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1. Independent researcher

A simple and straightforward formulation of the Dirac theory of electron exclusively according to

Spacetime algebra (and calculus) is presented. The `Dirac algebra', is expressed in identical compact

combination of the commutation and anticommutation relations both for Dirac matrices and the

spacetime basis vectors. The formulation restates the theory with a set of 'local observables' and

provides both comprehensive and coherent description revealing new insights. The noncollinearity

of momentum and velocity, arising from a link between spin and momentum is also discussed.

According to this reformulation, spin appears as a dynamical property of electron motion and plays

fundamental role in exhibiting the quantum behavior.

1. Introduction

In search of a more general, relativistic quantum equation of motion, Dirac[1] was looking for a square

root of the d’Alembert operator   and using four   ‘ ’ matrices �nally obtained his celebrated

linearized equation of motion for electron in terms of the ‘Dirac operator’ 

  and the ‘Dirac ket’    representing the spinor-valued

statefunction. Introducing the ‘minimal coupling’ with the spacetime vector potential   of

an external electromagnetic �eld, the equation reads: 

where   is the mass and   is the charge of the electron.

The algebra of Dirac matrices – the socalled ‘Dirac algebra’, can be expressed in a compact

combination of the commutation and anticommutation relations using Einstein summation

convention as: 

Qeios

□
2 (4 × 4) γ

□ = ( = ∂/∂ ); μ = 0, 1, 2, 3γμ∂μ ∂μ xμ |ψ⟩

a (= { })aμ

(iℏ □ − e a)|ψ⟩ = mc|ψ⟩ , (1)

m e = −|e|

= + ,γμγν gμν γ4 gμμ gνν ϵμνηλ γ5 γηγλ (2)

qeios.com doi.org/10.32388/X0ZEZC 1

https://www.qeios.com/
https://doi.org/10.32388/X0ZEZC


where    are the elements of the  -D pseudo-Euclidean Minkowski spacetime metric, 

 represents the ( ) identity matrix,   are the elements of Levi-Civita tensor and 

 is the product of the four gamma matrices.

Every particle described by the Dirac equation has to have a corresponding antiparticle, which di�ers

only in the sign of its charge. The additional states of the electron predicted by the theory got

experimental con�rmation with the discovery of the positron in 1932 and this spectacular success was

hailed by Heisenberg as ‘perhaps the biggest change of all the big changes in physics of our century . . .

because it changed our whole picture of matter’[2]. Interestingly, Dirac himself once jovially remarked

that his equation is more intelligent than its author[3]! And indeed, carrying out an extensive

reformulation using spacetime algebra (the geometric algebra and calculus of Minkowski spacetime) in

a series of papers, Hestenes has delved deep to reveal further the ‘mysteries and insights of Dirac

theory’.

Dirac’s matrix formulation uses complex numbers, whereas Hestenes[4][5] has clearly demonstrated

that there is no justi�cation in using complex numbers. Also, unnecessary complexity arises from the

use of admixture of matrix and tensor algebras in the mathematical formalism. In the following, we

note that the Dirac algebra is isomorphic to the spacetime algebra (STA) which o�ers a more compact,

coherent and comprehensive reformulation – the ‘Real Dirac theory’[5][6]. STA also provides the

appropriate representation of spinors, the spin angular momentum states of spin-half elementary

particles. Quaternions and their isomorphic cousins, spinors are di�erent from both vectors and

tensors and change sign under rotation of    and a rotation of    is equivalent to the absence of

rotation.

These conceptual inputs facilitate a comprehensive introduction to the reformulated Dirac’s theory,

exclusively in the straightforward STA framework and to provide a broad based exposure to the

advanced undergraduate students. After a breif introduction to the spacetime algebra and calculus, the

appropriate reformulation of the Dirac theory is discussed.

1.1. Spacetime algebra and calculus as the appropriate Dirac algebra

Retaining the same symbols (with added hats) of the matrices for the four orthogonal spacetime basis

vectors ( ), the full STA spanned by   multivector bases are generated by multiplications of the four

as: 

(= 0, ±1)gμν 4

γ4 4 × 4 (= 0, ±1)ϵμνλη

(= )γ5 γ0γ1γ2γ3

2π 4π

γ̂μ 16
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Geometrically, the unit pseudoscalar    represents a unit oriented  -volume for

spacetime with the following basic algebraic properties: (i) it squares to  , and (ii) anticommutes

with vectors   and trivectors   and commutes with bivectors  . The six unit bivectors

together with the unit scalar and the unit pseudoscalar comprise the eight bases of the even

subalgebra of STA.

The properties of spacetime metric can be similarly represented in a compact form in terms of

Cli�ord’s associative geometric product, combining both inner (dot) and exterior (wedge) products of

Grassmann algebra, of any two of the four basis vectors as: 

here, the pseudo-Eucleadian Minkowski spacetime metric elements  , represented by the scalar

product of the basis vectors ( , produce the sequence   of algebraic signs on the main

diagonal of this spacetime metric. The opposite signature of    is also used and it is always

possible to translate between the two sets of basis vectors.  ’s represent the unit bivectors and 

 is the unit pseudoscalar of the spacetime algebra. Equation (3) exactly reproduces the

algebra of Dirac matrices (eq.2), where the    unit matrix    and    – the product of the four

Dirac matrices are replaced by the unit scalar   and the unit spacetime pseudoscalar   respectively.

Secondly the Dirac operator ( ), with the replacement of the    matrices by spacetime basis

vectors, actually represents the spacetime gradient operator, since  . The ‘spontaneous

emergence’ of spin in Dirac’s theory of electron is generally attributed to the derivation of its

linearized relativistic wave equation and spin has been said to be ‘a quantum phenomenon’. However,

the rede�ned Dirac operator is equally applicable in the formulation of the �eld equations of both

electromagnetism and �uid mechanics[7][8]. Hestenes has, therefore, rightly concluded that the Dirac

algebra arises from spacetime geometry rather than anything special about quantum theory and the

origin of spin must lie somewhere else. Moreover, it may also be pointed out that, with the

introduction of the geometric product, the spacetime algebra removes much of the mathematical

divide among classical, quantum, and relativistic physics.

Finally, the even subalgebra of STA expresses appropriately the theory of spinors. The spinor-valued

statefunction – an even spacetime multivector  , is conveniently

recomposed in the most succinct polar form: 

1, { }, { }, { } and , μ ≠ ν.γ̂μ γ̂μ γ̂ν ι̂ γ̂μ ι̂

(= )ι̂ γ̂0γ̂1γ̂2γ̂3 4

−1

{ }γ̂μ { }ι̂ γ̂μ { }γ̂μ γ̂ν

= . + ∧ = + ,γ̂μ γ̂ν γ̂μ γ̂ν γ̂μ γ̂ν gμν gμμ gννϵμνηλ ι̂ γ̂η γ̂λ (3)

gμν

.γ̂μ γ̂ν (+ − − −)

(− + + +)

∧γ̂μ γ̂ν

=ι̂ γ̂0 γ̂1 γ̂2 γ̂3

(4 × 4) γ4 γ5

1 ι̂

□ = γ̂μ∂μ γ

□ =xμ γ̂μ

Ψ = + + +a0 aj γ̂k γ̂l bj γ̂jγ̂0 b0 ι̂
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where   and   are scalar �elds. The bivector part is represented by the rotor  , the

generator of pure rotation – a normalized spinor[9][10].

Using the generalisation of the concept of exponential function of multivectors introduced by

Hestenes[9], the rotors can be represented by elliptic functions of the bivector �eld B as 

  to generate rotation through a bilinear transformation. The ‘canonical form’ (eq.4), as

introduced by Hestenes, is an invariant composition of the Dirac wave function into a  -parameter

statistical factor    and a  -parameter kinematical factor – the rotor  . The bilinear

covariants for the    multivector bases of STA (constructed using the wave function    having only 

  parameters) are not all mutually independent. It may be noted that, the invariant polar form of 

  provides simple expressions for the interdependence of the bilinear covariants and dispense with

the need for the ‘Fierz identities’ and complicated index manipulations of the conventional

formulation[5]. For the even multivector  , we have: 

with  . At each spacetime point,    determines a Lorentz rotation of a

given �xed frame of vectors    into new set of �eld vectors   and bivectors   given by 

 and   etc. – the bilinear operation with the rotor being grade preserving.

It turns out that the rotor �eld  , which determines the comoving frame    on the

streamline (along  ), is the descriptor of the kinematics of electron motion in this formulation. The

physical interpretation given to   and   in de�ning the ‘local observables’ is the key to the

interpretation of the Real Dirac theory.

This introduction provides the required straightforward STA framework for the present study. A

concise and coherent reformulation of the Dirac theory in the proper language of STA, dispensing with

the matrix and tensor algebras, is discussed in the following sections.

2. Reformulation of Dirac theory according to Spacetime algebra

In STA both operators and states are real-space multivectors, and the distinction between states and

operators is removed naturally, appearing as an important conceptual simpli�cation. From the

expression    is identi�ed as the position probability density (proper) that the

electron is at the given spacetime point and    represents the phase factor (akin to the Yvon-

Ψ = (ρ exp( β) R,ι̂ )1/2 (4)

ρ (= ρ(x)) β (= β(x)) R

R = exp(B)

2

(ρ exp( β)ι̂ )1/2 6 R

16 Ψ

8

Ψ

Ψ

Ψ = ρ exp( β), {= exp( β } and being the reverses of Ψ and R respectively,Ψ
~

ι̂ Ψ
~

ρ1/2 ι̂ )1/2
R
~

R
~

R = R = 1 ⇒ ≡R
~

R
~

R
~

R
−1

R

{ }γ̂μ { }α̂μ { }α̂μ α̂ν

= Rα̂μ γ̂μR
~

= Rα̂μ α̂ν γ̂μ γ̂νR
~

R = Rα̂μ γ̂μR
~

α̂0

{ }α̂μ { }α̂μ α̂ν

Ψ = ρ exp( β), ρΨ
~

ι̂

β
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Takabayasi angle[11]  de�ned to generate transformation of internal degrees of freedom). Also 

  and    representing a set of linearly independent vector and

bivector �eld densities respectively. Since every timelike vector �eld, say  , written in the bilinear

form with a spinor �eld obey the conservation law  , the timelike vector    de�nes the

direction of velocity (proper)   of the electron. The vector �eld density   is aptly interpreted

as the Dirac probability current density in accordance with the standard Born interpretation. The

angular momentum is actually a bivector quantity and according to STA, the spin angular momentum

is given by the bivector: 

Justi�cation for taking this bivector form of spin comes from the angular momentum conservation

law. Equation (5) expresses that at each spacetime point the reference representation of the spin

bivector    is rotated by the kinematical factor    into the local spin  . The spin bivector is

dual to the bivector    i.e.  , where the vector   replaces the spin

pseudovector of the standard formulation.

Of the six parameters implicit in the rotor  , �ve are needed to determine the directions of velocity (

) and spin ( ) vectors, since the two are constrained by by the three conditions that they are

orthogonal and have constant magnitudes. By duality, these vectors also determine the ‘spin plane’

containing   and  . The remaining parameter determines the directions of the two vectors in this

plane, an angle of rotation and the spin bivector    is the generator of the rotation. Hestenes thus

arrived at a geometrical interpretation of the phase of the wave function inherent in the Dirac theory,

but concealed in the conventional matrix formulation.

From an analysis of the Schrödinger, Pauli and Dirac equations, Hestenes[5][12]  has come to the

conclusion that the imaginary ‘ ’ in the usual quantum theories actually ‘smuggles spin into the

expressions’. The justi�cation for including ‘ ’ in conventional theories is to make operators

hermitian to get real observables, which actually hides the fact that the distinctive factor   is exactly

twice the spin of electron. The spacetime formulation of Dirac theory reveals this hidden signi�cance

and the unit imaginary of equation (1) is replaced with the unitary bivector  , the ‘generator of

spin’ (rotation) in a spacelike plane. The Dirac equation according to STA – also called the Dirac-

Hestenes equation (DHE) is written in terms of the spacetime gradient operator and the real, spinor-

valued wavefunction   as: 

Ψ = ργ̂μΨ
~

α̂μ Ψ = ρ exp( β)γ̂μ γ̂νΨ
~

ι̂ α̂μα̂ν

α̂0

□. ρ = 0α̂0 α̂0

v = c α̂0 ρα̂0

S = R ≡ .
ℏ

2
γ̂2γ̂1R

~ ℏ

2
α̂2α̂1 (5)

ℏ( )/2γ̂2γ̂1 R S

ℏ( )/2 = sα̂3 α̂0 α̂0 S = sι̂ α̂0 s (≡ ℏ /2)α̂3

R

α̂0 α̂3

α̂1 α̂2

S

i

i

iℏ

γ̂2 γ̂1

Ψ
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The equivalence to the standard matrix form (eq.1) is obtained[12]  by interpreting    as matrices 

  and appropriately transforming the even multivector    to the Dirac ket function  . The

correspondence is ensured by the right multiplication of the generator bivector    of spin to the

STA spinor  , which also plays the role of an operator generating observables in the theory.

In the standard formulation of quantum mechanics, observables and the observed values are described

by hermitian operators and their eigenvalues respectively. However, Hestenes[5]  have argued that

certain features of the Dirac theory con�ict with the view that it is a universal principle of quantum

mechanics. It is contended that the success of this principle is derived from a set of operators only,

namely, the kinetic energy-momentum operators and STA clari�es and leads to a new view of the

signi�cance of these operators in quantum mechanics.

Dispensing with the operator representation, in the STA approach observables of the Dirac theory are

rede�ned with ‘local observables’ in terms of bilinear covariants of the multivector bases of STA and

associated directly with the Dirac wave function. One interesting aspect of this approach is that the

conservation laws can be established directly from the Dirac equation, without recourse to the

standard lagrangian formalism. A complete set of observables is determined by the conservation laws

providing all mathematical features of the wave function. The formulation greatly simpli�es the

derivation of conservation laws and may be regarded as a �eld theoretic description of Dirac’s theory

of electron.

The Dirac theory describes the electron as a point particle, however, the description is statistical and

the position probability current is to be identi�ed with the Dirac current  . The conservation of the

Dirac current can be established as follows. Multiplying DHE (eq.6) by   on

the right and recalling that   etc., we get: 

Taking the scalar part of this expression: 

ℏ □Ψ = m c Ψ + e a Ψ .γ̂2 γ̂1 γ̂0 (6)

γ̂μ

γμ Ψ |ψ >

γ̂2 γ̂1

Ψ

ρ α̂0

(≡ )γ̂1 γ̂2 γ̂μ Ψ
~

ι̂ γ̂0 γ̂3 γ̂μ Ψ
~

Ψ = ργ̂μ Ψ
~

α̂μ

ℏ (□Ψ)γ̂2 γ̂1 γ̂1 γ̂2 γ̂μ Ψ
~

⇒ ℏ (□ Ψ)γ̂μ Ψ
~

=

=

=

m c Ψ + e a Ψγ̂0 ι̂ γ̂0 γ̂3 γ̂μ Ψ
~

γ̂1 γ̂2 γ̂μ Ψ
~

−m c Ψ + e a Ψι̂ γ̂3 γ̂μ Ψ
~

γ̂1 γ̂2 γ̂μ Ψ
~

− m c ρ exp( β) − e ρ a ,ι̂ ι̂ α̂3 α̂μ α̂2 α̂1 α̂μ

(7)

ℏ < (□ Ψ)γ̂μ Ψ
~

>0

⇒ □. (ρ )α̂μ

=

=

−ρ < m c exp( β) + e aι̂ ι̂ α̂3 α̂μ α̂2 α̂1 α̂μ >0

[m c sin β . − e (a ) : ( )],
2 ρ

ℏ
α̂3 α̂μ α̂μ α̂2 α̂1
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since  . The double dot ‘:’ implies double contraction[10], giving the

scalar product of the two bivectors. The divergences of various current densities are obtained by

putting   and   respectively as: 

De�ning   as the local probability current (Dirac current), the vanishing divergence in accordance

with the Dirac equation correctly reproduces the conservation of (local) probability. The conservation

law implies the existence of a unique integral curve, passing through each spacetime point and

tangent to  , called electron streamline[1]. Along the tangents �ows the probability current  . In

any spacetime region where  , a solution of the Dirac equation determines a family of streamlines

that �lls the region with exactly one streamline through each point. Also, both the mass and the

charge current densities ( ,    respectively) are proportional to the Dirac current and both

the mass and charge conservations are immediate consequences of the probability conservation.

The future-pointing timelike unit vector  , tangent to the world line of an observer at rest,

represents the observer in STA. The novel spacetime split method of Hestenes[5] amounts comparing

the motion of a given system relative to the observer by compactifyng the spacetime to a relative  -D

space with respect to  . Splitting up the six spacetime bivectors into three relative vectors 

  and three bivectors    (relative to the    observer), the eight

multivector bases of the even subalgebra of STA, including the unit scalar and the unit pseudoscalar 

, generates the eight multivector bases of the relative  -D space. The

geometric product of any two of the three basis vectors of this relative  -D space exactly reproduces

the algebra of Pauli matrices (or simply the Pauli algebra):    and

the Pauli spinor ( ) is appropriately represented by a four component even multivector.

The Pauli equation as the nonrelativistic approximation of the Dirac equation correctly brings out the

nonrelativistic limit of the Dirac (charge) current, distinguishing it from the nonrelativistic limit of

the convection current part that arises from the motion of the center of mass of the charged particle

only, excluding the part that arises from gradients of the spin density (the socalled ‘Gordon

current’[13]). Failure to identify the ‘Darwin term’ as the s-state spin-orbit energy in conventional

treatments of the hydrogen atom is thus traced to a failure to distinguish between charge and

momentum �ow in the theory. As a consistent approximation to the Dirac theory, the Schrödinger

ℏ < (□ Ψ) = ℏ □. (ρ )γ̂μ Ψ
~

>0 2−1 α̂μ

μ = 0, 1, 2 3

□. (ρ )α̂0

and □. (ρ )α̂3

=

=

0, □. (ρ ) = − ρ e a. , □. (ρ ) = ρ e a.α̂1
2

ℏ
α̂2 α̂2

2

ℏ
α̂1

− ρ m c sin β ⇒ □. (ρ s) = −ρ m c sin β.
2

ℏ

(8)

ρ α̂0

v ρ α̂0

ρ ≠ 0

m ρ α̂0 e ρ α̂0

γ̂0

3

γ̂0

{ } = { }σ̂j γ̂0γ̂j { } ≡ { }; j ≠ kσ̂jσ̂k γ̂jγ̂k γ̂0

= ≡ι̂ γ̂0 γ̂1 γ̂2 γ̂3 σ̂1 σ̂2 σ̂3 3

3

= + ; j, k, l = 1, 2, 3σ̂j σ̂k δjk ι̂ εjkl σ̂l

=Ψ′ ρ′1/2
R

′
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equation can also be derived successively from the Pauli equation with vanishingly small external

magnetic �eld[12]. At variance with the standard view, the limiting ‘Schrödinger equation’ describes a

particle in a spin eigenstate and not a spinless particle. This important di�erence is a consequence of

deriving the Schrödinger equation from the Pauli equation which leads to an expression for the charge

current containing nonvanishing term from the spin magnetization current. The usual Schrödinger

current appears as the nonrelativistic limit of the ‘Gordon’ current rather than the Dirac current.

However, the hydrogen s-state electron motion is more correctly described by the Dirac current, than

the Gordon-Schrödinger current.

2.1. New insights from the reformulated Dirac-Hestenes equation

The importance of equation (6) lies in the fact that it provides a more comprehensive description of

the theory and provides new insights to gain an edge over the conventional formulation. In this

formulation, the momentum includes a contribution from the spin, rendering it noncollinear with the

local velocity that corresponds to the ‘Weyssenho� behaviour’[14]  of Dirac’s electron (see eq.11).

Beauregard and Imbert have initiated the theoretical and experimental study on noncollinearity of

velocity and momentum in electron theory and optics[15].

In this formulation, the variables   and so on are �eld quantities and represent local observables

velocity, momentum and spin respectively. These basic observables are completely characterized by

the kinematical factor, the rotor �eld   in the wave function, whereas   and   provides the statistical

interpretation in this formulation.

Though the physical interpretation of    is rather a debatable issue, it may be noted that from a

superposition of solutions with  , composite solution with   to the Dirac-Hestenes equation

can be obtained. Therefore,    characterizes a more general class of statistical superpositions than

particle-antiparticle mixtures. The many particle aspects of Dirac equation, as it admits negative

energy solutions, is usually dealt with by enforcing a second quantization. However, proper

recognition of the parameter   (re�ered to as the ‘ -problem’ by Hestenes[5]) provides an alternative,

new perspective rendering second quantization unnecessary. Moreover, as it will be seen presently,

the magnetization    can be de�ned in this formulation in terms of the spin by a duality rotation

represented by the factor  , also provides some justi�cation for referring    as the duality

parameter.

v, p, S

R ρ β

β

β = 0 β ≠ 0

β

β β

M

exp(i β) β
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A relation among the local observables    and    can be obtained from equation (6), �rst by

multiplying it on the right by   to get 

Expressing   in polar form, the l.h.s. of the above equation may be written as: 

Finally, equation (9), becomes: 

Both the entire l.h.s. and the factor   in equation (10) are composed of vectors and

trivectors only. The rotor �eld    is the descriptor of the kinematics of electron motion in this

formulation and writing:  , where    and    are two vector �elds,

Hestenes[6] has �nally identi�ed   as the total local momentum �eld  . Multiplying both sides

of equation (10) with   and equating only the vector parts, the local momentum of electron

is �nally obtained as a function velocity and spin as: 

in the simplest way, which expresses the general noncollinearity of electron momentum and velocity

in Dirac theory. The noncollinearity, introduced by the electron spin, means that charge and energy

�ows are not concurrent – the Weyssenho� behaviour or motion. While the charge current, like the

probability current follows the timelike trajectories along  , the energy-momentum density given by 

 �ows along the electron streamlines. The factor   in equation (11), reduces the contribution of

the ‘mass density’ to the energy-momentum density. The last term: 

shows a dependence of momentum on the rate of change of    in the   plane. Also a number of

important algebraic relations with momentum, velocity and spin follows from equation (11). Here we

consider �rst: 

v, p S

Ψ
~

ℏ(□Ψ) = ρ mv + ρ e a exp(ι β) .γ̂2 γ̂1Ψ
~ (9)

Ψ, □Ψ

ℏ(□Ψ)γ̂2 γ̂1Ψ
~

Since, □S

=

=

=

⇒

ℏ{□ρ exp(ι β)}(R ) + ℏρ exp(−ι β)(□R)2−1 γ̂2 γ̂1R
~

γ̂2 γ̂1R
~

□{ρ exp(ι β)S} + ρ exp(−ι β){(□R) S − SR(□ )}, S = ℏ(R )R
~

R
~

2−1 γ̂2 γ̂1R
~

{(□R) S + SR(□ )}R
~

R
~

2(□R) S = □S + {(□R) S − SR(□ )}.R
~

R
~

R
~

ρ exp(−ι β){(□R) S − SR(□ ) − e a} = ρ m v − □{ρ exp(ι β)S}.R
~

R
~ (10)

(□R) S − SR(□ )R
~

R
~

R

(□R) S − SR(□ ) = p + ι qR
~

R
~

p q

p + e ape

exp(ι β)ρ−1

= mv cos β − □. (ρS) + ( S). □β,pe ρ−1 ι̂ (11)

v

ρpe cos β

( S). □β = ( ∧ s). □βι̂ α̂0

β ∧ sα̂0

. vpe = m cos β − (v ∧ □) : (ρS) − ( S) : (v ∧ □β),v2 ρ−1 ι̂
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expressing the �ow of local energy along a streamline. The �rst term contains reduced rest mass 

  and the remaining terms involve the ‘normal gradient’  , which shows that their

contribution to the local energy is determined by the �ow of   and   onto the streamline.

The measure of the noncollinearity of momentum and velocity in (11) can be expressed as: 

which may be regarded as de�ning the relative momentum in the electron rest frame. This equation

may also be compared with the equivalent of Weyssenho�’s classical equation for angular momentum

conservation  [6][14].

Equating the trivector parts similarly, we get from equation (10) the expression for the dual vector

�eld   as: 

Equation (12) for    together with the last equation of equation (8), gives the rate of change of spin

along a velocity streamline. A number of other important auxiliary formulas are easily derived from

equations (11) and (12) by utilizing algebraic properties of the velocity and spin[6].

Alternatively, the local �eld velocity is composed of two distinct parts: (i) the center of mass (CM)

part    and (ii)  , the spin dependent (or the internal zitterbewegung motion resulting in the

electron spin) part in the CM frame:

Thus the Weyssenho� behaviour of a spinning particle, corresponds to Zitterbewegung (zbw) of

Dirac’s electron. Analysing the Dirac equation, the rapid oscillatory motion was �rst predicted by

Breit[16] and subsequently by Schrödinger[17], who coined the term Zitterbewegung from the German

word for ‘trembling motion’ (where the fermion executes a zig-zag, back-and-forth motion at the

speed of light). Although zbw of a free relativistic particle is not observable directly, it has been

simulated in model systems[18]. Zitterbewegung is also invoked to explain the Darwin term, a small

correction of the energy level, a spin-orbit energy for the s-orbitals of the hydrogen atom[19].

On the basis of an old calculation by Balinfante, Ohanian[20] has argued that the (electron) spin may be

regarded as an angular momentum generated due to a circulating �ow of energy, or momentum

density, in the electron wave �eld. Subsequently Esposito[21] has generalized the result for arbitrary

m cos β v ∧ □

S β

∧ v = v ∧ □. (ρS) + S = − □. (ρ v S) − (S. □) ∧ v + S ,pe ρ−1 ι̂ β̇ Ṡ ρ−1 ι̂ β̇

= ∧ vṠ pe

q

q = mv sin β + □. (ρ S) − S. □β.ρ−1 ι̂ (12)

q

vcm vzbw

v = + = /(m cos β) + ( □. (ρS) + ( S). □β)/(m cos β).vcm vzbw pe ρ−1 ι̂
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spin system and reiterated the claim that the ‘quantum behavior of microsystems is a direct

consequence of the fundamental existence of spin’. The new zbw interpretation, as advanced by

Hestenes[22]  from DHE (eq.6), claims spin as determining the ground-state or the zero-point

(kinetic) energy. Spin – the zero-point angular momentum is associated with the zero-point energy

of the electron which determines the dispersion in electron momentum. The position-momentum

Heisenberg uncertainty relations for an electron can, therefore, be interpreted as a property of the

electron spin motion[23]. Also, the noncollinearity of local momentum and velocity urges that the

position-momentum uncertainty relation is not equivalent, contrary to the usual supposition, to the

uncertainty relation for position and velocity. Indeed, the inequivalence of velocity and momentum

persists when the nonrelativistic limit is carried out correctly, even in the Schrödinger regime. This

important fact has gone unnoticed and the necessary relation of spin with the Schrödinger equation as

well as to the uncertainty principle has been overlooked.

Putting    for Pauli-Schrödinger case, Recami and Salesi[24]  have de�ned the Bohm quantum

potential[25] as the kinetic energy of the zbw (internal) motion: 

– in a very similar form, but as a mere consequence of the kinetic interpretation of spin. However, all

the time the authors of Ref. 23 have erroneously expressed the zbw part of the velocity vector as a

bivector, in terms of wedge product between two vectors. The origin of the quantum potential is also

hidden in the Pauli-Schrödinger theory. This STA formulation suggests the dependence of the

quantum potential on   as coming entirely from the spin motion. The complete general expresion of 

[5][26][27]  for the Dirac-Hestenes equation di�ers considerably from the usual Bohm quantum

potential, where the mass parameter   involves the angle  .

Moreover, we note that the vector part of equation (10), on multiplication with  , gives the Gordon

current (density): 

and the celebrated Gordon decomposition of Dirac current (density)   in the language of STA: 

β = 0

Q = m = ( with |S| = ℏ/2
1

2
v2

zbw

ℏ 2

8m

□ρ

ρ
)2

ℏ Q

m cos(β) β

e/m

( cos β + q sin β) = = e ρ v − □. {ρ exp(ι β)S},
e ρ

m
pe jG

e

m
(13)

e ρ v

= + □. {ρ exp(ι β)S} = + □. M,jD jG

e

m
jG (14)
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which played an important role in the interpretation of Dirac equation. The Gordon current di�ers

from the charge current by the magnetization current associated with the spin density[4]. The last

term of equation (14) is consistently identi�ed as the divergence of spin magnetic moment density i.e.

the magnetization �eld  . This relation between magnetization and spin is much

simpler than any other to be found in standard formulations and also is another indication that

equation (5) provides an appropriate representation for electron spin.

Equation (13) shows that in the nonrelativistic limit ( ) the Gordon current, representing the

Schrödinger current in the conventional formulation, is given by in terms of the local momentum

density only as    – and is purely a convection current. Also, in this limit: 

. From the mathematical identity  , it follows

that the conservation law    (eq.8) also implies that  , i.e. both Dirac and Gordon

currents are conserved quantities. However, as mentioned earlier, the interpretation of the Dirac

current as proportional to the charge current is consistent with the experiment.

2.2. The force equation and the energy-momentum conservation law

Taking the gradient of the Dirac-Hestenes equation and multiplying on the right by  , one gets

after some manipulation[12]: 

Substituting for   using equation (6) in the �rst two terms of r.h.s., one gets: 

and the vector part of which gives:

where,   is the electromagnetic bivector �eld[8]. The r.h.s term   of the above equation

representing a local force density    on a charge/velocity streamline, is just the familiar classical

Lorentz force. However, the force equation must include a Stern-Gerlach force term to establish the

energy-momentum conservation law. The apparent absence of a Stern-Gerlach force in the presence

of an intrinsic magnetic moment also indicates that the electron magnetic moment arises from a

M = ρ exp(ι β)Se
m

β = 0

e ρ ( /m)pe

= m v − □. {ρ S}pe ρ−1
□. (□. M) = (□ ∧ □) : M = 0

□. = 0jD □. = 0jG

c γ̂0 Ψ
~

ℏ ( Ψ) c□
2 γ̂2 γ̂1 γ̂0 Ψ

~
=

=

=

m c(□ Ψ)c + e(□ aΨ)cΨ
~

γ̂0 Ψ
~

m c(□ Ψ)c + e(□ a)Ψ c + e a(□ Ψ)cΨ
~

γ̂0 Ψ
~

γ̂0 Ψ
~

[{m c(□ Ψ) − e a(□ Ψ) } + 2 e a(□ Ψ) + e(□ a)Ψ ]cγ̂0 γ̂0 γ̂0 Ψ
~

□ Ψ

ℏ ( Ψ) c = ( − ) ρ c + e a □(ρ v) + e(□ a)ρ v,□
2 γ̂2 γ̂1 γ̂0 Ψ

~
e2a2 m2c2 ι̂ α̂3

< ℏ ( Ψ) c□
2 γ̂2 γ̂1 γ̂0 Ψ

~
>1

⇒< ℏ ( Ψ) c□
2 γ̂2 γ̂1 γ̂0 Ψ

~
>1

=

−

e a□. (ρv) + e(□. a)ρ v + e(□ ∧ a). ρ v

e □. (ρ av) = ρ e F. v,
(15)

F = □ ∧ a ρ e F. v

ρf
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circulation of electron charge[22]  and equation (15) does not reveal the full e�ect of the

electromagnetic �eld    on the momentum �ow. On the other hand, equation (13) indicates that the

force on a momentum streamline (along Gordon current) consists of a Lorentz force supplemented by

a Stern-Gerlach type force, arising from the circulation of charge relative to the momentum

streamlines. Same general conclusion may be reached in other ways too and this problem requires

further analysis and we intend to address it in a subsequent work. However, it is important to note

that the electron spin (density)    determines this circulation locally, so we can regard it as

describing a property of electron motion rather than electron structure.

3. Concluding remarks

In two earlier papers[8]  we have noted the profound advatages of using STA in describing

Electromagnetic �eld equations and Fluid mechanics. In this paper similarly new insights are found

from Dirac equation with a spacetime geometric reformulation. The Dirac theory of the electron

contains important geometric and physical information, which is obscured in standard matrix-based

approaches. The spacetime metric in terms of geometric product of any pair of the four basis vectors

exactly reproduces the Dirac algebra (algebra of Dirac matrices). Also, both the Dirac operator   and

the spinors are convenient representations in STA. Finally, identifying the unit imaginary of equation

(1) with the unitary bivector, the generator of spin, the Dirac equation is reformulated exclusively

according to STA – the Dirac-Hestenes equation. The �exible representation o�ers a far reaching

powerful theory for a more detailed investigation of various aspects of the physics of electron than

what is given by the conventional expositions of quantum mechanics. For example it elicits the

noncollinearity of velocity and momentum – the Weyssenho� motion of Dirac’s electron providing

the Gordon decomposition of Dirac current in a simple way. The expression for the spin magnetization

current term in equation (14) endorses the bivector representation of the electron spin (eq.8).

The spacetime algebraic reformulation facilitates direct calculation of various conservation laws for

probability current or charge current, energy-momentum and angular momentum densities from the

Dirac equation. Also, in conjunction with the nouvel spacetime split concept, the transition from Dirac

to Pauli and then to Schrödinger equation becomes straightforward and explains the elusive Darwin

term in exact accordance with the original argument of Thomas. The reformulated theory also o�ers a

new interpretation of zitterbewegung and Bohm’s quantum potential.

F

ρ S

□
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The geometric algebra of spacetime is the best available mathematical tool for theoretical physics,

classical, relativistic or quantum. The rede�ned Dirac operator, i.e. the spacetime gradient operator is

equally applicable in the formulation of �eld theoretic studies of both electromagnetism and �uid

mechanics, as discussed extensively in two recent papers[8]. According to Baylis ‘Had the

electrodynamics and relativity of Maxwell and Einstein been originally formulated in algebra of

physical space (APS – geometric algebra of  -D), the transition to quantum theory would have been

less of a quantum leap’[28]. Unfortunately though, mainstream physics is yet to appreciate and

embrace this development fully. Apart from the historical reasons, it appears that the introduction

needs a more familiar and nonaxiomatic direct approach for the research and advanced graduate

students.
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