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1. ByteDance Research

We introduce Tarsier2, a state-of-the-art large vision-language model (LVLM) designed for generating

detailed and accurate video descriptions, while also exhibiting superior general video understanding

capabilities. Tarsier2 achieves signi�cant advancements through three key upgrades: (1) Scaling pre-

training data from 11M to 40M video-text pairs, enriching both volume and diversity; (2) Performing �ne-

grained temporal alignment during supervised �ne-tuning; (3) Using model-based sampling to

automatically construct preference data and applying DPO training for optimization. Extensive experiments

show that Tarsier2-7B consistently outperforms leading proprietary models, including GPT-4o and Gemini

1.5 Pro, in detailed video description tasks. On the DREAM-1K benchmark, Tarsier2-7B improves F1 by

2.8% over GPT-4o and 5.8% over Gemini-1.5-Pro. In human side-by-side evaluations, Tarsier2-7B shows

a +8.6% performance advantage over GPT-4o and +24.9% over Gemini-1.5-Pro. Tarsier2-7B also sets new

state-of-the-art results across 15 public benchmarks, spanning tasks such as video question-answering,

video grounding, hallucination test, and embodied question-answering, demonstrating its versatility as a

robust generalist vision-language model.

Corresponding author: Yuan Lin, linyuan.0@bytedance.com

1. Introduction

With the rapid advancements in large vision-language models (LVLM)[1][2][3][4][5][6], signi�cant progress

has also been made in video understanding. Leading proprietary models, such as GPT-4o[7] and Gemini-1.5-

Pro[8], have achieved state-of-the-art (SOTA) performance across a variety of video understanding tasks.

Additionally, several open-source models[3][9][10][11][12][13][10]  also demonstrate strong performance on

several video understanding benchmarks[14][15][16][17][18], although they still lag behind proprietary models,
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particularly in complex, open-ended generation tasks. Despite these advancements, current models remain

behind human-level video understanding[19][20][21], mainly due to persistent challenges such as accurately

perceiving temporal dynamics, spatial-temporal reasoning, and model hallucinations.

In this paper, we introduce Tarsier2, a 7B-parameter LVLM model that can outperform both GPT-4o and

Gemini-1.5-Pro in generating detailed video descriptions, a fundamental challenge in video understanding.

Beyond video description generation, Tarsier2 also achieves SOTA performance across various video

question-answering (VQA) benchmarks at the same model size, surpassing or closely matching the

performance of proprietary models on these VQA benchmarks. Figure  1 provides a comprehensive

comparison between Tarsier2, GPT-4o and previous SOTA results for open-source LVLMs with the same

scale. Figure  2 presents examples illustrating Tarsier2’s video understanding capability across di�erent

tasks.
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Figure 1. Performance comparison of Tarsier2 with previous SOTA models at 7B-scale and GPT-4o. We report

the overall average scores for benchmarks with multiple subtasks/metrics.

Benchmark Previous SOTA

DREAM-1K[5] Tarsier-7B[5]

MVBench[15] InternVL2.5-8B[12]

TVBench[14] IXC-2.5 7B[22]

TOMATO[23] Qwen2-VL-7B[6]
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Vinoground[24] LLaVA-OV-7B[13]

TempCompass[25] Qwen2-VL-7B[6]

Video-MME[26] NVILA-7B[27]

LongVideoBench[28] Apollo-7B[29]

TemporalBench[30] LLaVA-Video-7B[31]

MLVU[18] InternVL2.5-8B[12]

MMBench-Video[32] MiniCPM-V-2.6[33]

VideoHallucer[17] Qwen2-VL-7B[6]

EventHallusion[34] Tarsier-7B[5]

E.T. Bench[16] E.T. Chat[16]
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Figure 2. Overview of Tarsier2 capabilities. Based on its strong ability for detailed video description, Tarsier2

excels in a variety of video-centric tasks. Click the play buttons to view the videos.
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Tarsier2 employs a simple model architecture consisting of a vision encoder, a vision adaptor, and a large

language model (LLM). We meticulously design a three-stage training procedure: pre-training, supervised

�ne-tuning (SFT), and reinforcement learning (RL). In comparison with Tarsier[5], Tarsier2 features several

key improvements that signi�cantly enhance its performance:

We scale up the pre-training dataset from 11 million to 40 million video-text pairs, addressing the

challenge posed by the scarcity of high-quality video-text data. To achieve this, we implement meticulous

�ltering and sourcing. Speci�cally, we collect 11 million commentary videos, featuring explanations and

analyses of movies and TV shows, providing rich contextual information to greatly enhance video

understanding. Our experiments con�rm that increasing the volume of pre-training data consistently

improves model performance.

We construct a video description dataset containing 150K instances, each including a detailed video

description along with the speci�c frames corresponding to each event described. During the SFT stage,

we involve this dataset to provide the model with supervision on temporal �ne-grained alignment.

Experimental results show that, compared with traditional video-caption alignment training, this

approach signi�cantly improves accuracy in video description and reduces the hallucinations.

To further enhance model performance, we use the model to generate samples that automatically

construct preference data for DPO training[35]. To ensure high-quality preference data, we propose two

methods: a negative sampling technique that uses corrupted videos to generate negative samples for

preference pairs, and a preference data �ltering method that employs AutoDQ[5] to automatically �lter out

pairs with minimal di�erences. Our experiments show that DPO training on these automatically generated

preference data leads to continued performance improvements over the SFT stage.

We conduct extensive experiments to evaluate Tarsier2 against both proprietary and open-source LVLMs. For

video description, Tarsier2 outperforms all other models, surpassing both proprietary and open-source

LVLMs in evaluations on DREAM-1K[5]  and E.T. Bench-Captioning[16]. In human side-by-side evaluations,

Tarsier2-7B shows a +7.8% improvement over GPT-4o and a +12.3% advantage over Gemini-1.5-Pro. It also

signi�cantly outperforms the leading open-source model, Tarsier-34B, with a +51.4% advantage.

Furthermore, Tarsier2-7B proves to be a versatile generalist model, setting new SOTA results on public

benchmarks for video question-answering[14][23][24], hallucination test[34], video grounding[16]  and

embodied QA[36]. Finally, we present extensive ablation studies to identify the key factors contributing to the

model’s strong performance. We also release a recaptioning dataset, Tarsier2-Recap-585K, and demonstrate

its e�ectiveness in enhancing the capabilities of existing LVLMs for video description and general video

understanding.
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2. Related Work

Video-LLMs

Recently, research on Video LLMs has surged[2][37][38][39][3][40][41][9][11][4][31][6][42][43][44][45][12][29], with

e�orts focusing on model architectures and video-text data collection. On the architecture side, current

studies emphasize visual representation[9][6][29], visual token resampling[9][12][46][47], and the integration

of Vision Transformers (ViT) with LLMs[6][48][49][50]. Tarsier2 adopts a simple architecture composed of a

visual encoder, a visual adaptor, and an LLM. Despite its simplicity, we demonstrate that a meticulously

designed training strategy enables Tarsier2 to achieve strong video understanding capabilities.

In terms of video-text data, while many e�orts aim to collect datasets for training Video LLMs, their quantity

and quality remain limited. For example, LLaVA-Video[31] is trained on just 1.3 million video-text pairs, and

several open-source models, such as InternVL2.5[12], Aria[42], and VILA-1.5[4], are trained on fewer than 5

million pairs. Although larger datasets like HowTo100M[51], HD-VILA[52], Panda-70M[53], and InternVid-

10M[54]  exist, they either cover limited domains or contain overly simplistic or low-quality text.

Furthermore, some studies do not disclose the volume of video data used[6][29][43][42].

To address these challenges, our work focuses on improving the quantity and quality of video-text data. We

newly collected 20 million video-text pairs, spanning a wide range of video genres. In total, 40 million pairs

are used in the �nal pre-training stage. Additionally, we annotated 150K �ne-grained video descriptions for

the SFT stage.

Video Description

Video description, a foundational task in video understanding, has long been a central focus of research. Early

work[55][56][57]  typically involved pre-training video-language models and �ne-tuning them on datasets

such as MSVD[58], MSR-VTT[59], and VATEX[60], which provide single-sentence video summaries.

Recent advancements in LVLMs have improved video description, enabling more detailed outputs beyond

simple summarization. However, generating comprehensive video descriptions presents challenges beyond

model architecture. While multi-frame processing and temporal modeling are crucial, large-scale and rich

annotated ¡video, description¿ datasets are equally important. Existing alignment datasets, such as HD-

VILA[52] and HoTo100M[51], provide concise descriptions, limiting detailed video understanding. To address

this, datasets such as ShareGPT4Video[61]  uses a pipeline where LVLMs (e.g., GPT-V[62]) annotate frames,

and LLMs (e.g., GPT-4[63]) aggregate them. This improves detail but often leads to verbosity and
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hallucinations. Recent works[31][64] uses proprietary Video-LLMs, such as GPT-4o[7] and Gemini-1.5[8], for

annotation, but their high cost limits application to smaller datasets.

For Tarsier2, we collect a large dataset of video-text pairs. In particular, we automatically build meaningful

video-text pairs from online commentary videos. These commentaries include both low-level (atomic

actions) and high-level (plot) visual elements, enhancing the model’s understanding across various

granularity. In addition to data collection, Tarsier2  also uses a meticulously designed three-stage training

process, where DPO training after SFT further re�nes description accuracy and detail.

3. Approach

We initialized Tarsier with Qwen2-VL[6] weights and employed a three-stage training strategy. First, we pre-

trained Tarsier2 on 40 million large-scale video-text pairs. Next, we �ne-tuned the model on moderate-

sized, curated, human-annotated datasets in two phases: one targeting video descriptions with �ne-grained

grounding and the other focusing on natural, instruction-following video descriptions. Finally, we applied

Direct Preference Optimization[35]  using automatically generated preference data to further enhance the

quality of the video descriptions. The training process is detailed below; for a comprehensive list of hyper-

parameters, please refer to Appendix A.

3.1. Pre-training

The pre-training stage encompasses a variety of tasks, including video captioning, video question answering,

action recognition, action grounding, (multi-)image understanding, and text generation. The training data

consists of 20 million public datasets and 20 million newly collected in-house datasets. Figure 3 illustrates

the composition of the pre-training data, with a detailed breakdown presented in Appendix B. Our �ndings

indicate that the in-house data signi�cantly enhances model’s performance, complementing the public

datasets. In the following, we describe the pipeline used for in-house data collection.
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Figure 3. Summary of datasets used in the pre-training stage of Tarsier2.

We collected a large group of videos from the Internet, spanning diverse genres such as animation, movies,

TV series, short videos, stock footage, games and so on. The videos are categorized into three types:

Short videos with captions. This category consists of 2.4 million videos directly sourced from the Internet,

preserving their original video-caption pairs.

Commentary videos for movies or TV shows. The videos were segmented into single-shot clips using

PySceneDetect1. A �ltering model removed static or low-quality clips. Adjacent clips were then merged to

create continuous segments, ensuring �nal video durations ranged from 2 to 30 seconds. We utilized an

internal OCR tool to extract the commentary text from the video and use it as the caption. The areas

containing the commentary text in the video were obscured. To ensure relevance, we trained a lightweight

BERT-style[65] model to �lter out clips where the commentary lacked direct visual correspondence (e.g.,

character dialogues). This process produced 11.0 million video clips.
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Other videos. These videos were processed similarly to the commentary videos, undergoing segmentation

into shorter clips, �ltering out low-quality clips, and merging adjacent clips. After this, we employed a

multi-modal LLM to automatically generate video captions and question-answer pairs, resulting in a total

of 2.7 million clips.

Commentary videos represent a signi�cant portion of the pre-training data. Unlike traditional video-text

datasets, such as HowTo100M[51], which rely on ASR transcripts, commentary data demonstrates stronger

alignment between video and text. This commentary not only describes low-level visual elements, such as

atomic actions, but also highlights high-level information like plot details. This type of data can substantially

enhance the model’s visual understanding at varying levels of granularity.

In addition to video caption data, we incorporate large-scale synthetic datasets for tasks such as object

tracking, frame order prediction, image retrieval, video question-answering, and image captioning during

pre-training.

Overall, our pre-training dataset consists of 40 million samples. We trained Tarsier2 on this dataset using 128

H100 GPUs, with all components of Tarsier2 set to be trainable. For each video, we sampled between 16 and

128 frames, depending on its duration. In total, the pre-training stage of Tarsier2 processed approximately

200 billion tokens.

3.2. Supervised �ne-tuning

During the SFT phase, our primary objectives are to further improve the model’s accuracy and

comprehensiveness in video descriptions and ensure the outputs are human-like: well-structured,

appropriately detailed, and capable of generating accurate long-form descriptions. To achieve this, we

collected 150K video clips and conducted SFT in two stages.

Figure 4. An example of a video description with �ne-grained temporal grounding. “ frame:  - ” indicates

that the following event is inferred from frames   to  . Events are distinguished by color, with corresponding

frames and descriptions marked in the same color to indicate their association.

< i j >

i j
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In the �rst stage, each video clip in the SFT dataset is annotated with a detailed description with �ne-grained

temporal grounding. As shown in Figure 4, the annotations specify the frames corresponding to each event in

the description. The annotation process is detailed in Appendix C. This �ne-grained frame-event alignment

enhances the model’s ability to accurately identify and describe events by focusing on temporal and visual

cues, complementing traditional video-caption alignment. Our experiments demonstrate that this approach

mitigates the omission of key events in generated video descriptions.

In the second stage of SFT, we re�ned the model’s output to achieve a more human-like style. We observed

that the data used in the initial stage of SFT often fragmented complete events into multiple steps due to

event-grounding requirements. For instance, the action of pouring wine might be divided into steps like

opening the bottle, lifting it, and pouring. To address this, we incorporated more natural and human-like

video description data. Speci�cally, in this stage, we designed diverse description instructions to re�ect real-

world variations in language, granularity, and style requirements. We then annotated each video’s

description to align with its corresponding instruction, as detailed in Appendix  C. This data allowed the

model to better interpret varying instructions and generate more accurate and diverse video descriptions.

The training data for SFT-1 contains 150k video description pairs, while SFT-2 comprises 50k diverse

instructions and 150k re�ned video-description pairs. Each pair includes a video description aligned with one

of the instructions. We trained Tarsier2 on this dataset using 32 H100 GPUs and set all components of

Tarsier2 to trainable. For each video, we sampled 16 frames for training. The global training batch size was

set to 64, and Tarsier2 was trained for 5000 iterations in each of the two phases. In addition, we used 2e-5

and 2e-6 as the learning rate of the model during the two-stage SFT respectively to obtain further

performance improvement.

3.3. Direct Preference Optimization

In this subsection, we introduce a novel automated method for collecting preference data for video

description. By performing DPO[35]  training on this data, we can further improve the model’s ability to

generate high-quality, detailed video descriptions.

Negative sampling

Existing works often conduct multiple times sampling on the same input (video and text prompt) to acquire

preference pair candidates[66][67][68]. In practice, however, we found that 1) Low-temperature sampling

produces minimal variation in responses; 2) High-temperature sampling often leads to uncontrollable or

abnormal generations. To address these issues, we propose a new automated preference data collection

approach that enhances controllability and consistently yields high-quality preference data.
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In reinforcement learning (RL) terms, the VLM serves as a policy model  , typically initialized from the SFT

model. Given an input prompt  , consisting of    frames sampled from a video,    generates an video

description  . Then, the video frames are modi�ed to produce a corrupted prompt    through one of the

following perturbations:

Clip-switching: Evenly divide the video into 4 clips, then randomly choose 2 clips and swap their order.

Clip-reversing: A random clip with   frames is reversed.

Clip-cropping:   frames are resampled from a random clip with half of the video’s original duration.

Down-sampling: Half of the   frames are randomly dropped.

The corrupted prompt    is input into  , generating a new description  . The resulting preference data is

represented as  . The �rst two perturbations are designed to induce negative descriptions

with temporal errors, while the latter two are designed to induce incomplete descriptions. Consequently,

through DPO training, the model can be enhanced to produce descriptions with improved accuracy and

completeness.

Figure 5. Preference data construction pipeline for DPO training.

Figure  5 provides an example to illustrate the preference data construction pipeline. From a raw video, we

�rst generate a positive response using the current model. Next, a corrupted video, created through clip-

switching, is fed into the model to obtain a negative sample, which contains two hallucinations (highlighted

in red).

πθ

x N πθ

y x~

∼ NN

2

N

N

x~ πθ y~

{x, = y, = }yw yl y~
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Preference data �ltering

Given a prompt  , response    is generally more negative compared to  . However, an e�ective �lter

mechanism for valid preference data remains essential, as   is not always strictly worse than  2. As shown on

the right side of Figure  5, we utilize AutoDQ[5], an automatic method for evaluating the quality of video

description, using two metrics,   and  3. A preference pair    is considered valid if

the following conditions are met:

where   and   denotes the di�erence of AutoDQ recall and precision scores between the   and  . 

 serves as an adjustable threshold to �ne-tune the �ltering criteria.

During the DPO training phase, we utilize videos from the same training dataset,  , as in the SFT phase, to

construct preference data. The policy model is then optimized by minimizing the DPO loss, expressed as:

where   denotes the model obtained during the SFT phase.

We conducted DPO training on a dataset with 20k preference pairs produced by the above data collection

approach, with all parameters set to be trainable. For each video, we sample 16 frames as same as the SFT

phase. We trained Tarsier2 for 1,000 steps in total with 64 H100 GPUs and each GPU loaded one pair at each

training step, resulting in a global batch size of 64. See Appendix D for more details of DPO training.

4. Experiments

In this section, we �rst evaluate the model’s performance on various video understanding benchmarks,

comparing it to several baselines. We highlight Tarsier2’s advantages not only in video description but also

across other video understanding tasks. We then present an ablation study to examine key components of our

approach.

4.1. Quantitative Results

4.1.1. Video Captioning

We evaluate Tarsier2 on two video captioning benchmarks: DREAM-1K[5]  and E.T. Bench-Captioning[16].

DREAM-1K is a detailed video description benchmark featuring dynamic and diverse videos, assessing the

model’s ability to describe �ne-grained actions and events. E.T Bench-Captioning is composed of four dense

x y~ y

y~ y

DQR DQP {x, = y, = }yw yl y~

ΔD ≥ 0 and ΔD ≥ 0 and ΔD + ΔD ≥ δ,QR QP QR QP (1)

ΔDQR ΔDQP y0 y1

δ

D

= − [logσ(β log − β log )] ,LDPO E(x, , )∼Dyw yl

( |x)πθ yw

( |x)πref yw

( |x)πθ yl

( |x)πref yl
(2)

πref
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video captioning tasks, requiring key event localization and summary generation for segments in long-form

videos.
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Model

Video Categories

Overall

Live-action Animation Stock YouTube Shorts

Proprietary models

GPT-4V[62] 34.8/39.2/31.3 27.4/31.9/24.0 40.7/46.7/36.1 33.8/40.1/29.2 34.8/46.1/28.0 34.4/40.8/29.7

GPT-4o[7] 39.8/42.1/37.8 35.8/39.1/33.1 44.0/46.6/41.7 35.9/41.5/31.7 39.9/47.9/34.2 39.2/43.4/35.7

Gemini-1.5-

Flash[8]
34.8/36.4/33.3 29.2/32.5/26.5 39.4/39.7/39.1 34.3/38.6/30.9 35.6/42.4/30.7 34.8/37.9/32.1

Gemini-1.5-Pro[8] 36.4/36.4/36.4 30.7/31.8/29.7 42.2/40.7/43.8 34.0/36.7/31.6 37.0/42.4/32.7 36.2/37.6/34.8

Open-source models ( 10B)

PLLaVA-34B[9] 29.3/34.9/25.2 20.9/32.0/15.6 35.1/42.5/29.9 28.9/40.8/22.3 25.6/41.9/18.4 28.2/38.4/22.3

VideoLLaMA2-

72B[10]
27.3/29.3/25.6 19.7/21.7/18.1 33.9/37.0/31.3 27.7/33.0/23.8 26.5/33.1/22.1 27.1/30.8/24.2

LLaVA-OV-72B[13] 31.7/32.8/30.7 27.7/30.6/25.2 38.0/39.6/36.6 34.1/34.7/33.5 33.8/41.8/28.4 33.2/35.9/30.9

LLaVA-Video-

72B[31]
33.5/36.3/31.1 28.6/31.7/26.1 39.3/41.1/37.6 32.8/34.7/31.1 35.7/42.8/30.6 34.0/37.3/31.3

Qwen2-VL-72B[6] 32.1/33.7/30.6 27.6/32.6/23.9 41.1/41.2/41.1 32.0/38.1/27.7 32.1/41.0/26.4 33.2/37.3/29.9

InternVL2.5-

78B[12]
25.3/31.5/21.1 21.8/28.8/17.6 33.5/38.1/29.9 31.0/38.5/25.9 31.1/41.7/24.8 28.6/35.7/23.9

Tarsier-34B[5] 38.5/39.6/37.5 32.2/35.8/29.2 41.7/46.4/37.8 34.5/41.1/29.7 34.0/44.1/27.7 36.3/41.4/32.4

Open-source models ( 10B)

Video-LLaVA-7B[3] 19.4/24.3/16.2 15.3/21.2/11.9 27.0/33.5/22.7 21.2/31.9/15.8 18.5/29.4/13.5 20.4/28.1/16.0

VideoLLaMA2-

7B[10]
25.1/28.7/22.2 20.4/25.5/17.0 32.6/35.5/30.2 27.5/33.5/23.4 24.5/34.1/19.2 26.2/31.5/22.4

LLaVA-OV-7B[13] 31.2/33.2/29.3 26.8/29.0/25.0 38.1/39.1/37.1 30.6/32.1/29.2 31.4/38.3/26.6 31.7/34.3/29.4

LLaVA-Video-

7B[31]
31.4/35.2/28.4 27.6/32.9/23.8 36.7/39.7/34.1 33.0/39.5/28.3 33.4/42.5/27.5 32.5/37.9/28.4

Qwen2-VL-7B[6] 27.7/32.5/24.2 22.2/28.0/18.4 37.0/36.1/38.0 30.7/35.5/27.0 29.1/37.6/23.8 29.6/33.9/26.3

InternVL2.5-8B[12] 26.6/32.0/22.8 21.3/28.9/16.9 32.7/37.2/29.1 27.9/35.4/23.0 28.9/39.9/22.7 27.6/34.7/22.9

>

<
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Model

Video Categories

Overall

Live-action Animation Stock YouTube Shorts

Tarsier-7B[5] 36.6/38.5/34.8 29.3/34.6/25.5 39.6/44.7/35.5 33.0/39.2/28.4 33.6/44.6/26.9 34.6/40.3/30.2

Tarsier2-7B 44.4/41.9/47.3 39.3/39.5/39.1 45.7/45.4/46.0 36.0/38.4/33.9 43.7/48.9/39.4 42.0/42.8/41.1

Table 1. Evaluation results on DREAM-1K. We report F1/Precision/Recall scores for each category and for the

overall dataset. For open-source models, all results are tested with their o�cial checkpoint and inference code

under recommended setting. SOTA results of comparable scale ( 10B) are bolded and overall best results are

underlined.

As shown in Table 1, Tarsier2-7B outperforms all open-source models in both precision and recall across all

categories in DREAM-1K, demonstrating its ability to generate more comprehensive and less hallucinatory

video descriptions. Notably, Tarsier2-7B achieved an overall F1 score of 42.0%, surpassing the strongest

proprietary model, GPT-4o (39.2%). It is also the �rst model to exceed a 40% overall recall score,

highlighting its sensitivity to dynamic actions and events.

Figure 6. Human side-by-side evaluation results of Tarsier2 versus other models.

<
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Figure 6 further presents the human side-by-side evaluation results of Tarsier2 versus the previous SOTA

Tarsier-34B and two strong proprietary models, GPT-4o and Gemini 1.5 Pro. We randomly sampled 250

videos (50 videos for each category) from DREAM-1K, and asked experienced annotators to compare the

descriptions generated by two di�erent models, collecting their preferences. Each pair of descriptions was

randomly shu�ed to ensure that the annotators were blind to the description sources. Compared to Tarsier-

34B, Tarsier2 has a slightly negative advantage rate (15.8%), but wins in a signi�cant percentage of cases

(42.8%). Compared to Gemini, Tarsier2 still maintains a signi�cant advantage (45.6% vs 20.7%). Despite

being tied with the strongest proprietary model, GPT-4o, on 40% cases, Tarsier2 still gains a slight

advantage (8.6%), demonstrating the outstanding performance of Tarsier2 in detailed video description. For

a comparison of generated descriptions from di�erent models on DREAM-1K, see Appendix H.

Table 2 shows the evaluation results of dense video captioning on E.T. Bench-Captioning. Tarsier2-7B

outperforms all open-source models with comparable settings (similar model scale, �ne-tuned on E.T.

Instruct 164K[16]) across all metrics, except for the SLCF1 score, which is slightly lower than Qwen2-VL-7B

(24.6% vs 25.7%). These results highlight Tarsier2’s strengths in generating �ne-grained descriptions for

short videos and providing coarse-grained summaries for long videos.

qeios.com doi.org/10.32388/X26ILU 17

https://www.qeios.com/
https://doi.org/10.32388/X26ILU


Model

E.T. Bench-Captioning[16]

DVCF1 DVCSim SLCF1 SLCSim AvgF1 AvgSim

Proprietary models

GPT-4V[62] 16.1 19.4 21.9 13.5 19.0 16.4

GPT-4o[7] 46.9 22.3 23.1 14.9 35.0 18.6

Gemini-1.5-Flash[8] 31.6 14.9 16.5 13.3 24.1 14.1

Gemini-1.5-Pro[8] 24.0 17.5 5.8 9.8 14.9 13.7

Open-source models ( 10B)

PLLaVA-34B[9] 13.3 10.6 9.7 11.8 11.5 11.2

LLaVA-OV-72B[13] 41.9 16.3 25.6 13.9 33.8 15.1

LLaVA-Video-72B[31] 37.0 15.7 20.4 13.5 28.7 14.6

Qwen2-VL-72B[6] 15.3 13.9 11.0 12.8 13.2 13.4

Open-source models ( 10B)

VideoLLaMA2-7B[10] 0.6 14.5 0.0 15.2 0.3 14.8

Video-LLaVA-7B[3] 28.0 15.0 0.9 8.3 14.4 11.7

LLaVA-OV-7B[13] 22.0 15.1 9.5 10.6 15.8 12.8

LLaVA-Video-7B[31] 20.6 14.7 6.5 13.4 13.6 14.1

E.T. Chat[16]† 38.4 19.7 24.4 14.6 31.4 17.1

Qwen2-VL-7B[6]† 44.3 25.3 25.7 15.6 35.0 20.4

Tarsier-7B[5]† 42.8 19.1 23.7 15.2 33.2 17.1

Tarsier2-7B† 46.5 28.8 24.6 16.4 35.5 22.6

Table 2. Evaluation results on E.T. Bench-Captioning. Results marked in gray(italics) are tested on a subset. 

 denotes the model is �ne-tuned on E.T. Instruct 164K. All results are transcribed from the o�cial benchmark,

except for LLaVA-OV, LLaVA-Video and Qwen2-VL, which are our evaluation using the o�cial checkpoint and

inference code.

>

≤

†
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4.1.2. Short-Video Question Answering

Model
MVBench[15] PerceptionTest[20] TVBench[14] TOMATO[23] Vinoground[24] TempCompass[25]

test val test test Text/Video/Group mc/yn/cm/cg

Proprietary models

GPT-4o[7] 57.5 - 39.6 37.7 54.0/38.2/24.6 71.0/73.7/80.8/70.8

Gemini-

1.5-Pro[8]
- - 46.5 36.1 35.8/22.6/10.2 63.9/70.3/77.5/57.9

Open-source models (>10B)

LLaVA-

OV-72B[13]
59.4 66.9 45.9 28.6 48.4/35.2/21.8 67.6/72.6/78.2/52.6

LLaVA-

Video-

72B[31]

64.1 74.3* 50.0 28.2 52.0/35.6/20.8 69.9/73.0/80.9/54.4

Qwen2-

VL-72B[6]
73.6 66.5 52.7 37.9 50.4/32.6/17.4 76.0/75.9/84.6/58.6

Tarsier-

34B[5]
67.6 60.4 53.8 34.3 37.8/32.0/15.0 69.8/74.0/73.0/60.9

Open-source models (≤10B)

LLaVA-

OV-7B[13]
56.7 57.1 45.6 25.5 41.6/29.4/14.6 64.8/69.7/73.8/49.9

LLaVA-

Video-

7B[31]

58.6 67.9* 45.6 24.9 36.8/29.0/12.8 56.3/68.7/76.8/53.0

Qwen2-

VL-7B[6]
67.0 - 43.8 31.5 40.0/23.4/12.4 68.5/72.8/77.3/54.2

Tarsier-

7B[5]
62.6 53.9 45.8 28.6 29.8/22.2/8.6 58.7/58.0/54.2/55.3

Previous

SOTA
72.0[12] 70.0*[45] 51.6[22] 31.5[6] 41.6/29.4/14.6[11] 68.5/72.8/77.3/54.2[6]

qeios.com doi.org/10.32388/X26ILU 19

https://www.qeios.com/
https://doi.org/10.32388/X26ILU


Model
MVBench[15] PerceptionTest[20] TVBench[14] TOMATO[23] Vinoground[24] TempCompass[25]

test val test test Text/Video/Group mc/yn/cm/cg

Tarsier2-

7B
71.5 71.6* 54.7 42.0 65.8/38.0/28.8 75.3/75.1/80.6/66.6

Table 3. Evaluation results on short video question answering benchmarks. * indicates that the training set has

been observed in the training data mixture.

We evaluate Tarsier2-7B on several short-video question answering benchmarks to assess its ability to

comprehend and reason about visual content. As shown in Table 3, Tarsier2-7B outperforms both proprietary

and open-source models across various benchmarks, achieving state-of-the-art results. Tarsier2-7B

exhibits exceptional performance in MVBench[15]  and PerceptionTest[20], with scores of 71.5% and 71.6%,

respectively.

Furthermore, Tarsier2-7B demonstrates signi�cant performance improvements on benchmarks featuring

temporal reasoning, such as TVBench[14], TOMATO[23], and Vinoground[24]. Tarsier2-7B achieves strong

results with 54.7% on TVBench, 42.0% on TOMATO, and 65.8%/38.0%/28.8% on Vinoground’s

Text/Video/Group tasks, respectively. These results surpass both open-source and proprietary models,

including GPT-4o and Gemini-1.5-Pro.

At last, Tarsier2-7B also excels on the TempCompass benchmark[25], which evaluates temporal perception in

ten aspects and four task formats. Tarsier2-7B achieves impressive scores of 75.3%/75.1%/80.6%/66.6% on

TempCompass’ mc/yn/cm/cg tasks, respectively, outperforming both open-source models and larger

proprietary models in most cases. This performance further underscores Tarsier2’s advanced ability to

process and interpret temporal information in video content.
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4.1.3. Long-Video Question Answering

Model
Video-MME[26] LongVideoBench[28] TemporalBench[30] MLVU[18] MMBench-Video[32]

w/o subs val Binary Accuracy M-Avg val

Proprietary models

GPT-4o[7] 71.9 66.7 73.2 64.6 1.87

Gemini-1.5-Pro[8] 75.0 64.0 66.4 - 1.30

Open-source models (>10B)

VILA-1.5-40B[4] 60.1 - - 56.7 1.61

LLaVA-Video-72B[31] 70.5 61.9 72.4 74.4 1.71

Qwen2-VL-72B[6] 71.2 - 70.2 - 1.70

InternVL2.5-78B[12] 72.1 63.6 - 75.7 1.97

Tarsier-34B[5] 52.3 54.2 66.7 58.2 1.46

Open-source models (<=10B)

LLaVA-Video-7B[31] 63.3 58.2 63.6 70.8 1.60

Qwen2-VL-7B[6] 63.3 55.6 62.0 - 1.44

InternVL2.5-8B[12] 64.2 60.0 - 68.9 1.68

Tarsier-7B[5] 42.2 39.8 56.9 49.3 -

Previous SOTA 64.2[27] 60.0[12] 63.6[31] 70.9[29] 1.70[33]

Tarsier2-7B 64.5 (128f) 58.6 (128f) 65.3 (128f) 67.9 (256f) 1.82 (128f)

Table 4. Evaluation results on long-video question answering benchmarks. We list the number of frames used for

each benchmark during evaluating Tarsier2.

We evaluate Tarsier2 on long-video question answering benchmarks by uniformly sampling 128 or 256

frames, depending on the video length. Comparison results with other proprietary and open-source models

are presented in Table 4. Despite our training set not including many long video data, Tarsier2, compared
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with others under 10 billion parameters, still achieves SOTA on three benchmarks and competitive

performance on several other benchmarks.
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4.1.4. Hallucination

Model
VideoHallucer[17] EventHallusion[34]

Yes/No QA Yes/No QA Desc GPT

  Basic/Hallucinated/Overall Entire/Interleave/Misleading/Overall Entire/Interleave/Misleading/Overall

Proprietary models

GPT-4o[7] 75.1/74.2/53.3 65.8/90.7/92.2/84.1 34.9/54.9/83.2/56.2

Gemini-1.5-

Pro[8]
83.6/42.3/37.8 70.2/77.7/96.1/80.2 38.5/40.9/80.0/49.6

Open-Source models (>10B)

Qwen2-VL-

72B[6]
87.1/79.4/70.2 33.3/77.7/56.4/60.0 16.5/25.4/70.2/33.6

LLaVA-OV-

72B[13]
88.3/62.6/55.2 47.4/26.9/90.1/48.3 24.8/34.7/71.3/40.7

LLaVA-

Video-

72B[31]

88.2/73.5/64.6 57.9/11.9/96.0/45.6 32.1/35.8/75.5/44.2

InternVL2.5-

78B[12]
82.5/82.5/67.8 57.9/67.9/88.2/70.2 45.0/43.0/76.8/51.6

Tarsier-

34B[5]
84.8/80.0/67.7 49.1/92.7/69.6/74.8 38.5/40.4/83.2/50.1

Open-Source models (≤10B)

LLaVA-OV-

7B[13]
81.1/69.6/53.8 46.5/67.4/86.1/66.2 22.0/26.4/73.4/36.4

LLaVA-

Video-7B[31]
82.4/70.6/56.0 61.4/48.7/96.0/64.0 27.5/32.6/75.5/41.4

Qwen2-VL-

7B[6]
85.0/70.8/59.3 35.1/94.3/57.4/68.6 14.7/16.1/67.0/27.8

InternVL2.5-

8B[12]
72.7/78.3/53.6 46.5/69.2/90.2/68.2 23.9/20.7/60.0/31.0
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Model
VideoHallucer[17] EventHallusion[34]

Yes/No QA Yes/No QA Desc GPT

  Basic/Hallucinated/Overall Entire/Interleave/Misleading/Overall Entire/Interleave/Misleading/Overall

Tarsier-

7B[5]
76.4/60.8/41.4 43.9/82.4/79.4/70.9 35.8/29.5/72.6/41.6

Tarsier2-7B 86.5/78.3/67.0 60.5/93.3/95.1/84.6 54.6/53.1/93.7/63.3

Table 5. Evaluation results on hallucination benchmarks.

We evaluate Tarsier2 on two video hallucination benchmarks: VideoHallucer[17] and EventHallusion[34]. The

results are summarized in Table 5. For VideoHallucer, Tarsier2-7B achieves an overall score of 67.0%,

outperforming all comparable baselines of similar model scale and even proprietary models like GPT-4o and

Gemini-1.5-pro. In EventHallusion, for video question-answering task, Tarsier2-7B achieves 84.6%,

surpassing GPT-4o’s score of 84.1%, while outperforming all other baselines. For the detailed description

matching task, which directly assesses video description hallucinations by prompting GPT-4 to answer

questions based on each model’s generated video description, Tarsier2-7B demonstrates superior

performance, even surpassing GPT-4o by 7.1% in terms of Overall score.
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4.1.5. Video Grounding

Model
E.T. Bench-Grounding[16]

TVGF1 EPMF1 TALF1 EVSF1 VHDF1 MeanF1

Proprietary models

GPT-4V[62] 27.0 1.8 18.0 28.6 55.1 26.1

GPT-4o[7] 40.4 4.5 20.0 17.6 56.9 27.9

Gemini-1.5-Flash[8] 43.9 5.4 27.0 5.4 60.8 28.5

Gemini-1.5-Pro[8] 43.1 6.2 33.8 7.9 47.0 27.6

Open-source models ( 10B)

LITA[69] 22.2 4.6 18.0 29.7 23.9 19.7

VTG-LLM[70] 15.9 3.7 14.4 26.8 48.2 21.8

TimeChat[71]† - - - - - 24.3

E.T. Chat[16]† 38.6 10.2 30.8 25.4 62.5 33.5

Tarsier-7B[5]† 39.6 9.0 25.0 25.4 47.6 30.9

Qwen2-VL-7B[6]† 39.7 7.0 26.9 17.1 66.9 33.5

Tarsier2-7B† 38.4 11.0 31.8 19.4 66.8 35.5

Table 6. Evaluation results on E.T. Bench-Grounding. Results marked in gray(italics) are tested on a subset. 

 denotes the model is �ne-tuned on E.T. Instruct 164K.

We evaluate the video grounding capability of models on E.T. Bench-Grounding, which combines various

grounding tasks from multiple datasets, including QVHighlights[72], Charades-STA[73], THUMOS’14[74], and

Ego4D-NLQ[75], among others. The results, shown in Table 6, indicate that Tarsier2-7B achieves the highest

mean F1 score of 35.5%, outperforming all baselines and highlighting its superior temporal perception

capabilities.

<

†
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4.1.6. Embodied Question Answering

Model

EgoTaskQA

Model

RoboVQA

Model

OpenEQA

Exact Match BLEU-1/2/3/4 GPT-4

Human 80.0 LLaMA-AdapterV2[76] 27.8/16.0/10.9/8.1 Human 86.8

HCRN[77] 42.2 LLaVA-OV-7B[13] 38.1/33.6/31.8/31.0 GPT-4V[62] 55.3

GF[78] 44.3 RoboMamba[79] 54.9/44.2/39.5/36.3 Gemini-1.5-Pro[8] 44.9

EgoVLPv2[80] 46.3 MLCD[81] 73.2/66.4/60.6/56.6 MLCD[81] 48.8

Tarsier2 77.5 Tarsier2 77.1/67.4/61.5/56.8 Tarsier2 58.7

Table 7. Evaluation results on embodied question-answering tasks, including EgoTaskQA, RoboVQA and OpenEQA.

We evaluate Tarsier2 on embodied question answering to assess its performance in real-world robotic

scenarios, using three benchmarks: EgoTaskQA[82], RoboVQA[36], and OpenEQA[83]. To align with the

baselines, Tarsier2 is �ne-tuned on the training sets for EgoTaskQA and RoboVQA, while for OpenEQA, it is

evaluated in a zero-shot setting. The results, presented in Table 7, include exact match accuracy for

EgoTaskQA, BLEU score for RoboVQA, and the correctness score evaluated by GPT-4-1106-preview[63]  for

OpenEQA. Tarsier2 achieves top-tier performance across all three benchmarks, outperforming both

generalist and specialist models. Notably, on EgoTaskQA, its performance approaches human-level accuracy,

highlighting the model’s signi�cant potential in embodied intelligence.

4.2. Ablation Study

We conduct a comprehensive ablation study to evaluate key components at di�erent stages of the training

process. The study is based on three tasks: 1) Caption: This includes the DREAM-1K dataset, the caption

generation task from TempCompass (TempCompass-cg), and the caption matching task from Vinoground

(Vinoground-Text) to assess captioning performance. 2) Video QA: This encompasses short-video QA,

measured by the average accuracy on MVBench, TVBench, and TOMATO, and long-video QA, measured by the

average accuracy on Video-MME, LongVideoBench, and TemporalBench. It evaluates the model’s video

understanding capabilities. 3) Hallucination: We use the average score of two sub-tasks from EventHallusion
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to assess hallucination in the model. The following subsections present the results for each task, with

detailed results for individual datasets provided in the Appendix E.

4.2.1. Pre-training

Model

Caption Video QA

Hallucination

DREAM-1K TempCompass-cg Vinoground-Text Short           Long              

Tarsier1-7B 34.6                  55.3 29.8 45.6 46.3 56.3

Tarsier1-7B-Qwen

upgrading model
38.4 ( 3.8) 59.3 ( 4.0) 48.6 ( 18.8) 52.4 ( 6.8) 57.6 ( 11.3) 62.1 ( 5.8)

Tarsier2-7B

upgrading model+data
40.8 ( 6.2) 60.1 ( 4.8) 60.2 ( 30.4) 55.3 ( 9.7) 64.1 ( 17.8) 63.5 ( 7.2)

Table 8. Results of the ablation study for pre-training. Tarsier1-7b-Qwen stands for the model where the base

model is upgraded to Qwen2-VL, while the pre-training dataset remains the same as Tarsier1. Tarsier2 is trained

from Qwen2-VL with an expanded pre-training dataset, growing from 13 million in Tarsier1 to 40 million samples.

In this section, we evaluate the impact of several factors during pre-training, including the base model, pre-

training data and training steps. For the caption task, we report results after the SFT stage, which aligns the

model’s responses with the desired style. For other tasks, we report results after pre-training stage.

Compared to Tarsier1, two key improvements are made in the pre-training phase: upgrading the base model

to Qwen2-VL and expanding the training dataset from 13 million to 40 million samples. Table 8 illustrates the

additive contributions for each improvement, showing that both enhancements consistently and

signi�cantly boost the model’s performance in caption generation, video QA, and hallucination reduction.

Speci�cally, these enhancements lead to accuracy improvements of 9.7%, 17.8%, and 7.2% for short-video

QA, long-video QA, and hallucination tests, respectively. For video description, the F1 score on the DREAM-

1K dataset improves by 6.2%.

↑ ↑ ↑ ↑ ↑ ↑

↑ ↑ ↑ ↑ ↑ ↑
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Figure 7. Model performance against training tokens. The results at the initial step re�ect the

performance of Qwen2-VL-7B.4

To better understand the e�ect of the number of training tokens on pre-training performance, we plot the

model’s performance as a function of token count during the pre-training stage, as shown in Figure 7. The

results show that model performance improves with an increase in the number of training tokens, reaching

convergence after 160 billion tokens. This suggests that a large volume of data is essential for optimal video

understanding performance.
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4.2.2. SFT

Model

Caption Video QA

Hallucination

DREAM-1K TempCompass-cg Vinoground-Text Short Long

Tarsier2-7B-SFT 40.8             60.1 60.2 56.2             63.2             71.9

w/o SFT 35.2 ( 5.6) 50.5 ( 9.6) 57.2 ( 3.0) 55.3 ( 0.9) 64.1 ( 0.9) 63.5 ( 8.4)

w/o grounding 37.4 ( 3.4) 50.2 ( 9.9) 60.6 ( 0.4) 55.9 ( 0.3) 61.9 ( 1.3) 68.6 ( 3.3)

Table 9. Ablation study of temporal grounding dataset during the SFT phase. Tarsier2- 7B-SFT refers to the model

after the SFT phase. w/o SFT refers to the model after pre- training; w/o grounding refers to the model �ne-tinued

without grounding information

The key factor in the SFT phase is �ne-grained alignment. To investigate its impact, we conduct an ablation

study, with the results presented in Table  9. When the video description data, which includes �ne-grained

temporal grounding information, is excluded (i.e., without grounding), model performance signi�cantly

deteriorates. Speci�cally, the F1 score on DREAM-1K decreases by 3.4%, accuracy on TempCompass-cg drops

by 9.9%, accuracy on long-video QA falls by 1.3%, and accuracy on the hallucination test declines by 3.3%.

Furthermore, the SFT phase leads to substantial improvements, highlighting the importance of high-quality

manually labeled data. It boosts the F1 score on DREAM-1K by 5.6%, accuracy on TempCompass-cg by 9.6%,

accuracy on Vinoground-Text by 3.0%, and accuracy on the hallucination test by 8.4%, demonstrating the

SFT phase’s role in enhancing the model’s �ne-grained video understanding and mitigating hallucinations.

↓ ↓ ↓ ↓ ↑ ↓

↓ ↓ ↑ ↓ ↓ ↓
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4.2.3. DPO

Model

Caption Video QA

Hallucination

DREAM-1K TempCompass-cg Vinoground-Text Short Long

Tarsier2-7B 42.0            66.6 65.8 56.1             62.8             74.0

w/o DPO 40.8 ( 1.2) 62.1 ( 6.5) 60.6 ( 5.6) 56.2 ( 0.1) 63.2 ( 0.4) 71.9 ( 2.1)

w/o NS 41.5 ( 0.5) 61.1 ( 5.5) 59.8 ( 6.0) 56.1 ( 0.0) 62.8 ( 0.0) 72.9 ( 1.1)

w/o PF 40.5 ( 1.5) 65.1 ( 1.5) 67.6 ( 1.8) 56.0 ( 0.1) 62.3 ( 0.5) 74.2 ( 0.2)

Table 10. Ablation study for DPO training phase, negative sampling (NS) and preference data �ltering (PF)

strategies.

We conduct ablation experiments to evaluate the DPO phase, negative sampling (NS) and preference data

�ltering (PF) strategies. Speci�cally, we test the following settings: 1) w/o DPO: SFT model without DPO

training. 2) w/o NS: Preference pairs generated by sampling the same video twice, without negative sampling.

3) w/o PF: Responses from negative sampling are treated as rejections, without utilizing AutoDQ Scorer to

perform preference data �ltering. For a fair comparison, the training data size and hyper-parameters for the

latter two settings are kept consistent with the default setting, as detailed in Appendix D.

As shown in Table 10, Tarsier2 bene�ts a lot from the DPO training phase with signi�cant improvement on

caption tasks, especially TempCompass-cg (6.5%) and Vinoground-Text (5.6%). The hallucination capability

also drops by 2.1% without DPO, while the performance on video QA is not obviously a�ected. When further

ablating dataset construction strategy of DPO, negative sampling plays an important role, without which the

model results on most of the tasks are degraded to be almost the same as the SFT model (“w/o DPO”), and the

hallucination capability drops by 1.1%. Additionally, preference data �ltering with AutoDQ scorer has a

signi�cant impact on maintaining the quality of DPO datasets. As shown in Table  10, “w/o PF” leads to

degradation on more than a half of the tasks, and especially the DREAM-1K F1 score is even worse than the

SFT model.

↓ ↓ ↓ ↑ ↑ ↓

↓ ↓ ↓ ↓ ↓ ↓

↓ ↓ ↑ ↓ ↓ ↑

qeios.com doi.org/10.32388/X26ILU 30

https://www.qeios.com/
https://doi.org/10.32388/X26ILU


4.3. Video Recaptioning using Tarsier2

Model

Caption Video QA

Hallucination

DREAM-1K TempCompass-cg Vinoground-Text Short Long

Qwen2-VL-7B[6] 31.2             54.2 40.0 49.4             60.3             51.9

+ Original FT 35.2 ( 4.0) 49.9 ( 4.3) 39.0 ( 1.0) 46.9 ( 2.5) 55.4 ( 4.9) 43.0 ( 8.9)

+ Recaption FT 39.5 ( 8.3) 67.7 ( 13.5) 55.0 ( 15.0) 52.5 ( 3.1) 56.8 ( 3.5) 68.5 ( 16.6)

Table 11. The experimental results of recaptioning. “Recaption FT” represents �ne-tune the model on the

Tarsier2-Recap-585K dataset. “Original FT” represents �ne-tune the model with the same videos as Tarsier2-

Recap-585K but taking their original labels as target output.

In this section, we utilize Tarsier2 as a captioner to generate detailed descriptions for a diverse set of 1M

videos sourced from public datasets, resulting in the recaptioning dataset Tarsier2-Recap-585K5. Details of

the dataset composition are provided in Appendix F.

We �ne-tune Qwen2-VL-7B[6] on Tarsier2-Recap-585K and present the evaluation results in Table 11. Fine-

tuning on Tarsier2-Recap-585K signi�cantly enhances the model’s performance on detailed video

description, achieving improvements in DREAM-1K (+8.3%), TempCompass-cg (+13.4%), and Vinoground-

Text (+15.0%). Moreover, it achieves an improvement of 16.6% in hallucination test and an improvement of

3.1% in short video-QA.

In comparison, �ne-tuning on the same 585K videos with original captions improves only the DREAM-1K F1

score (+4.0%), while other metrics show signi�cant declines. It indicates that the performance gains from

Tarsier2-Recap-585K are primarily due to its high-quality and detailed captions rather than the additional

training data volume.

Table 17 in Appendix E provides detailed benchmark results corresponding to Table 11. These �ndings

demonstrate that Tarsier2 can generate high-quality, detailed descriptions that o�er �ne-grained alignment

information to help LVLMs to achieve signi�cant improvements across various tasks.

↑ ↓ ↓ ↓ ↓ ↓

↑ ↑ ↑ ↑ ↓ ↑
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5. Conclusion

In this paper, we introduce Tarsier2, a state-of-the-art large vision-language model that outperforms

existing proprietary and open-source models in generating detailed and accurate video descriptions.

Furthermore, Tarsier2 sets new benchmarks across a wide range of video understanding tasks. Our ablation

studies demonstrate that Tarsier2 ’s advancements are driven by scaling the volume and diversity of the

training dataset, �ne-grained temporal alignment, and DPO training.

Looking ahead, we outline several promising directions for future research. First, extending Tarsier2 to

handle longer video durations by developing more e�cient model architectures and expanding the training

dataset. Second, enhancing real-time video processing to improve the model’s ability to analyze and describe

videos as they stream. Third, exploring richer interactions between video, audio, and text to create more

comprehensive and context-aware video understanding systems.

Appendix A. Training hyper-parameters

Table 12 shows the training hyper-parameters in pre-training, SFT-1&2 and DPO stage. We apply a layer-

wise learning rate decay of 0.9 for visual encoder training[84].
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Con�guration Pre-training SFT-1 SFT-2 DPO

VLM init. Qwen2-VL-7B Tarsier2-Pre-trian Tarsier2-SFT-1 Tarsier2-SFT-2

Optimizer name AdamW

Optimizer 

Optimizer 

Optimizer eps

Learning rate

Learning rate schedule cosine

Training steps 200,000 5,000 5,000 1,000

Warm-up steps 1,000 250 250 100

Weight decay 0.01

Gradient clip 1.0

Dropout rate 0.0

Global batch size 384 64 64 64

Max pixels 460,800

Frames per video [8,128] 16 16 16

Numerical precision b�oat16

Table 12. Training hyper-parameters of Tarsier2

Appendix B. Public datasets of pre-training stage

Table 13 presents the pre-training datasets, which collectively include approximately 20 million public data

and 20 million in-house data. Most of the public datasets are the same as Tarsier1, except we additionally

gathered some newly released open-source data and OCR-releated data. For WebVid-10M, we used 2.9

million video-text pairs, selecting samples that are more likely to feature dynamic events. We have also

incorporated some latest long video understanding datasets, such as MovieStory101[85]  and LLaVA-Video-

178K[31]. This greatly enhances the model’s ability to understand long videos.

β1 0.9

β2 0.999

1e−6

2e−5 2e−5 2e−6 1e−6
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Video Captioning

WebVid[86] (2.9M) LSMDC[87] (109K) TGIF[88] (105K) ActivityNet[89] (38K)

Charades[90] (16K) Charades-Ego[91] (6K) YouCook2[92] (9K) TACoS[93] (18K)

Ego4D[75] (1.1M) Spoken Moments[94] (493K) Multi-Moments[95] (997K) TREC-VTT[96] (64K)

ShareGPT-4o-

video[97] (2K)
MovieStory101[85] (11K)

GPT4o-labeled Caption†

(2.5M)

Human-labeled Caption†

(145K)

Film&TV Commentary†

(11.5M)
     

Action Recognition

HMDB[98] (5.8K) COIN[99] (10K) SSV2[100] (169K) Kinetics-700[101] (537K)

FineAction[102] (82K) RareAct[103] (2K) 20BN-jester[104] (46K)  

Video QA

CLEVRER[105] (83K) TGIF-QA[106] (72K) EgoQA[107] (5K) VideoInstruct[37] (89K)

LLaVA-Video-

178K[31] (165K)

M4-Instruct-

video[11] (255K)
GPT4o-labeled QA† (16.2K)  

Grounding

DiDeMo[108] (82K) AVA[109] (28K)
E.T. Instruct

164K[16] (147K)
Object Tracking†(745K)

Video Self-Supervised Training

Frame Order Prediction†

(825K)
     

Intent Recognition

Oops![110] (15K)      

Multi-Image Understanding

VIST[111] (38K) MMDU[112] (45K)
M4-Instruct-

image[11] (616K)
Image Retrival†(533K)

Single-Image Understanding

ShareGPT4V[113] (95K) LLaVA-1.5[114] (643K)
ShareGPT-4o-

image[97] (57K)
MS COCO[115] (566K)
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Flicker[116] (145K)
LLaVA-ReCap-

CC3M[11] (2.9M)
Visual Genome[117] (759K) SBU Captions[118] (860K)

GPT4o-labeled Caption†

(1.13M)
     

Image OCR

RCTW-17[119] (8K) LSVT[120] (430K) ReCTS[121] (20K) Art[122] (5.6K)

COCOTextV2[123] (16K) CORD-v2[124] (1K) HierText[125] (10K) MSRA-TD500[126] (465)

IC03[127] (499) SynthDoG-en[128] (100K) SynthDoG-zh[128] (100K)  

Text Generation

OpenOrca[129] (995K) ShareGPT[130] (80K)    

Table 13. Datasets and their sizes used in Tarsier2 pre-training. † indicates in-housedatasets.

Appendix C. Annotation process for SFT data

In the �rst stage of SFT, we annotated each video clip with detailed descriptions that included �ne-grained

temporal grounding. Each clip �rst underwent manual annotation, where annotators described dynamic

information such as character actions, events, scene transitions, and camera movements, while avoiding

unnecessary static elements. Annotators are also required to map the dynamic information in their

descriptions to the corresponding frame numbers. We performed quality inspections on the annotated data

and returned any data not meeting quality standards for re-annotation. We discarded any data that might

involve copyright risks.

In the second stage of SFT, we utilized GPT-4o to generate a variety of instruction tuning samples based on

manual annotations. We provided GPT-4o with 16 uniformly sampled frames from the video and the original

manual annotations. Figure 8 shows the prompt for re-annotation in this stage.
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Figure 8. The re-annotation prompt in SFT-2.

Appendix D. Detail setting of DPO training

As a default setting, we leveraged the negative sampling and preference pair �ltering strategy as introduced

in Section 3.3 to construct the DPO training set. We set top_p as 0.7 and temperature as 0.7 when running

both positive sampling and negative sampling on our 150K SFT dataset. The threshold    of preference pair

�ltering was set as 0.3. We �nally randomly sampled 20K preference pairs for DPO training. For the “w/o NS”

setting, we kept other parameters and process unchanged but replaced the negative sampling with an

additional positive sampling. For the “w/o PF” setting, we omitted the process of preference pair �ltering

and directly sample 20K pairs from all preference pair candidates. We utilized the vanilla DPO training

objective (Equation 2), and set   as 0.1. See the “DPO” column of Table 12 for all the other hyper-parameters.

Appendix E. Detailed results of individual datasets at di�erent stages

In this section, we provide detailed results for individual datasets in our ablation study. Table 14, 15 and 16 list

the results for pre-training, SFT and DPO respectively. Table 17 lists the results for the recaptioning

experiment. We report F1/Precision/Recall for DREAM-1K and accuracy for other benchmarks.

δ

β
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Capability Benchmark Tarsier1-7B Tarsier1-7B-Qwen Tarsier2-7B

Caption

DREAM-1K 34.6/30.2/40.3 38.4/40.6/36.4 40.8/42.5/39.3

TempCompass-cg 55.3 59.3 60.1

Vinoground-Text 29.8 48.6 60.2

Video QA Short

MVBench 62.6 69.8 72.8

TVBench 45.8 51.0 53.5

TOMATO 28.6 36.5 39.5

Video QA Long

Video-MME 42.2 58.9 65.3

LongVideoBench 39.8 52.1 58.3

TemporalBench 56.9 61.9 68.7

Hallucination
EventHallusion-Y/N 70.9 75.6 77.8

EventHallusion-Desc 41.6 48.6 49.1

Table 14. Detailed results of the ablation study for pre-training. For the captioning task, results are reported after

the SFT stage. For other tasks, results are reported after the pre-training stage.
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Capability Benchmark pre-train SFT w/o grounding SFT

Caption

DREAM-1K 35.2/36.8/33.7 37.4/38.6/36.3 40.8/42.5/39.3

TempCompass-cg 50.5 50.2 60.1

Vinoground-Text 57.2 60.6 60.2

Video QA Short

MVBench 72.8 71.9 72.5

TVBench 53.5 54.5 54.2

TOMATO 39.5 41.3 41.9

Video QA Long

Video-MME 65.3 64.0 64.7

LongVideoBench 58.3 54.7 58.2

TemporalBench 68.7 66.9 66.6

Hallucination
EventHallusion-Y/N 77.8 80.1 84.4

EventHallusion-Desc 49.1 56.2 59.4

Table 15. Detailed results of the ablation study for SFT.
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Capability Benchmark Tarsier2-7B w/o DPO w/o NS w/o PF

Caption

DREAM-1K 42.0/42.8/41.1 40.8/42.5/39.3 41.5/44.5/39.0 40.5/39.9/41.1

TempCompass-cg 66.6 60.1 62.1 65.1

Vinoground-Text 65.8 60.2 60.6 67.6

Video QA Short

MVBench 71.5 72.5 72.2 71.7

TVBench 54.7 54.2 54.9 54.6

TOMATO 42.0 41.9 41.3 41.8

Video QA Long

Video-MME 64.5 64.7 64.3 64.4

LongVideoBench 58.6 58.2 58.6 57.4

TemporalBench 65.3 66.6 65.4 65.2

Hallucination
EventHallusion-Y/N 84.6 84.4 85.1 84.8

EventHallusion-Desc 63.3 59.4 60.7 63.5

Table 16. Detailed results of the ablation study for DPO.
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Capability Benchmark Qwen2-VL-7B[6] Original FT Recaption FT

Caption

DREAM-1K 29.6/33.9/26.3 35.2/44.8/29.0 39.5/41.7/37.6

TempCompass-cg 54.2 49.9 67.7

Vinoground-Text 40.0 39.0 55.0

Video QA Short

MVBench 67.0 59.8 66.8

TVBench 43.8 47.2 51.1

TOMATO 31.5 33.6 39.5

Video QA Long

Video-MME 63.3 56.1 57.0

LongVideoBench 55.6 51.4 51.9

TemporalBench 62.0 58.7 61.4

Hallucination

EventHallusion-Y/N 68.6 39.6 80.7

EventHallusion-Desc 27.8 46.3 56.2

Table 17. Detailed results of the recaptioning experiment.

Appendix F. Tarsier2-Recap-585K Data Composition

Table 18 lists the data composition details of Tarsier2-Recap-585K. We mainly took video caption datasets

into account when picking the target datasets, together with two action recognition datasets (Kinetics-

700[101] and SSV2[100]), which contain video clips of durations of   seconds about human actions, and a

special intent recognition dataset (Oops[110]) to help models learn rare actions and unexpected events. For

most of the datasets, we utilized all the original video clips of the selected splits (usually train and val set),

except for:

WebVid-10M: We sampled around 30% of the total size of Tarsier2-Recap-585K from a pre-�ltered

subset of WebVid-10M, which are more likely to feature dynamic events.

Ego4D: We randomly merged multiple clips into a new one that contains multiple actions and result in

around 1M merged clips in total. We sampled 50K clips from this dataset for recaptioning.

Kinetics-700 and SSV2: We randomly sampled 50K and 10K clips from the training set of Kinetics-700 and

SSV2, respectively.

+ +

5 ∼ 10

qeios.com doi.org/10.32388/X26ILU 40

https://www.qeios.com/
https://doi.org/10.32388/X26ILU


Dataset Original Label Type Split Avg Duration (s) # Sampled Clips Proportion (%)

WebVid-10M[86]

Video Caption

- 15.2 177,909 30.38

LSMDC[87] train/val/test 4.1 108,271 18.49

TGIF[88] train/test 12.3 94,775 16.18

Ego4D[75] - 4.1 50,000 8.54

ActivityNet[89] train/val/test 35.7 35,960 6.14

VATEX[60] train/val/test 10.0 22,435 3.83

TREC-VTT[96] train/val 6.3 14,199 2.42

Charades[90] train/test 29.8 7,985 1.36

Charades-Ego[91] train/test 30.2 6,161 1.05

Kinetics-700[101]

Action Recognition

train/val/test 8.9 50000 8.50

SSV2[100] train/val/test 3.7 10000 1.71

Oops[110] Intent Recognition train/val 9.8 7,948 1.36

Sum - - 1,972 hours 585,643 100.00

Table 18. Data composition of Tarsier2-Recap-585K. The “Split” column lists the original dataset partitioning,

and we use bold to mark the parts which we sampled the video clips from to conduct recaptioning.

Appendix G. Qualitative Comparison of the SFT Process

Figure 9 illustrates a qualitative comparison of our model at di�erent stages, where we mark the di�erences

in the prediction results of di�erent models. From these di�erences, it can be seen that introducing temporal

localization information in the �rst SFT stage signi�cantly reduces the problem of hallucination in the

model. However, the introduction of temporal localization information may also result in certain events

being subdivided into �ner actions. To address this issue, the second stage of training further improved the

accuracy of the model description and optimized the output style.
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Figure 9. Qualitative comparison of our model at di�erent stages.

Appendix H. DREAM-1K cases

Figures 10-14 display the detailed video descriptions generated by Tarsier2-7B and other models (GPT-4o,

Gemini-1.5-Pro and LLaVA-Video-7B-Qwen2) for di�erent video categories in DREAM-1K. Click the play

button on the �rst frames to view the raw video. The correct descriptions of key objects/actions/events are

marked in green, and the incorrect descriptions are marked in red.
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Figure 10. Qualitative comparative analysis of various Video-MLLMs on Dream-1K dataset (Live-action Subset).
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Figure 11. Qualitative comparative analysis of various Video-MLLMs on Dream-1K dataset (Animation Subset).
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Figure 12. Qualitative comparative analysis of various Video-MLLMs on Dream-1K dataset (Stock Subset).
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Figure 13. Qualitative comparative analysis of various Video-MLLMs on Dream-1K dataset (Youtube Subset).
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Figure 14. Qualitative comparison of di�erent Video-MLLMs on Dream-1K dataset (Shorts Subset).

Footnotes

1 https://www.scenedetect.com/

2 An obvious counter example is that a low-dynamic video will not be signi�cantly a�ected by the down-

sampling perturbation.

3 Given a reference description ( ) and a description to be assessed ( ), AutoDQ scorer outputs the

recall score ( : the ratio of events in    that are entailed by  ) and the precision score ( : the

ratio of events in   that are entailed by  ).

4 For consistency across all checkpoints, we evaluate the Qwen2-VL-7B model using the same frame

sampling strategy applied to other checkpoints. This may di�er from the o�cial sampling strategy in some

benchmarks. For instance, the o�cial setting of Video-MME uses 768 frames, while we sample 128 frames.

5 Tarsier2-Recap-585K is available on HuggingFace.

dref dpred

DQR dref dpred DQP

dref dpred
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