprocal

relationship)[38] and counterbalance each other[39]. IFN-

γ is pro-inflammatory and TGF-β is anti-inflammatory.

When an imbalance arises, autoimmune disease/IFN-γ

and cancer/TGF-β, two immunological opposites[40],

can develop. These counterbalancing cytokines are in

turn immuno-modulated by the gut microbiome. This

is demonstrated by the utility of FMT in cancer[41],

autoimmune disease[42], and dementia[43].

Reports on the efficacy of FMT for obesity are mixed.

However, they include no concomitant prebiotic.

Whether the microbiome is upgraded via probiotics or

FMT, failure to simultaneously upgrade the diet or

otherwise provide sustenance to the new microbiota
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compromises efficacy. Also, the postbiotic butyrate

stimulates release of GLP-1[8][9]. The highly popular

weight loss drug Ozempic (semaglutide) is a GLP-1

agonist. Elevated IFN-γ characterizes parasitic

infestations. In such patients this cytokine was

positively associated with a good prognosis in Covid-

19[44]. Low baseline IFN-γ response could predict

hospitalization[45]  and post discharge fibrosis in

COVID-19 patients[43]. On the other hand its reciprocal,

TGF-β, was positively associated with Covid-19

severity[46] and fibrosis[47]. Even outside the TME TGF-

β promotes fibrosis, counterbalanced by IFN-γ. These

cytokines are directly linked to the KTR and IDO. IDO,

the enzyme, works to restrain excessive or

inappropriate immune activation in the TME[48]

However, IDO is not only an enzyme induced by IFN-γ
(increased KTR) but also an intracellular signal

transducer induced by TGF-β (TME)[49][50][51]

Pleiotropism is the expression of different traits by the

same gene. IFN-γ can pivot from pro-inflammatory and

anti-proliferative to tumor promoter and TGF-β can

pivot from tumor suppressor to tumor promoter. What

triggers the pleiotropic switch from tumor suppressor

to tumor promoter for either IFN-γ or TGF-β is not

clear, but may be related to the TME milieu, where TGF-

β appears to dominate[52]. In an imbalanced (elevated

TGF-β/IFN-γ) TGF-β may trigger fibrosis and the TME

via paracrine transmission. IFN-γ is generally

considered pro-inflammatory but anti-proliferative. But

in the TME it can induce programmed cell death

protein-1 (PD-1) expression linked to metastasis (see

figure 3)[53]. TGF-β is generally considered anti

inflammatory and a tumor suppressor, but in the TME

it becomes a tumor promoter, triggering cancer

associated fibroblasts (CAF), epithelial/endothelial

mesenchymal transformation (EMT), and vascular

endothelial growth factor (VEGF), possibly mediated by

methylation of its epigenome. The switch seems to

occur in the TME. The relative concentrations of IFN-γ

and TGF-β[54]  or local hypoxia[55]  may instigate this.

Interestingly tumors treated with low-dose IFN-γ
acquired metastatic properties while tumors infused

with high dose IFN-γ regressed[54].

Perhaps TGF-β concentration in the TME can trigger a

pleiotropic switch in low dose IFN-γ but at a higher dose

IFN-γ can modulate its reciprocal in the TME. Cancer

cells can also produce TGF-β. Pleiotropic IFN-γ is linked

with metastatic behavior via upregulation of PD-1[56].

Angiotensin II stimulates the TGF-β signaling

pathway[57]. This may in part explain the predilection

for and severity of Covid-19 in males with comorbidities

and for recurrent cancer in those previously in

remission (see figure 3). On the other hand, females are

robust producers of type I interferon[58]. Type 1 IFNs

(IFN-α and IFN-β) are first responders to any invading

pathogen and trigger release of interferon-stimulated

genes for synthesis of IFN-γ.

Its reciprocal, TGF-β, is vital to the maintenance of

tolerogenesis and avoidance of autoimmunity. If TGF-

β/IFN-γ is low, self recognition and tolerance may be

compromised (autoimmunity)[59]. If TGF-β/IFN-γ is

high, tumor associated antigens may be tolerated

(cancer)[60]. An increased TGF-β/IFN-γ is also a risk

factor for tissue fibrosis[61][62][63].

Figure 3. Proposed flow chart leading to cancer,

demonstrating behavior of the cytokines TGF-β and

IFN-γ in the tumor microenvironment (TME) that

pleiotropically pivot from anti-inflammatory/tumor

suppressor to tumor promoter (TGF-β) and from pro-

inflammatory/tumor suppressor to tumor promoter

(IFN-γ). TME=tumor microenvironment, CAF=cancer

associated fibroblast, VEGF=vascular endothelial

growth factor, EMT=epithelial or endothelial

mesenchymal transformation, PD=programmed cell

death protein-1, ERK=extracellular signal regulated

kinase, IDO=indoleamine 2,3-dioxygenase. Figure 3

complements Figure 2.
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5. GPCR

A. GPCR and SARS Cov2

Recent research, including a 2023 international

symposium, has focused on AAs targeting G-protein

coupled receptors[64]. Their roles in Covid-19[65] and LC

have been reported[66]. More than 800 different GPCRs

have been identified, as of 2020[67]. In one study a

majority of those with POTS possessed adrenergic and

muscarinic cholinergic receptor AAs. These are all G-

protein coupled receptors, as is AT1R. Antibodies to

these receptors are also associated with chronic fatigue

syndrome (CFS), fibromyalgia (FM), Covid, LC[68].

[69]  and with other autoimmune diseases (including

SLE, RA, Crohn’s disease[70]). Many of these did poorly

during the pandemic[71]. POTS or POTS-like symptoms

develop in 10-50% of long haulers, yet there are

significant hormonal differences, e.g., low cortisol in

LC[72]  but high cortisol in POTS[73].[74]. In POTS the

adrenals respond to ACTH[75], but in LC they do not and

symptoms can mimic adrenal insufficiency. ACTH

receptors are GPCRs and AAs might inactivate

receptors, as GPCR antibodies can activate or

inactivate[76]. POTS is easily diagnosed and

pathogenesis points to the baroreflex and the

neurohypophysis (see figure 4). The wealth of GPCRs in

the involved CNS nuclei[77] and the link between GPCRs

and autoimmunity underscore the probable GPCR

induced autoimmune pathogenesis for LC.

Figure 4. Proposed schema connecting gut dysbiosis

(leaky gut) with elevated Ang II, elevated AT1R activity,

and oxidative stress. Input from the aldosterone and

POTS paradoxes are emphasized. PVN ADH/OT

secreting neurons are type 1 magnocellular neurons

and CRH/TRH are type 2. Activation of type 2 inhibits

release of type 1’s[78][79]. GPCR=G-protein coupled

receptors, NTS=nucleus tractus solitarius, PVN=

paraventricular nucleus, SFO=subfornical organ, CRF=

corticotropin releasing factor, TRF=thyroid releasing

factor, AVP=arginine vasopressin, OT=oxytocin,

Mg=magnesium

Although LC and POTS are distinctly different and

considered autoimmune, perhaps the wide variety of

GPCR AAs in combination with biologic individuality

explains how one can be a subset of the other. It also

appears, not surprisingly, that Covid-19 is also of

autoimmune etiology in those with suboptimal gut

microbiomes. The gut microbiome in LC[78]>

[80]  reflects that of Covid-19[81]. Mast Cell Activation

Syndrome and Ehlers Danlos Syndrome are linked to

POTS[67]. Mast cells are activated by GPCR[82]  and

GPCRs are involved in the synthesis of collagen[83], as

well as the perception of pain[84]. The microthrombosis

in Covid-19 may be due to AAs to GPCR bearing

platelets[85][86]  or phospholipids[87], perhaps reflecting

some degree of gut dysbiosis. AAs were present in 50%

of those with Covid-19 versus only 15% in healthy

controls[88].

B. GPCR and Gut Dysbiosis

The gut-lung axis is based on the concept of continuity

between their microbiota forming a microbial
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community[89][90]. Cutaneous, nasopharyngeal, and

vaginal microbiomes are members of this community.

ACE2 receptors are highest in lung and GI tract[91],

primary targets for SARS CoV2. But ACE2 is more than

just an enzyme. It is negatively associated with gut

dysbiosis[92] and positively associated with tryptophan

absorption[34].

G-protein-coupled receptors (GPCRs) are the largest

class of cell surface receptors in fungi[93] and Candida is

tightly linked to gut dysbiosis and LC[94].

Tryptophan[35]  and vitamin D[95] inhibit the

commensal yeast to pathogenic hyphae transition.

GPCRs induce transition of commensal yeast forms to

pathogenic hyphal forms[96] and are required for

Candida biofilm formation[97]. Hyphal cell walls are rich

in GPCRs[98] that may breach the intestinal barrier and

trigger production of anti-GPCR AAs. Surprisingly

estrogen promotes innate immune evasion of Candida

albicans through inactivation of the alternative

complement system[99]. Candida and SARS CoV2 may

conspire in this process. SARS CoV2 can initiate not

only gut dysbiosis through loss of ACE2 bearing

intestinal epithelial cells but also LC symptoms through

GPCR AAs induced by Candida associated gut dysbiosis

(see figure 4).

This may also occur in the lungs of ARDS patients,

where both invasive Candida[100]  and GPCR antibody

mediated lung edema[101] have been reported. Although

cell wall/membrane surface GPCRs are only present on

eukaryotes, i.e., not on viruses or bacteria, SARS CoV2

appears to be a ligand for some GPCRs[102][103],

especially those in the brain[104], e.g., NMDA-Rs (see

figure 2) that control taste, smell, and baroreflex and

symptoms like brain fog and fatigue[105]. As a ligand,

SARS CoV2 can disrupt GPCR signaling[106]. GPCR

signaling can also be disrupted by AAs. Why do GPCR

AAs figure so prominently and what is prompting the

TGB-β/IFN-γ imbalance? Animals infected with SARS

CoV2 generate GPCR AAs to the same AT1Rs, β2

adrenergic and muscarinic cholinergic receptors

encountered in LC[107]. Furthermore, the receptors most

frequently targeted by AAs in LC[108]  are at least

partially regulated by GPCRs - autoimmune thyroiditis

(Graves disease, Hashimoto’s thyroiditis)[109][110], celiac

disease[111][112], inflammatory bowel disease[113],

myasthenia gravis[114], pernicious anemia[115],

psoriasis[116], RA[117], Sjogren’s syndrome[118], SLE[119],

type 1 diabetes mellitus (T1DM)[120], and vitiligo[121].

Many of these autoimmune diseases have been

escalating for decades before the pandemic (see figure

5). SARS CoV2 induced loss of ACE2 bearing cells and

associated gut dysbiosis may have accelerated this. For

many of these autoimmune diseases similar gut

microbiomes and concomitant Candida overgrowth

have been reported. The linkages are clear and the

notion of causation (Candida) is provocative.

Figure 5. From: Bach, JF, The Effect of Infections on

Susceptibility to Autoimmune and Allergic Diseases,

NEJM 347(12):911-920.

SARS CoV2 may trigger AAs to GPCRs even in the

absence of severe disease[107]. GPCR AAs are associated

with dysautonomia and post viral fatigue disorders[70].

Pre-existing gut dysbiosis, e.g., Candida overgrowth

after antibiotics or driven by simple sugars or alcohol,

enhanced by a GPCR related viral assault like SARS

CoV2 or HIV[122], may trigger or worsen symptomatic

expression, e.g., dysautonomia[123]. But females exhibit

more robust T cell activation than males[124]  and

produce higher levels of interferon[125], predisposing

autoimmunity (see figure 2). Fungal infections,

especially Candida, elicit a robust IFN-γ response[126]

[127]  and drive the serotonin to kynurenine pathway

pivot (see figure 2). New onset T2DM has been reported

post Covid-19[128]. Pancreatic β-cells have numerous

GPCRs that can activate or inhibit β-cell insulin

secretion[129]. Several autoimmune skin diseases have
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also been reported post Covid-19. These include

alopecia areata in addition to psoriasis and vitiligo. G-

protein coupled receptors stimulate hair follicle stem

cells and promote activation of the hair cycle[130]. GPCR

activity is decreased in psoriatic skin and can be

alleviated by topical butyrate[131][132]. Not surprisingly,

cutaneous Candida colonization is linked to

psoriasis[133]. GPCRs that augment melanocyte growth

are depressed in Covid-19/LC induced vitiligo[134].

GPCR autoantibody induced upregulation of AT1R

activity also activates JAK/STAT pathways[135].

JAK/STAT pathways are strongly linked to cancer,

autoimmunity, and dementia. Cytokine receptors

targeted by JAK/STAT signaling are GPCRs[136] and can

be activated by AAs[76]. The role of GPCRs in driving

cancer has been acknowledged but remains

unexplained. Perhaps the gut microbiome might

provide answers[137]. JAK inhibitors are very popular in

the treatment of autoimmune disease, cancer and

dementia, all linked to the inflammatory triad of TGF-β,

IL-6, IL-1β. Interestingly subclinical AAs to GPCR can be

present in otherwise healthy individuals[2].

6. HRV and the Triple Play

A. HRV

The cytokine triad of TNF-α[7][138][139], IL-6[79][140], and

IL-1β[79]  are negatively linked to HRV and positively

linked to CRP[65]. Cancer diagnosis and prognosis are

linked to TNF-α[141], IL-1β[142][143], and IL-6. Low HRV

can alert one to asymptomatic infection and

inflammation[144][145], anxiety[146], depression[147][148],

cognition and neurodegenerative disorders[149][150],

psychosis spectrum disorders[151], cancer[152][153],

cardiovascular disease[154][155], stroke[156][157],

T2DM[158][159], severe Covid-19[160], Long Covid[161][162]

[163], MS[164], SLE[165], and RA[166]. Central aka visceral

adiposity (waist hip ratio, waist circumference) is

negatively related to HRV and a much more sensitive

indicator than BMI[167][168][169]. Peripheral obesity is

not only not associated with a low HRV but is protective

with elevated HRV[170].

B. Triple Play

Butyrate enhances mitochondrial function during

oxidative stress[171]  and rescues tryptophan[172].

Serotonin cannot cross the BBB, but tryptophan can,

and by rescuing tryptophan, butyrate can increase brain

serotonin (inhibitory neurotransmitter). Butyrate also

suppresses IDO activity[173]  and immuno-modulates

IFN-γ and TGF-β[174]. Butyrate producing gut

microbiota[175], gut biodiversity, and production of

SCFAs[176]  are associated with elevated HRV.

Unfortunately butyrate producing Bacteroidetes species

decline with age[177]. Butyrate alleviates obesity and

related comorbidities[178][179][180]. But not all SCFAs

have beneficial effects on human health. Acetate not

only promotes obesity[7][181]  but can also be used by

tumor cells as an energy substrate during oxidative

stress[182]. Postbiotic butyrate bypasses the negative

effects[6] of Bacteroides produced acetate[183].

Prebiotic D-mannose assists dietary fiber in

propagating butyrate producers[184]. It enhances

intestinal barrier integrity[185]  and opposes the

proinflammatory effects of glucose and fructose[186]. D-

mannose opposes diet induced obesity[187], which is

positively associated with CRP and negatively

associated with HRV[188]. Central adiposity is adverse

and linked to elevated CRP, while peripheral adiposity is

favorable and not so linked[189][190]. D-mannose not

only downregulates gut dysbiosis by enhancing

intestinal barrier integrity[184][185]  but also suppresses

the adipokine and cytokine triad (TNF-α, IL-6, IL-1β)
[191][192][193], linked to cancer[194][195], cardiovascular

disease[196], stroke[197], obesity[198], diabetes[199],

neurodegenerative disease[200], and autoimmune

disease[201][202]. D-mannose suppresses autoimmune

diseases, e.g., T1DM, asthma[203], and SLE[203]>[204]  by

suppressing IFN-γ[39][148]. D-mannose can suppress

ERK (extracellular signal regulated kinase) signaling

pathways (see figure 3)[205]  integral to TGF-β induced

organ fibrosis[206], transformation of fibroblasts into

CAFs[207], epithelial/endothelial mesenchymal

transformation (EMT)[208], and VEGF synthesis[209]. D-

mannose inhibits PD-1 (see figure 3)[210], upregulated in

Covid-19[211]. This pathway to tumorigenesis is separate

but complementary to that induced by TGF-β[212]  (see

figure 3). Probiotics also increase HRV and have proven

efficacious in LC[213][79]. Probiotics and antioxidants are

nutraceuticals that have proven most effective in

Covid-19 and LC[214]. Prebiotic is more important than

postbiotic, as SCFA producing bacteria cannot flourish

without dietary fiber or its equivalent (d-mannose).
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7. Conclusion

Gut (and lung) dysbiosis and Candida overgrowth

induced GPCR AAs may be at the root of the vast

majority of our health problems, including cancer,

dementia, autoimmunity, obesity, post viral fatigue

syndrome (LC, CFS, FM, Epstein Barr Virus), and many

infectious diseases. A gut leaking Candida hyphae laden

with GPCRs stimulates production of host AAs that

activate AT1Rs, adrenergic, and mucarinic receptors,

and others at the heart of many comorbidities.

The growing epidemic of LC has spawned tremendous

suffering and economic loss. The bidirectional

correlations between gut dysbiosis and inflammatory

cytokines, disease, and HRV/KTR/CRP make

supplementation the most feasible path to better

health. This triple play of prebiotic d-mannose, a

probiotic of diverse butyrate producing bacteria, and

postbiotic butyrate can provide a strong assist. Limit

inflammaging and oxidative stress (see figures 1,4) and

embrace antioxidants to maintain mitochondrial

health.

Adding exercise to this regimen further energizes

HRV[215]. Monitoring a rising HRV and possibly a falling

waistline[167][168]  due to butyrate[9]  and indole[14][15]

[16]  induced GLP-1 can provide positive feedback and

boost incentive during the effort. This approach affords

the individual an inexpensive and convenient path to a

more healthful existence without necessarily forcing

dietary and other lifestyle changes. Changing ones diet

may be more difficult than changing ones religion.

Obtaining an accurate HRV via bluetooth enabled chest

strap, armband, finger sensor, or wristwatch can be

tedious, but HRV is especially useful in following the

benefits of dietary changes,[216] and significant benefits

to a more healthful lifestyle and lifespan[217] await.

Although the ideas proposed in this review are in part

speculative and underscore associations, they do not

prove causation. That remains for randomized

controlled trials.

“Death sits in the bowel.” Hippocrates

(400 BC)

“Mouths affected with aphthous

ulcerations” Hippocrates description of

oral candidiasis (400 BC)[218]
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