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1. ByteDance Research

We introduce Tarsier2, a state-of-the-art large vision-language model (LVLM) designed for generating
detailed and accurate video descriptions, while also exhibiting superior general video understanding
capabilities. Tarsier2 achieves significant advancements through three key upgrades: (1) Scaling pre-
training data from 11M to 40M video-text pairs, enriching both volume and diversity; (2) Performing fine-
grained temporal alignment during supervised fine-tuning; (3) Using model-based sampling to
automatically construct preference data and applying DPO training for optimization. Extensive experiments
show that Tarsier2-7B consistently outperforms leading proprietary models, including GPT-40 and Gemini
1.5 Pro, in detailed video description tasks. On the DREAM-1K benchmark, Tarsier2-7B improves F1 by
2.8% over GPT-40 and 5.8% over Gemini-1.5-Pro. In human side-by-side evaluations, Tarsier2-7B shows
a +8.6% performance advantage over GPT-40 and +24.9% over Gemini-1.5-Pro. Tarsier2-7B also sets new
state-of-the-art results across 15 public benchmarks, spanning tasks such as video question-answering,
video grounding, hallucination test, and embodied question-answering, demonstrating its versatility as a

robust generalist vision-language model.

Corresponding author: Yuan Lin, linyuan.o@bytedance.com

1. Introduction

With the rapid advancements in large vision-language models (LVLM)2III4I516] sjgnificant progress
has also been made in video understanding. Leading proprietary models, such as GPT-40l] and Gemini-1.5-
Prol8l have achieved state-of-the-art (SOTA) performance across a variety of video understanding tasks.
Additionally, several open-source models[3[21201[111112]13][10] 3150 demonstrate strong performance on

several video understanding benchmarks[1411510161117118] a1though they still lag behind proprietary models,
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particularly in complex, open-ended generation tasks. Despite these advancements, current models remain
behind human-level video understandingﬂm, mainly due to persistent challenges such as accurately

perceiving temporal dynamics, spatial-temporal reasoning, and model hallucinations.

In this paper, we introduce Tarsier2, a 7B-parameter LVLM model that can outperform both GPT-4o0 and
Gemini-1.5-Pro in generating detailed video descriptions, a fundamental challenge in video understanding.
Beyond video description generation, Tarsier2 also achieves SOTA performance across various video
question-answering (VQA) benchmarks at the same model size, surpassing or closely matching the
performance of proprietary models on these VQA benchmarks. Figure 1 provides a comprehensive
comparison between Tarsier2, GPT-40 and previous SOTA results for open-source LVLMs with the same
scale. Figure 2 presents examples illustrating Tarsier2’s video understanding capability across different

tasks.
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Figure 1. Performance comparison of Tarsier2 with previous SOTA models at 7B-scale and GPT-4o0. We report

the overall average scores for benchmarks with multiple subtasks/metrics.
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Instruction
Detect and localize all the video segments containing the gives action “baschall pitch', and provide the outputs using start and end timestamps
Response
The action happens in 49.2 - 53.5, and 116.7 - 122.5 seconds. tarsier

Detailed Video Description
2

video video 1

Instruction

Now pretend to be a broadcaster and provide a live
commentary an this diving event.

Instruction
Please describe the video in detail video 2

&

Response

Good evening, ladies and gentlemen, and welcome to the ‘2024 [_tarsier
National Youth Diving Championship’ 1 am your
Look, the diver is seen jumping off the platform, but his movements
are not stable. He appears to be struggling to maintain his balance as

In & room filled with various plants, scintific equipment, and an casel, a woman in &
ety T (o P e ST e D £ blue dress and apron stands af a workbench. She tums around and throws several stones
rotate, The divers movements become more crratic as he descends onto the floor. A woman in a blue coat stands with her arms crossed, abserving the stones.
towards the water. Unfortunately, he fiils to execute a proper dive, ‘The woman in the blue dress sieps on one of the stones, cuusing it (o emit a bright bluc

light. The light spreads from the stone to other stones. The camera follows the light and

and his entry into the water is quite rough, creating a huge splash ¢
reveals a smiling man in a purple suit looking at the stones.

Instruction

Embodied Question Answering [Question] Which video is maiching with the following
caption?

[Caption] A person first uses a needle 10 poke the yarn
through the fabric before he ties a knot with the yarn
[Options|

- A. The first video.

- B. The second video.

2

Instruction
Wt can [ use 1o find where 3 particular book s located? [ tars
Response
[Answer] A, The first video.
Response e [Reason] In the second video, the person ties a knot with the yam
Use the catalog on the computer. arsier firstly and then uses a needle to poke the yarn through the fabric.

Video Description (Chinese)

1 = % video]

Instruction FeS — 1005244 PR,

[ tarsier

Response —HABKE—TEANBMNHNE. —THRETNACELD, BIFRESNNBR
BRAREDE —MFRESKBHASELD. BR ALMRI—LRENNRS,
[o—— EFH—ETHERL BRARTEANE. REFERMRT.

Create a video description by outlining each frame thoroughly. Use simple words and concise
sentences. Also, include observations sbout the video's artistic style. Video Description (concise)
L video

X
Response

Frame 1: A white dog with goggles and a green helmet sits on a red object against a blue sky. Frame 2: The
same dog, still sitting, with a slightly different background. Frame 3: A red biplane flies over a bridge with a
train below. Frame 4: The biplene continues to fly over the bridge, moving to the right. Frame S: The biplane is
further to the right, still over the bridge. Frame 6: The biplane is almost off the bridge, moving to the right.
Frame 7: The white dog is back, sitting an the red object with a mountain background. Frame 8: The dog is now
leaning forward, looking determined. Frame 9: A pink dog with a purple scarf is in a red biplane, with the white

dog in the distance. Frame 10: The pink dog is closer to the white dog, who looks surprised. Frame 11: The pink Instruction please provide a concise deseription for this video,

dog reaches out (owards the white dog. Frame 12: The white dog reaches back towards the pink dog. Frame 13: ﬁ
Close-up of the pink dog looking worried. Frame 14: The pink dog is hanging off the back of the biplanc. Frame

15: A purple scarf is falling through the air. Frame 16: The screen is completely black. The artistic style is ReSPONSE The camera focuses on a dark, industrial interior with chains. t then shifls to a snowy | O Sie¥
colorful and cartoonish, with smooth animations and vibrant backgrounds. exterior, revealing penguins outside the window. =

Figure 2. Overview of Tarsier2 capabilities. Based on its strong ability for detailed video description, Tarsier2

excels in a variety of video-centric tasks. Click the play buttons to view the videos.
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Tarsier2 employs a simple model architecture consisting of a vision encoder, a vision adaptor, and a large
language model (LLM). We meticulously design a three-stage training procedure: pre-training, supervised
fine-tuning (SFT), and reinforcement learning (RL). In comparison with TarsierLﬂ, Tarsier2 features several

key improvements that significantly enhance its performance:

* We scale up the pre-training dataset from 11 million to 40 million video-text pairs, addressing the
challenge posed by the scarcity of high-quality video-text data. To achieve this, we implement meticulous
filtering and sourcing. Specifically, we collect 11 million commentary videos, featuring explanations and
analyses of movies and TV shows, providing rich contextual information to greatly enhance video
understanding. Our experiments confirm that increasing the volume of pre-training data consistently
improves model performance.

* We construct a video description dataset containing 150K instances, each including a detailed video
description along with the specific frames corresponding to each event described. During the SFT stage,
we involve this dataset to provide the model with supervision on temporal fine-grained alignment.
Experimental results show that, compared with traditional video-caption alignment training, this
approach significantly improves accuracy in video description and reduces the hallucinations.

* To further enhance model performance, we use the model to generate samples that automatically
construct preference data for DPO training[iﬂ. To ensure high-quality preference data, we propose two
methods: a negative sampling technique that uses corrupted videos to generate negative samples for
preference pairs, and a preference data filtering method that employs AutoDQ!3 to automatically filter out
pairs with minimal differences. Our experiments show that DPO training on these automatically generated

preference data leads to continued performance improvements over the SFT stage.

We conduct extensive experiments to evaluate Tarsier2 against both proprietary and open-source LVLMs. For
video description, Tarsier2 outperforms all other models, surpassing both proprietary and open-source
LVLMs in evaluations on DREAM-1K[3l and E.T. Bench—Captioningh—(’]. In human side-by-side evaluations,
Tarsier2-7B shows a +7.8% improvement over GPT-40 and a +12.3% advantage over Gemini-1.5-Pro. It also
significantly outperforms the leading open-source model, Tarsier-34B, with a +51.4% advantage.
Furthermore, Tarsier2-7B proves to be a versatile generalist model, setting new SOTA results on public
benchmarks for video question-answeringli4l231241" hallucination test!34], video groundingll®l and
embodied QA[361. Finally, we present extensive ablation studies to identify the key factors contributing to the
model’s strong performance. We also release a recaptioning dataset, Tarsier2-Recap-585K, and demonstrate
its effectiveness in enhancing the capabilities of existing LVLMs for video description and general video

understanding.
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2. Related Work

Video-LLMs

Recently, research on Video LLMs has surgedmww@mmm@m, with
efforts focusing on model architectures and video-text data collection. On the architecture side, current
studies emphasize visual representationmﬂﬁl@], visual token resampling[-‘?—l@l[—‘*ﬂ[—‘*ﬂ, and the integration
of Vision Transformers (ViT) with LLMsL6ll481[491[50] Tarsjera adopts a simple architecture composed of a
visual encoder, a visual adaptor, and an LLM. Despite its simplicity, we demonstrate that a meticulously
designed training strategy enables Tarsier2 to achieve strong video understanding capabilities.

In terms of video-text data, while many efforts aim to collect datasets for training Video LLMs, their quantity
and quality remain limited. For example, LLaVA-Video3l is trained on just 1.3 million video-text pairs, and
several open-source models, such as InternVLz.sLQ], Aria[ﬁl, and VILA—1.5[4—1, are trained on fewer than 5
million pairs. Although larger datasets like HowTolooMLﬂl, HD—VILALﬁ], Panda—70ML53—1, and InternVid-
10MDB4] exist, they either cover limited domains or contain overly simplistic or low-quality text.

Furthermore, some studies do not disclose the volume of video data usedl1[201(431[42]

To address these challenges, our work focuses on improving the quantity and quality of video-text data. We
newly collected 20 million video-text pairs, spanning a wide range of video genres. In total, 40 million pairs
are used in the final pre-training stage. Additionally, we annotated 150K fine-grained video descriptions for

the SFT stage.

Video Description

Video description, a foundational task in video understanding, has long been a central focus of research. Early
workl331[561137] typjcally involved pre-training video-language models and fine-tuning them on datasets
such as MSVDLE, MSR—VTTL5-9—1, and VATEX["—Ol, which provide single-sentence video summaries.

Recent advancements in LVLMs have improved video description, enabling more detailed outputs beyond
simple summarization. However, generating comprehensive video descriptions presents challenges beyond

model architecture. While multi-frame processing and temporal modeling are crucial, large-scale and rich

annotated jvideo, description datasets are equally important. Existing alignment datasets, such as HD-
VILAL%2] and HoTo100MI5, provide concise descriptions, limiting detailed video understanding. To address
this, datasets such as ShareGPT4Videol®l uses a pipeline where LVLMs (e.g., GPT-VL62l) annotate frames,

and LLMs (e.g., GPT-4193l) aggregate them. This improves detail but often leads to verbosity and
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hallucinations. Recent works[311[64] yges proprietary Video-LLMs, such as GPT-40l and Gemini—l.5j§1, for

annotation, but their high cost limits application to smaller datasets.

For Tarsier2, we collect a large dataset of video-text pairs. In particular, we automatically build meaningful
video-text pairs from online commentary videos. These commentaries include both low-level (atomic
actions) and high-level (plot) visual elements, enhancing the model’s understanding across various
granularity. In addition to data collection, Tarsier2 also uses a meticulously designed three-stage training

process, where DPO training after SFT further refines description accuracy and detail.

3. Approach

We initialized Tarsier with Qwen2-VLL®] weights and employed a three-stage training strategy. First, we pre-
trained Tarsier2 on 40 million large-scale video-text pairs. Next, we fine-tuned the model on moderate-
sized, curated, human-annotated datasets in two phases: one targeting video descriptions with fine-grained
grounding and the other focusing on natural, instruction-following video descriptions. Finally, we applied
Direct Preference Optimization[-’ﬁ-1 using automatically generated preference data to further enhance the
quality of the video descriptions. The training process is detailed below; for a comprehensive list of hyper-

parameters, please refer to Appendix A.

3.1. Pre-training

The pre-training stage encompasses a variety of tasks, including video captioning, video question answering,
action recognition, action grounding, (multi-)image understanding, and text generation. The training data
consists of 20 million public datasets and 20 million newly collected in-house datasets. Figure 3 illustrates
the composition of the pre-training data, with a detailed breakdown presented in Appendix B. Our findings
indicate that the in-house data significantly enhances model’s performance, complementing the public

datasets. In the following, we describe the pipeline used for in-house data collection.
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Figure 3. Summary of datasets used in the pre-training stage of Tarsier2.

We collected a large group of videos from the Internet, spanning diverse genres such as animation, movies,

TV series, short videos, stock footage, games and so on. The videos are categorized into three types:

» Short videos with captions. This category consists of 2.4 million videos directly sourced from the Internet,
preserving their original video-caption pairs.

+ Commentary videos for movies or TV shows. The videos were segmented into single-shot clips using
PySceneDetect!. A filtering model removed static or low-quality clips. Adjacent clips were then merged to
create continuous segments, ensuring final video durations ranged from 2 to 30 seconds. We utilized an
internal OCR tool to extract the commentary text from the video and use it as the caption. The areas
containing the commentary text in the video were obscured. To ensure relevance, we trained a lightweight
BERT—styleféi1 model to filter out clips where the commentary lacked direct visual correspondence (e.g.,

character dialogues). This process produced 11.0 million video clips.
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¢ Other videos. These videos were processed similarly to the commentary videos, undergoing segmentation
into shorter clips, filtering out low-quality clips, and merging adjacent clips. After this, we employed a
multi-modal LLM to automatically generate video captions and question-answer pairs, resulting in a total

of 2.7 million clips.

Commentary videos represent a significant portion of the pre-training data. Unlike traditional video-text
datasets, such as HowTo100MI5Ll, which rely on ASR transcripts, commentary data demonstrates stronger
alignment between video and text. This commentary not only describes low-level visual elements, such as
atomic actions, but also highlights high-level information like plot details. This type of data can substantially

enhance the model’s visual understanding at varying levels of granularity.

In addition to video caption data, we incorporate large-scale synthetic datasets for tasks such as object
tracking, frame order prediction, image retrieval, video question-answering, and image captioning during
pre-training.

Overall, our pre-training dataset consists of 40 million samples. We trained Tarsier2 on this dataset using 128
H100 GPUs, with all components of Tarsier2 set to be trainable. For each video, we sampled between 16 and
128 frames, depending on its duration. In total, the pre-training stage of Tarsier2 processed approximately

200 billion tokens.

3.2. Supervised fine-tuning

During the SFT phase, our primary objectives are to further improve the model’s accuracy and
comprehensiveness in video descriptions and ensure the outputs are human-like: well-structured,
appropriately detailed, and capable of generating accurate long-form descriptions. To achieve this, we

collected 150K video clips and conducted SFT in two stages.

Figure 4. An example of a video description with fine-grained temporal grounding. “<frame: i-j >” indicates
that the following event is inferred from frames ¢ to j. Events are distinguished by color, with corresponding

frames and descriptions marked in the same color to indicate their association.
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In the first stage, each video clip in the SFT dataset is annotated with a detailed description with fine-grained
temporal grounding. As shown in Figure 4, the annotations specify the frames corresponding to each event in
the description. The annotation process is detailed in Appendix C. This fine-grained frame-event alignment
enhances the model’s ability to accurately identify and describe events by focusing on temporal and visual
cues, complementing traditional video-caption alignment. Our experiments demonstrate that this approach

mitigates the omission of key events in generated video descriptions.

In the second stage of SFT, we refined the model’s output to achieve a more human-like style. We observed
that the data used in the initial stage of SFT often fragmented complete events into multiple steps due to
event-grounding requirements. For instance, the action of pouring wine might be divided into steps like
opening the bottle, lifting it, and pouring. To address this, we incorporated more natural and human-like
video description data. Specifically, in this stage, we designed diverse description instructions to reflect real-
world variations in language, granularity, and style requirements. We then annotated each video’s
description to align with its corresponding instruction, as detailed in Appendix C. This data allowed the

model to better interpret varying instructions and generate more accurate and diverse video descriptions.

The training data for SFT-1 contains 150k video description pairs, while SFT-2 comprises 50k diverse
instructions and 150k refined video-description pairs. Each pair includes a video description aligned with one
of the instructions. We trained Tarsier2 on this dataset using 32 H100 GPUs and set all components of
Tarsier2 to trainable. For each video, we sampled 16 frames for training. The global training batch size was
set to 64, and Tarsier2 was trained for 5000 iterations in each of the two phases. In addition, we used 2e-5
and 2e-6 as the learning rate of the model during the two-stage SFT respectively to obtain further

performance improvement.

3.3. Direct Preference Optimization

In this subsection, we introduce a novel automated method for collecting preference data for video

description. By performing DPO[33] training on this data, we can further improve the model’s ability to

generate high-quality, detailed video descriptions.

Negative sampling

Existing works often conduct multiple times sampling on the same input (video and text prompt) to acquire
preference pair candidates!€61(67]168] 1p practice, however, we found that 1) Low-temperature sampling
produces minimal variation in responses; 2) High-temperature sampling often leads to uncontrollable or
abnormal generations. To address these issues, we propose a new automated preference data collection

approach that enhances controllability and consistently yields high-quality preference data.
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In reinforcement learning (RL) terms, the VLM serves as a policy model 7y, typically initialized from the SFT
model. Given an input prompt z, consisting of N frames sampled from a video, 7y generates an video
description y. Then, the video frames are modified to produce a corrupted prompt z through one of the

following perturbations:

» Clip-switching: Evenly divide the video into 4 clips, then randomly choose 2 clips and swap their order.
¢ Clip-reversing: A random clip with % ~ N frames is reversed.
» Clip-cropping: N frames are resampled from a random clip with half of the video’s original duration.

» Down-sampling: Half of the N frames are randomly dropped.

The corrupted prompt z is input into 7y, generating a new description y. The resulting preference data is
represented as {z,y, = ¥,y = y}. The first two perturbations are designed to induce negative descriptions
with temporal errors, while the latter two are designed to induce incomplete descriptions. Consequently,
through DPO training, the model can be enhanced to produce descriptions with improved accuracy and

completeness.

Positive
Sampling

A woman is walking a dog
towards a back car with open
door, the dog jumps into the
car, and the scene switches to
a hand petting the dog under
its chin a few times before

pulling back.
. —— . Ground Truth
Describe the video in detail. Raw video /
"/' A woman, wearing a gray jacket and black pants, walks a dog on a leash towards a black car with an open door. B positive negative
\,v The dog, wearing a green harness, jumps into the car. Inside the car, a person is seen petting the dog's chin. The response response
tarsier dog looks up at the person while being petted. Positive response

1
1
! Negative sssscssnsns
1 Sampling ! . : a : bt | ' &
- g . < ! AutoDQ Scorer

3
ssssssssssnns ssssssssssssss DQr: 3/4 > DQg: 2/4
DQp: 3/3 DQp: 2/4

Describe the video in detail. Corrupted video H

A woman, dressed in a light-colored jacket and black pants, walks a dog on a leash towards a black car with an
open door. The woman squats down to pet the dog under its chin. After petting, the woman stands up and the
tarsier | dogjumps into the car. The woman follows, holding the leash.

{ Chosen > Rejected }
Negative response
1 Preference Pair Filtering

Figure 5. Preference data construction pipeline for DPO training.

Figure 5 provides an example to illustrate the preference data construction pipeline. From a raw video, we
first generate a positive response using the current model. Next, a corrupted video, created through clip-
switching, is fed into the model to obtain a negative sample, which contains two hallucinations (highlighted

in red).

geios.com doi.org/10.32388/X26ILU


https://www.qeios.com/
https://doi.org/10.32388/X26ILU

Preference data filtering

Given a prompt z, response y is generally more negative compared to y. However, an effective filter
mechanism for valid preference data remains essential, as ¢ is not always strictly worse than »2. As shown on
the right side of Figure 5, we utilize AutoDQ[il, an automatic method for evaluating the quality of video
description, using two metrics, DQr and DQp3. A preference pair {z,y, = v,y = 7} is considered valid if
the following conditions are met:

ADQr >0 and ADQp >0 and ADQgr+ ADQp > 6, (1)

where ADQgr and ADQp denotes the difference of AutoDQ recall and precision scores between the yy and y;.

d serves as an adjustable threshold to fine-tune the filtering criteria.

During the DPO training phase, we utilize videos from the same training dataset, D, as in the SFT phase, to

construct preference data. The policy model is then optimized by minimizing the DPO loss, expressed as:

76 (yw|) o (yi|z)
Lp0 = ~E(yyy yp [logo (/3 log —2" " Blog —2 :
7Treaf(?;lw'a:) ﬂref(yl“r)

where 7, ¢ denotes the model obtained during the SFT phase.
We conducted DPO training on a dataset with 20k preference pairs produced by the above data collection
approach, with all parameters set to be trainable. For each video, we sample 16 frames as same as the SFT

phase. We trained Tarsier2 for 1,000 steps in total with 64 H100 GPUs and each GPU loaded one pair at each

training step, resulting in a global batch size of 64. See Appendix D for more details of DPO training.

4. Experiments

In this section, we first evaluate the model’s performance on various video understanding benchmarks,
comparing it to several baselines. We highlight Tarsier2’s advantages not only in video description but also
across other video understanding tasks. We then present an ablation study to examine key components of our

approach.

4.1. Quantitative Results

4.1.1. Video Captioning

We evaluate Tarsier2 on two video captioning benchmarks: DREAM-1K[5! and E.T. Bench-Captioning[16l.
DREAM-1K is a detailed video description benchmark featuring dynamic and diverse videos, assessing the

model’s ability to describe fine-grained actions and events. E.T Bench-Captioning is composed of four dense
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video captioning tasks, requiring key event localization and summary generation for segments in long-form

videos.
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Video Categories

Model Overall
Live-action Animation Stock YouTube Shorts
Proprietary models
GPT-4vi621 34.8/39.2/31.3 | 27.4/31.9/24.0 | 40.7/46.7/36.1 | 33.8/40.1/29.2 | 34.8/46.1/28.0 |34.4/40.8/29.7
GPT-40l1 39.8/42.1/37.8 | 35.8/39.1/33.1 | 44.0/46.6/41.7 | 35.9/41.5/31.7 | 39.9/47.9/34.2 | 39.2/43.4/35.7
Gemini-1.5-
34.8/36.4/33.3 | 29.2/32.5/26.5 | 39.4/39.7/39.1 | 34.3/38.6/30.9 | 35.6/42.4/30.7 | 34.8/37.9/32.1
Flash[8
Gemini—1.5—Prom 36.4/36.4/36.4 | 30.7/31.8/29.7 | 42.2/40.7/43.8 | 34.0/36.7/31.6 | 37.0/42.4/32.7 | 36.2/37.6/34.8
Open-source models (>10B)
PLLaVA—34Bf-9-1 29.3/34.9/25.2 | 20.9/32.0/15.6 | 35.1/42.5/29.9 | 28.9/40.8/22.3 | 25.6/41.9/18.4 | 28.2/38.4/22.3
VideoLLaMA2-
o] 27.3/29.3/25.6 | 19.7/21.7/18.1 | 33.9/37.0/31.3 | 27.7/33.0/23.8 | 26.5/33.1/22.1 | 27.1/30.8/24.2
72B21
LLaVA-0V-72B131 | 31.7/32.8/30.7 | 27.7/30.6/25.2 | 38.0/39.6/36.6 | 34.1/34.7/33.5 | 33.8/41.8/28.4 | 33.2/35.9/30.9
LLaVA-Video-
(1) 33.5/36.3/31.1 | 28.6/31.7/26.1 | 39.3/41.1/37.6 | 32.8/34.7/31.1 | 35.7/42.8/30.6 | 34.0/37.3/31.3
72Bt3%
Qwenz—VL—72Bf£l 32.1/33.7/30.6 | 27.6/32.6/23.9 | 41.1/41.2/411 | 32.0/38.1/27.7 | 32.1/41.0/26.4 | 33.2/37.3/29.9
InternVL2.5-
2] 25.3/31.5/21.1 | 21.8/28.8/17.6 | 33.5/38.1/29.9 | 31.0/38.5/25.9 | 31.1/41.7/24.8 | 28.6/35.7/23.9
78B12)
Tarsier-34BL51 38.5/39.6/37.5 | 32.2/35.8/29.2 | 41.7/46.4/37.8 | 34.5/41.1/29.7 | 34.0/44.1/27.7 | 36.3/41.4/32.4
Open-source models (<10B)
Video-LLaVA-7B[3) | 19.4/24.3/16.2 | 15.3/21.2/11.9 | 27.0/33.5/22.7 | 21.2/31.9/15.8 | 18.5/29.4/13.5 | 20.4/28.1/16.0
VideoLLaMA2-
(101 25.1/28.7/22.2 | 20.4/25.5/17.0 | 32.6/35.5/30.2 | 27.5/33.5/23.4 | 24.5/34.1/19.2 | 26.2/31.5/22.4
7B
LLaVA-0V-7B03l | 31.2/33.2/29.3 | 26.8/29.0/25.0 | 38.1/39.1/37.1 | 30.6/32.1/29.2 | 31.4/38.3/26.6 | 31.7/34.3/29.4
LLaVA-Video-
3] 31.4/35.2/28.4 | 27.6/32.9/23.8 | 36.7/39.7/34.1 | 33.0/39.5/28.3 | 33.4/42.5/27.5 | 32.5/37.9/28.4
7B
Qwen2-VL-7BL8l | 27.7/32.5/24.2 | 22.2/28.0/18.4 | 37.0/36.1/38.0 | 30.7/35.5/27.0 | 29.1/37.6/23.8 | 29.6/33.9/26.3
InternVLz.s—SBM 26.6/32.0/22.8 | 21.3/28.9/16.9 | 32.7/37.2/29.1 | 27.9/35.4/23.0 | 28.9/39.9/22.7 | 27.6/34.7/22.9
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Video Categories
Model Overall
Live-action Animation Stock YouTube Shorts

Tarsier-7BLAl 36.6/38.5/34.8 | 29.3/34.6/25.5 | 39.6/44.7/35.5 | 33.0/39.2/28.4 | 33.6/44.6/26.9 | 34.6/40.3/30.2

Tarsier2-7B 44.4(41.9/47.3 | 39.3/39.5/39.1 | 45.7/45.4/46.0 | 36.0/38.4/33.9 | 43.7/48.9/39.4 | 42.0/42.8/41.1

Table 1. Evaluation results on DREAM-1K. We report F1/Precision/Recall scores for each category and for the
overall dataset. For open-source models, all results are tested with their official checkpoint and inference code
under recommended setting. SOTA results of comparable scale (<10B) are bolded and overall best results are

underlined.

As shown in Table 1, Tarsier2-7B outperforms all open-source models in both precision and recall across all
categories in DREAM-1K, demonstrating its ability to generate more comprehensive and less hallucinatory
video descriptions. Notably, Tarsier2-7B achieved an overall F1 score of 42.0%, surpassing the strongest
proprietary model, GPT-40 (39.2%). It is also the first model to exceed a 40% overall recall score,

highlighting its sensitivity to dynamic actions and events.

Tarsier2 wins =~ Ties I Alternative wins

100%
15.8% o
S 25.7%
80%
60% 41.4% 33.7%
40.0%
40%
20% 42.8% 45.6%
34.3%
0%

Tarsier2 vs Tarsier-34B Tarsier2 vs Gemini 1.5 Pro Tarsier2 vs GPT-40

Figure 6. Human side-by-side evaluation results of Tarsier2 versus other models.
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Figure 6 further presents the human side-by-side evaluation results of Tarsier2 versus the previous SOTA
Tarsier-34B and two strong proprietary models, GPT-40 and Gemini 1.5 Pro. We randomly sampled 250
videos (50 videos for each category) from DREAM-1K, and asked experienced annotators to compare the
descriptions generated by two different models, collecting their preferences. Each pair of descriptions was
randomly shuffled to ensure that the annotators were blind to the description sources. Compared to Tarsier-
34B, Tarsier2 has a slightly negative advantage rate (15.8%), but wins in a significant percentage of cases
(42.8%). Compared to Gemini, Tarsier2 still maintains a significant advantage (45.6% vs 20.7%). Despite
being tied with the strongest proprietary model, GPT-40, on 40% cases, Tarsier2 still gains a slight
advantage (8.6%), demonstrating the outstanding performance of Tarsier2 in detailed video description. For

a comparison of generated descriptions from different models on DREAM-1K, see Appendix H.

Table 2 shows the evaluation results of dense video captioning on E.T. Bench-Captioning. Tarsier2-7B
outperforms all open-source models with comparable settings (similar model scale, fine-tuned on E.T.
Instruct 164K[18l) across all metrics, except for the SLCg, score, which is slightly lower than Qwen2-VL-7B

(24.6% Vs 25.7%). These results highlight Tarsier2’s strengths in generating fine-grained descriptions for

short videos and providing coarse-grained summaries for long videos.
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E.T. Bench-Captioning[16]
Model
DVCg, DVCgim SLCg, SLCgim Avgg, AvVgsim
Proprietary models
GPT—[FV[Ql 16.1 19.4 21.9 13.5 19.0 16.4
GPT- 407 46.9 22.3 23.1 14.9 35.0 18.6
Gemini-1.5-Flash[8] 31.6 14.9 16.5 13.3 24.1 14.1
Gemini—1.5—Pr0[§l 24.0 17.5 5.8 9.8 14.9 13.7
Open-source models (>10B)
PLLaVA-34BL2l 133 10.6 9.7 11.8 1.5 1.2
LLaVA-0V-72B033] 41.9 16.3 25.6 13.9 33.8 15.1
LLaVA—Video—72B[-m 37.0 15.7 20.4 13.5 28.7 14.6
Qwen2-VL-72BL8] 153 13.9 11.0 12.8 13.2 13.4
Open-source models (<10B)
VideoLLaMA2-7Bl0] 0.6 14.5 0.0 15.2 0.3 14.8
Video-LLavA-7BL3l 28.0 15.0 0.9 83 1.4 1.7
LLaVA-OV-7B13] 22.0 15.1 9.5 10.6 15.8 12.8
LLaVA-Video-7831 20.6 14.7 6.5 13.4 13.6 141
E.T. Chat{26]" 38.4 19.7 244 14.6 314 171
Qwen2-VL-7BLelf 443 25.3 25.7 15.6 35.0 20.4
Tarsier-7B[3)f 42.8 19.1 23.7 15.2 33.2 17.1
Tarsier2-7B" 46.5 28.8 24.6 16.4, 35.5 22.6

Table 2. Evaluation results on E.T. Bench-Captioning. Results marked in gray(italics) are tested on a subset.
1 denotes the model is fine-tuned on E.T. Instruct 164K. All results are transcribed from the official benchmark,
except for LLaVA-OV, LLaVA-Video and Qwen2-VL, which are our evaluation using the official checkpoint and

inference code.
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4.1.2. Short-Video Question Answering

MVBench(!3] | PerceptionTest!22! | TVBench!24! | TOMATO[23! | Vinoground24] | TempCompass(25]
Model
test val test test Text/Video/Group mc/yn/cm/cg
Proprietary models
GPT-4o0l 57.5 - 39.6 37.7 54.0/38.2/24.6 71.0/73.7/80.8/70.8
Gemini-
- - 46.5 36.1 35.8/22.6/10.2 63.9/70.3/77.5/57.9
1.5-Prol8
Open-source models (>10B)
LLaVA-
59.4 66.9 45.9 28.6 48.4/35.2/21.8 67.6/72.6/78.2/52.6
ov-72B13l
LLaVA-
Video- 64.1 74.3% 50.0 28.2 52.0/35.6/20.8 69.9/73.0/80.9/54.4
72B[3l]
Qwen2-
73.6 66.5 52.7 37.9 50.4/32.6/17.4 76.0/75.9/84.6/58.6
VL-72Bl8
Tarsier-
67.6 60.4 53.8 34.3 37.8/32.0/15.0 69.8/74.0/73.0/60.9
34B[5_]
Open-source models (<10B)
LLaVA-
56.7 571 45.6 25.5 41.6/29.4/14.6 6£.8/69.7/73.8/49.9
ov-7BL3l
LLaVA-
Video- 58.6 67.9% 45.6 24.9 36.8/29.0/12.8 56.3/68.7/76.8/53.0
Qwen2-
67.0 - 43.8 31.5 40.0/23.4/12.4 68.5/72.8/77.3/54.2
vL-7Blal
Tarsier-
62.6 53.9 45.8 28.6 29.8/22.2/8.6 58.7/58.0/54.2/55.3
783l
Previous
72.01121 70.0%[451 51.61221 31.5L61 £1.6/29.4/14.611 | 68.5/72.8/77.3/54.2L61
SOTA
geios.com doi.org/10.32388/X26ILU
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MVBench{13] | perceptionTest[22] | TVBenchl14l | ToMmATO[23] Vinoground[i’tl TempCompass[25]
Model
test val test test Text/Video/Group mc/yn/cm/cg
Tarsier2-
71.5 71.6* 54.7 42.0 65.8/38.0/28.8 75.3/75.1/80.6/66.6
7B

Table 3. Evaluation results on short video question answering benchmarks. * indicates that the training set has

been observed in the training data mixture.

We evaluate Tarsier2-7B on several short-video question answering benchmarks to assess its ability to
comprehend and reason about visual content. As shown in Table 3, Tarsier2-7B outperforms both proprietary
and open-source models across various benchmarks, achieving state-of-the-art results. Tarsier2-7B
exhibits exceptional performance in MVBench(?5) and PerceptionTest[&], with scores of 71.5% and 71.6%,

respectively.

Furthermore, Tarsier2-7B demonstrates significant performance improvements on benchmarks featuring
temporal reasoning, such as TVBench!24), TOMATO(23), and Vinoground[24], Tarsier2-7B achieves strong
results with 54.7% on TVBench, 42.0% on TOMATO, and 65.8%/38.0%/28.8% on Vinoground’s
Text/Video/Group tasks, respectively. These results surpass both open-source and proprietary models,

including GPT-40 and Gemini-1.5-Pro.

At last, Tarsier2-7B also excels on the TempCompass benchmark!23), which evaluates temporal perception in
ten aspects and four task formats. Tarsier2-7B achieves impressive scores of 75.3%)/75.1%/80.6%/66.6% on
TempCompass’ mc/yn/cm/cg tasks, respectively, outperforming both open-source models and larger
proprietary models in most cases. This performance further underscores Tarsier2’s advanced ability to

process and interpret temporal information in video content.
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4.1.3. Long-Video Question Answering

Video-MME!28! | LongVideoBench!28! | TemporalBench!3¢! | MLVU[28] | MMBench-Video!32!
Model
w/o subs val Binary Accuracy M-Avg val
Proprietary models
GPT-40l 71.9 66.7 73.2 64.6 1.87
Gemini-1.5-Pro!8! 75.0 64.0 66.4 - 130
Open-source models (>10B)
VILA-1.5-40BL4] 60.1 - - 56.7 1.61
LLaVA-Video-72B[31] 70.5 61.9 724 YA 171
Qwen2-VL-72BLe] 71.2 - 70.2 - 1.70
InternVL2.5—7sBJ'1—2:l 72.1 63.6 - 75:7 1.97
Tarsier-34BL5! 52.3 5.2 66.7 58.2 1.46
Open-source models (<=10B)
LLaVA-Video-7B[31 63.3 58.2 63.6 70.8 1.60
Qwen2-VL-7BL8 63.3 55.6 62.0 - 144
InternvL2.5-8B12l 64.2 60.0 - 68.9 1.68
Tarsier-78L51 422 39.8 56.9 49.3 -
Previous SOTA 6421271 60.0l221 63.631 70.922 170331
Tarsier2-7B 64.5 (128f) 58.6 (128f) 65.3 (128f) 67.9 (256f) 1.82 (128f)

Table 4. Evaluation results on long-video question answering benchmarks. We list the number of frames used for

each benchmark during evaluating Tarsier2.

We evaluate Tarsier2 on long-video question answering benchmarks by uniformly sampling 128 or 256
frames, depending on the video length. Comparison results with other proprietary and open-source models

are presented in Table 4. Despite our training set not including many long video data, Tarsier2, compared
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with others under 10 billion parameters, still achieves SOTA on three benchmarks and competitive

performance on several other benchmarks.

geios.com doi.org/10.32388/X26ILU

22


https://www.qeios.com/
https://doi.org/10.32388/X26ILU

4.1.4. Hallucination

VideoHallucer!27} EventHallusion[34]
Model
Yes/No QA Yes/No QA Desc GPT
Basic/Hallucinated/Overall | Entire/Interleave/Misleading/Overall | Entire/Interleave/Misleading/Overall
Proprietary models
GPT-40l71 75.1/74.2/53.3 65.8/90.7/92.2/84.1 34.9/54.9/83.2/56.2
Gemini-1.5-
83.6/42.3/37.8 70.2/77.7/96.1/80.2 38.5/40.9/80.0/49.6
Prol8
Open-Source models (>10B)
Qwen2-VL-
87.1/79.4/70.2 33.3/77.7/56.4/60.0 16.5/25.4/70.2/33.6
72BL6]
LLaVA-OV-
88.3/62.6/55.2 47.4/26.9/90.1/48.3 24.8/34.7/71.3/40.7
72B[13]
LLaVA-
Video- 88.2/73.5/64.6 57.9/11.9/96.0/45.6 32.1/35.8/75.5/44.2
728531

InternVL2.5-

82.5/82.5/67.8 57.9/67.9/88.2/70.2 45.0/43.0/76.8/51.6
78B[12]
Tarsier-
84.8/80.0/67.7 £49.1/92.7/69.6/74.8 38.5/40.4/83.2/50.1
34805l
Open-Source models (<10B)
LLaVA-OV-
- 81.1/69.6/53.8 46.5/67.4/86.1/66.2 22.0/26.4]73.4/36.4
7Bl13
LLaVA-
82.4/70.6/56.0 61.4/48.7/96.0/64.0 27.5/32.6/75.5/41.4
Video—7BBll
Qwen2-VL-
- 85.0/70.8/59.3 35.1/94.3/57.4/68.6 14.7/16.1/67.0/27.8
7Blel

InternVL2.5-

gpli2l

72.7/78.3/53.6

46.5/69.2/90.2/68.2

23.9/20.7/60.0/31.0
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VideoHallucer[271 EventHallusion[341
Model
Yes/No QA Yes/No QA Desc GPT
Basic/Hallucinated/Overall | Entire/Interleave/Misleading/Overall | Entire/Interleave/Misleading/Overall

Tarsier-

151 76.4/60.8/41.4 43.9/82.4/79.4/70.9 35.8/29.5/72.6/41.6
7B

Tarsier2-7B 86.5/78.3/67.0 60.5/93.3/95.1/84.6 54.6/53.1/93.7/63.3

Table 5. Evaluation results on hallucination benchmarks.

We evaluate Tarsier2 on two video hallucination benchmarks: VideoHallucer!Z! and EventHallusion34l, The

results are summarized in Table 5. For VideoHallucer, Tarsier2-7B achieves an overall score of 67.0%,

outperforming all comparable baselines of similar model scale and even proprietary models like GPT-40 and

Gemini-1.5-pro. In EventHallusion, for video question-answering task, Tarsier2-7B achieves 84.6%,

surpassing GPT-40’s score of 84.1%, while outperforming all other baselines. For the detailed description

matching task, which directly assesses video description hallucinations by prompting GPT-4 to answer

questions based on each model’s generated video description, Tarsier2-7B demonstrates superior

performance, even surpassing GPT-/4o0 by 7.1% in terms of Overall score.
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4.1.5. Video Grounding

E.T. Bench-Grounding!1¢]

Model
TVGg, EPMg, TAL, EVSg, VHDg, Meang,
Proprietary models
GPT-4vi62l 27.0 1.8 18.0 28.6 55.1 26.1
GPT—[..OLZ] 40.4 4.5 20.0 17.6 56.9 27.9
Gemini-1.5- Flash8l 43.9 5.4 27.0 5.4 60.8 28.5
Gemini—1.5—Pr0[§1 43.1 6.2 33.8 7.9 47.0 27.6
Open-source models (<10B)

LiTaled 22.2 4.6 18.0 29.7 23.9 19.7
VTG-LLMIZ9] 15.9 3.7 1.4 26.8 482 21.8
TimeChatl! - - - - - 24.3
E.T. Chat(16]f 38.6 10.2 30.8 25.4 62.5 33.5
Tarsier-7B1! 39.6 9.0 25.0 25.4 47.6 30.9

Qwen2-VL-7Bl&lf 39.7 7.0 26.9 171 66.9 33.5
Tarsier2-7B" 38.4 110 3.8 19.4 66.8 35.5

Table 6. Evaluation results on E.T. Bench-Grounding. Results marked in gray(italics) are tested on a subset.

1 denotes the model is fine-tuned on E.T. Instruct 16 4K.

We evaluate the video grounding capability of models on E.T. Bench-Grounding, which combines various
grounding tasks from multiple datasets, including QVHighlights[72], Charades-STAL73l, THUMOS 14741, and
Ego4D-NLQL73, among others. The results, shown in Table 6, indicate that Tarsier2-7B achieves the highest

mean F1 score of 35.5%, outperforming all baselines and highlighting its superior temporal perception

capabilities.
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4.1.6. Embodied Question Answering

EgoTaskQA RoboVQA OpenEQA
Model Model Model
Exact Match BLEU-1/2/3/4 GPT-4
Human 80.0 LLaMA-Adapterv2[76 27.8/16.0/10.9/8.1 Human 86.8
HCRrNZZ 422 LLaVA-0v-7B[13] 38.1/33.6/31.8/31.0 GPT-4vLi021 55.3
GFL78] 443 RoboMambal7%! 54.9/44.2/39.5/36.3 Gemini-1.5-Pro!8! 44.9
EgoVLPv2[80l 46.3 MLcpl&l 73.2/66.4/60.6/56.6 MLcpl&l 48.8
Tarsier2 77.5 Tarsier2 77.1/67.4/61.5/56.8 Tarsier2 58.7

Table 7. Evaluation results on embodied question-answering tasks, including EgoTaskQA, RoboVQA and OpenEQA.

We evaluate Tarsier2 on embodied question answering to assess its performance in real-world robotic
scenarios, using three benchmarks: EgoTaskQA82l, RobovQA[3¢l and OpenEQAI83l To align with the
baselines, Tarsier2 is fine-tuned on the training sets for EgoTaskQA and RoboVQA, while for OpenEQ4, it is
evaluated in a zero-shot setting. The results, presented in Table 7, include exact match accuracy for
EgoTaskQA, BLEU score for RoboVQA, and the correctness score evaluated by GPT—4—1106—preview[§3-1 for
OpenEQA. Tarsier2 achieves top-tier performance across all three benchmarks, outperforming both
generalist and specialist models. Notably, on EgoTaskQA, its performance approaches human-level accuracy,

highlighting the model’s significant potential in embodied intelligence.

4.2. Ablation Study

We conduct a comprehensive ablation study to evaluate key components at different stages of the training
process. The study is based on three tasks: 1) Caption: This includes the DREAM-1K dataset, the caption
generation task from TempCompass (TempCompass-cg), and the caption matching task from Vinoground
(Vinoground-Text) to assess captioning performance. 2) Video QA: This encompasses short-video QA,
measured by the average accuracy on MVBench, TVBench, and TOMATO, and long-video QA, measured by the
average accuracy on Video-MME, LongVideoBench, and TemporalBench. It evaluates the model’s video

understanding capabilities. 3) Hallucination: We use the average score of two sub-tasks from EventHallusion
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to assess hallucination in the model. The following subsections present the results for each task, with

detailed results for individual datasets provided in the Appendix E.

4.2.1. Pre-training

Caption Video QA
Model Hallucination
DREAM-1K | TempCompass-cg | Vinoground-Text | Short Long
Tarsier1-7B 34.6 55.3 29.8 45.6 46.3 56.3
Tarsier1-7B-Qwen
38.4(13.8) 59.3 (14.0) 48.6 (118.8) 52.4(16.8) [ 57.6 (111.3) | 62.1(15.8)
upgrading model
Tarsier2-7B
40.8 (16.2) 60.1(14.8) 60.2(130.4) 55.3(19.7) | 64.1(117.8) [ 63.5(17.2)
upgrading model+data

Table 8. Results of the ablation study for pre-training. Tarsier1-7b-Qwen stands for the model where the base
model is upgraded to Qwen2-VL, while the pre-training dataset remains the same as Tarsier1. Tarsier2 is trained

from Qwen2-VL with an expanded pre-training dataset, growing from 13 million in Tarsier1 to 40 million samples.

In this section, we evaluate the impact of several factors during pre-training, including the base model, pre-
training data and training steps. For the caption task, we report results after the SFT stage, which aligns the

model’s responses with the desired style. For other tasks, we report results after pre-training stage.

Compared to Tarsier1, two key improvements are made in the pre-training phase: upgrading the base model
to Qwen2-VL and expanding the training dataset from 13 million to 40 million samples. Table 8 illustrates the
additive contributions for each improvement, showing that both enhancements consistently and
significantly boost the model’s performance in caption generation, video QA, and hallucination reduction.
Specifically, these enhancements lead to accuracy improvements of 9.7%, 17.8%, and 7.2% for short-video
QA, long-video QA, and hallucination tests, respectively. For video description, the F1 score on the DREAM-

1K dataset improves by 6.2%.
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Figure 7. Model performance against training tokens. The results at the initial step reflect the

performance of Qwen2-VL-7B.4

To better understand the effect of the number of training tokens on pre-training performance, we plot the
model’s performance as a function of token count during the pre-training stage, as shown in Figure 7. The
results show that model performance improves with an increase in the number of training tokens, reaching
convergence after 160 billion tokens. This suggests that a large volume of data is essential for optimal video

understanding performance.
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4.2.2. SFT

Caption Video QA
Model Hallucination
DREAM-1K | TempCompass-cg | Vinoground-Text Short Long
Tarsier2-7B-SFT | 40.8 60.1 60.2 56.2 63.2 71.9
w/o SFT 35.2({5.6) 50.5 (}.9.6) 57.2({3.0) 55.3(10.9) | 64.1(10.9) [ 63.5(]8.4)
wj/o grounding 37.4.(13.4) 50.2(]9.9) 60.6 (10.4) 55.9(10.3) | 61.9(J13) | 68.6(]3.3)

Table 9. Ablation study of temporal grounding dataset during the SFT phase. Tarsier2- 7B-SFT refers to the model

after the SFT phase. w/o SFT refers to the model after pre- training; w/o grounding refers to the model fine-tinued

without grounding information

The key factor in the SFT phase is fine-grained alignment. To investigate its impact, we conduct an ablation

study, with the results presented in Table 9. When the video description data, which includes fine-grained

temporal grounding information, is excluded (i.e., without grounding), model performance significantly

deteriorates. Specifically, the F1 score on DREAM-1K decreases by 3.4%, accuracy on TempCompass-cg drops

by 9.9%, accuracy on long-video QA falls by 1.3%, and accuracy on the hallucination test declines by 3.3%.

Furthermore, the SFT phase leads to substantial improvements, highlighting the importance of high-quality

manually labeled data. It boosts the F1 score on DREAM-1K by 5.6%, accuracy on TempCompass-cg by 9.6%,

accuracy on Vinoground-Text by 3.0%, and accuracy on the hallucination test by 8.4%, demonstrating the

SFT phase’s role in enhancing the model’s fine-grained video understanding and mitigating hallucinations.
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4.2.3. DPO

Caption Video QA
Model Hallucination
DREAM-1K | TempCompass-cg | Vinoground-Text Short Long
Tarsier2-7B 42.0 66.6 65.8 56.1 62.8 74.0
w/o DPO £40.8 (]1.2) 62.1(/6.5) 60.6 (/5.6) 56.2(10.1) | 63.2(10.4) 71.9 (|2.1)
w/o NS 41.5(]0.5) 61.1(]5.5) 59.8 (16.0) 56.1(/0.0) | 62.8(]0.0) 72.9 (J1.1)
w/o PF 40.5 ({1.5) 65.1({1.5) 67.6 (11.8) 56.0 (10.1) | 62.3(]0.5) 74.2 (10.2)

Table 10. Ablation study for DPO training phase, negative sampling (NS) and preference data filtering (PF)

strategies.

We conduct ablation experiments to evaluate the DPO phase, negative sampling (NS) and preference data
filtering (PF) strategies. Specifically, we test the following settings: 1) w/o DPO: SFT model without DPO
training. 2) w/o NS: Preference pairs generated by sampling the same video twice, without negative sampling.
3) w/o PF: Responses from negative sampling are treated as rejections, without utilizing AutoDQ_Scorer to
perform preference data filtering. For a fair comparison, the training data size and hyper-parameters for the

latter two settings are kept consistent with the default setting, as detailed in Appendix D.

As shown in Table 10, Tarsier2 benefits a lot from the DPO training phase with significant improvement on
caption tasks, especially TempCompass-cg (6.5%) and Vinoground-Text (5.6%). The hallucination capability
also drops by 2.1% without DPO, while the performance on video QA is not obviously affected. When further
ablating dataset construction strategy of DPO, negative sampling plays an important role, without which the
model results on most of the tasks are degraded to be almost the same as the SFT model (“w/o DP0”), and the
hallucination capability drops by 1.1%. Additionally, preference data filtering with AutoDQ_scorer has a
significant impact on maintaining the quality of DPO datasets. As shown in Table 10, “w/o PF” leads to
degradation on more than a half of the tasks, and especially the DREAM-1K F1 score is even worse than the

SFT model.
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4.3. Video Recaptioning using Tarsier2

Caption Video QA
Model Hallucination
DREAM-1K | TempCompass-cg | Vinoground-Text Short Long
Qwen2-VL-7Bl8] | 312 54.2 40.0 49.4 60.3 51.9
+ Original FT 35.2 (14.0) 49.9 (14.3) 39.0 ({1.0) 46.9 (12.5) | 55.4(14.9) | 43.0(]8.9)
+ Recaption FT 39.5(18.3) 67.7 (113.5) 55.0 (115.0) 52.5(13.1) | 56.8(43.5) 68.5 (116.6)

Table 11. The experimental results of recaptioning. “Recaption FT” represents fine-tune the model on the
Tarsier2-Recap-585K dataset. “Original FT” represents fine-tune the model with the same videos as Tarsier2-

Recap-585K but taking their original labels as target output.

In this section, we utilize Tarsier2 as a captioner to generate detailed descriptions for a diverse set of 1M

videos sourced from public datasets, resulting in the recaptioning dataset Tarsier2-Recap-585K>. Details of

the dataset composition are provided in Appendix F.

We fine-tune Qwer12—VL—7BIél on Tarsier2-Recap-585K and present the evaluation results in Table 11. Fine-
tuning on Tarsier2-Recap-585K significantly enhances the model’s performance on detailed video
description, achieving improvements in DREAM-1K (+8.3%), TempCompass-cg (+13.4%), and Vinoground-
Text (+15.0%). Moreover, it achieves an improvement of 16.6% in hallucination test and an improvement of

3.1% in short video-QA.

In comparison, fine-tuning on the same 585K videos with original captions improves only the DREAM-1K F1
score (+4.0%), while other metrics show significant declines. It indicates that the performance gains from
Tarsier2-Recap-585K are primarily due to its high-quality and detailed captions rather than the additional

training data volume.

Table 17 in Appendix E provides detailed benchmark results corresponding to Table 11. These findings
demonstrate that Tarsier2 can generate high-quality, detailed descriptions that offer fine-grained alignment

information to help LVLMs to achieve significant improvements across various tasks.
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5. Conclusion

In this paper, we introduce Tarsier2, a state-of-the-art large vision-language model that outperforms
existing proprietary and open-source models in generating detailed and accurate video descriptions.
Furthermore, Tarsier2 sets new benchmarks across a wide range of video understanding tasks. Our ablation
studies demonstrate that Tarsier2 ’s advancements are driven by scaling the volume and diversity of the

training dataset, fine-grained temporal alignment, and DPO training.

Looking ahead, we outline several promising directions for future research. First, extending Tarsier2 to
handle longer video durations by developing more efficient model architectures and expanding the training
dataset. Second, enhancing real-time video processing to improve the model’s ability to analyze and describe
videos as they stream. Third, exploring richer interactions between video, audio, and text to create more

comprehensive and context-aware video understanding systems.

Appendix A. Training hyper-parameters

Table 12 shows the training hyper-parameters in pre-training, SFT-1&2 and DPO stage. We apply a layer-

wise learning rate decay of 0.9 for visual encoder training[84l.
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Configuration Pre-training SFT-1 SFT-2 DPO
VLM init. Qwen2-VL-7B Tarsier2-Pre-trian Tarsier2-SFT-1 Tarsier2-SFT-2
Optimizer name AdamW
Optimizer S, 0.9
Optimizer (s 0.999
Optimizer eps le¢
Learning rate 2¢7° 2e7° 2¢° leS
Learning rate schedule cosine
Training steps 200,000 5,000 5,000 1,000
Warm-up steps 1,000 250 250 100
Weight decay 0.01
Gradient clip 1.0
Dropout rate 0.0
Global batch size 384 64 64 64
Max pixels 460,800
Frames per video [8,128] 16 16 16
Numerical precision bfloat16

Table 12. Training hyper-parameters of Tarsier2

Appendix B. Public datasets of pre-training stage

Table 13 presents the pre-training datasets, which collectively include approximately 20 million public data
and 20 million in-house data. Most of the public datasets are the same as Tarsier1, except we additionally
gathered some newly released open-source data and OCR-releated data. For WebVid-10M, we used 2.9
million video-text pairs, selecting samples that are more likely to feature dynamic events. We have also
incorporated some latest long video understanding datasets, such as MovieStory10183] and LLaVA-Video-

178K, This greatly enhances the model’s ability to understand long videos.
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Video Captioning
Webvid88l (2.9M) LSMDCL87] (109K) TGIF88] (105K) ActivityNet!8% (38K)
Charades[29] (16K) Charades-Egol2l (6K) YouCook2122l (9K) TACoS[23] (18K)
Ego4DL7—'5-l (1.1M) Spoken Momentst94l (493K) Multi-Momentst22] (997K) TREC-VTTL26] (64K)
ShareGPT-40- GPT/0-labeled Caption' Human-labeled Caption'
MovieStory101L83] (11K)
videol97) (2K) (2.5M) (145K)
Film&TV Commentary’
(11.5M)
Action Recognition
HMDB(28] (5.8K) COIN(29] (10K) SSv2(100] (169K) Kinetics-700[29] (537K)
FineAction[1021 (82K) RareAct[103] (2K) 20BN- jester[&‘*-l (46K)
Video QA
CLEVRERI105] (83K) TGIF-QA[208] (72K) EgoQA[197] (5K) VideoInstruct!37) (89K)

LLaVA-Video-

M -Instruct-

GPT40-labeled QAT (16.2K)

164K (147K)

178K (165K) videolll (255K)
Grounding
E.T. Instruct
DiDeMol1081 (82K) AvAL09] (28K) Object Tracking*(745K)

Video Self-Supervised Training

Frame Order Prediction’

(825K)

Intent Recognition

Oops![112] (15K)

Multi-Image Understanding

M, -Instruct-

imagel27) (57K)

vIsT(LL (38K) MMDUM2! (45K) Image Retrival'(533K)
imageml (616K)
Single-Image Understanding
ShareGPT-4o0-
ShareGPT4 V] (95K) LLaVA-1.514l (643K) Ms cocoltsl (566K)
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Flicker[26l (145K)

LLaVA-ReCap-

cc3Mmi (2.9M)

Visual Genomel”l (759K)

SBU Captions[18] (860K)

GPT40-labeled Caption'

(1.13M)

Image OCR

RCTW-17119] (8K)

LsvT!120] (430K)

ReCTS[121 (20K)

Art(122] (5 6K)

COCOTextV2123] (16K)

CORD-v2[124] (1K)

HierText[125] (10K)

MSRA-TD50012281 (4,65)

1C03127 (499)

SynthDoG- enl128] (100K)

SynthDoG—zh[@]‘ (100K)

Text Generation

OpenOrca@‘i1 (995K)

ShareGPTL132] (80K)

Table 13. Datasets and their sizes used in Tarsier2 pre-training.  indicates in-housedatasets.

Appendix C. Annotation process for SFT data

In the first stage of SFT, we annotated each video clip with detailed descriptions that included fine-grained
temporal grounding. Each clip first underwent manual annotation, where annotators described dynamic
information such as character actions, events, scene transitions, and camera movements, while avoiding
unnecessary static elements. Annotators are also required to map the dynamic information in their
descriptions to the corresponding frame numbers. We performed quality inspections on the annotated data

and returned any data not meeting quality standards for re-annotation. We discarded any data that might

involve copyright risks.

In the second stage of SFT, we utilized GPT-/4o to generate a variety of instruction tuning samples based on

manual annotations. We provided GPT-40 with 16 uniformly sampled frames from the video and the original

manual annotations. Figure 8 shows the prompt for re-annotation in this stage.
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The re-annotation prompt for diverse instruction data (SFT-2).

Character

You are an excellent video analyst. Utilizing your incredible attention to detail, you provide clear, sequential
descriptions for video. You excel in identifying and conveying changes in actions, behaviors, environment,
states and attributes of objects, and camera movements between video frames.

Prompt

Here are 16 frames from a video and a short video caption in Chinese. You need to process a two step tasks:
First, establish a set of guiding principles to control the style of the video description. These principles
should include one or more of the following aspects:

Specify the length constraints of the description, including the number of paragraphs and total word
count.

Define the level of detail for human or creature appearance, non-creature appearance, and background.
Determine the granularity of the event information.

Decide on the output format, such as plain text, JSON, lists, narrative, poetry, etc.

Choose the output language, such as Chinese, English, Japanese, French, and so on.

6. Decide on the text style, such as fluent, concise, professional, or just using simple words and phrases.
Next, generate the corresponding video description based on these guiding principles and the input video
clip, and rephrase the guiding principles into natural language as part of the output question.

Input

Origin Short Video Caption in Chinese: {Manual Labeled Chinese Caption}
Requirement

Return in JSON format: {“qustion”: xxx,“answer”: xxx}

=

Figure 8. The re-annotation prompt in SFT-2.

Appendix D. Detail setting of DPO training

As a default setting, we leveraged the negative sampling and preference pair filtering strategy as introduced
in Section 3.3 to construct the DPO training set. We set top_ p as 0.7 and temperature as 0.7 when running
both positive sampling and negative sampling on our 150K SFT dataset. The threshold J of preference pair
filtering was set as 0.3. We finally randomly sampled 20K preference pairs for DPO training. For the “w/o NS”
setting, we kept other parameters and process unchanged but replaced the negative sampling with an
additional positive sampling. For the “w/o PF” setting, we omitted the process of preference pair filtering
and directly sample 20K pairs from all preference pair candidates. We utilized the vanilla DPO training

objective (Equation 2), and set 3 as 0.1. See the “DPO” column of Table 12 for all the other hyper-parameters.

Appendix E. Detailed results of individual datasets at different stages

In this section, we provide detailed results for individual datasets in our ablation study. Table 14, 15 and 16 list
the results for pre-training, SFT and DPO respectively. Table 17 lists the results for the recaptioning

experiment. We report F1/Precision/Recall for DREAM-1K and accuracy for other benchmarks.
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Capability Benchmark Tarsier1-7B Tarsier1-7B-Qwen Tarsier2-7B
DREAM-1K 34.6/30.2/40.3 38.4/40.6/36.4 40.8/42.5/39.3
Caption TempCompass-cg 55.3 59.3 60.1
Vinoground-Text 29.8 48.6 60.2
MVBench 62.6 69.8 72.8
Video QA Short TVBench 45.8 51.0 53.5
TOMATO 28.6 36.5 39.5
Video-MME 42.2 58.9 65.3
Video QA Long LongVideoBench 39.8 52.1 58.3
TemporalBench 56.9 61.9 68.7
EventHallusion-Y/N 70.9 75.6 77.8
Hallucination
EventHallusion-Desc 41.6 48.6 49.1

Table 14. Detailed results of the ablation study for pre-training. For the captioning task, results are reported after

the SFT stage. For other tasks, results are reported after the pre-training stage.
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Capability Benchmark pre-train SFT w/o grounding SFT
DREAM-1K 35.2/36.8/33.7 37.4/38.6/36.3 £40.8/42.5/39.3

Caption TempCompass-cg 50.5 50.2 60.1

Vinoground-Text 57.2 60.6 60.2

MVBench 72.8 71.9 72.5

Video QA Short TVBench 53.5 54.5 54.2

TOMATO 39.5 413 41.9

Video-MME 65.3 64.0 64.7

Video QA Long LongVideoBench 58.3 54.7 58.2

TemporalBench 68.7 66.9 66.6

EventHallusion-Y/N 77.8 80.1 84.4

Hallucination
EventHallusion-Desc 49.1 56.2 59.4

Table 15. Detailed results of the ablation study for SFT.
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Capability Benchmark Tarsier2-7B wj/o DPO w/o NS wj/o PF

DREAM-1K 42.0/42.8/411 | 40.8/42.5/39.3 41.5/44.5/39.0 | 40.5/39.9/41.1

Caption TempCompass-cg 66.6 60.1 62.1 65.1

Vinoground-Text 65.8 60.2 60.6 67.6

MVBench 71.5 72.5 72.2 71.7

Video QA Short TVBench 54.7 54.2 54.9 54.6

TOMATO 42.0 41.9 413 41.8

Video-MME 64.5 64.7 64.3 64,.4

Video QA Long LongVideoBench 58.6 58.2 58.6 57.4

TemporalBench 65.3 66.6 65.4 65.2

EventHallusion-Y/N 84.6 84.4 85.1 84.8

Hallucination
EventHallusion-Desc 63.3 59.4 60.7 63.5

Table 16. Detailed results of the ablation study for DPO.
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Capability Benchmark Qwen2-VL-7BL6] +Original FT +Recaption FT
DREAM-1K 29.6/33.9/26.3 35.2/44.8/29.0 39.5/41.7/37.6
Caption TempCompass-cg 54.2 49.9 67.7
Vinoground-Text 40.0 39.0 55.0
MVBench 67.0 59.8 66.8
Video QA Short TVBench 43.8 47.2 51.1
TOMATO 31.5 33.6 39.5
Video-MME 63.3 56.1 57.0
Video QA Long LongVideoBench 55.6 51.4 51.9
TemporalBench 62.0 58.7 61.4
EventHallusion-Y/N 68.6 39.6 80.7
Hallucination
EventHallusion-Desc 27.8 46.3 56.2

Table 17. Detailed results of the recaptioning experiment.

Appendix F. Tarsier2-Recap-585K Data Composition

Table 18 lists the data composition details of Tarsier2-Recap-585K. We mainly took video caption datasets
into account when picking the target datasets, together with two action recognition datasets (Kinetics-
7001291] anq SSVZM), which contain video clips of durations of 5 ~ 10 seconds about human actions, and a
special intent recognition dataset (OopSM) to help models learn rare actions and unexpected events. For
most of the datasets, we utilized all the original video clips of the selected splits (usually train and val set),

except for:

* WebVid-10M: We sampled around 30% of the total size of Tarsier2-Recap-585K from a pre-filtered
subset of WebVid-10M, which are more likely to feature dynamic events.

¢ Ego4D: We randomly merged multiple clips into a new one that contains multiple actions and result in
around 1M merged clips in total. We sampled 50K clips from this dataset for recaptioning.

» Kinetics-700 and SSV2: We randomly sampled 50K and 10K clips from the training set of Kinetics-700 and

SSV2, respectively.
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Dataset Original Label Type Split Avg Duration (s) | # Sampled Clips | Proportion (%)
WebVid-10ML861 - 15.2 177,909 30.38
LsMDcLeZ1 train/val/test 41 108,271 18.49
TGIFL88] train/test 12.3 94,775 16.18
EgosDI75] - 41 50,000 8.54
ACtivityNetI§9—l Video Caption train/val/test 35.7 35,960 6.14
VATEXx!69] train/val/test 10.0 22,435 3.83
TREC-VTTL26] train/val 6.3 14,199 2.42
Charades[22] train/test 29.8 7,985 1.36
Charades-Egol21l train/test 30.2 6,161 1.05
Kinetics-700201 train/val/test 8.9 50000 8.50
Action Recognition

Ssval100l train/val/test 3.7 10000 171
Oopsm1 Intent Recognition train/val 9.8 7,948 1.36

Sum - - 1,972 hours 585,643 100.00

Table 18. Data composition of Tarsier2-Recap-585K. The “Split” column lists the original dataset partitioning,

and we use bold to mark the parts which we sampled the video clips from to conduct recaptioning.

Appendix G. Qualitative Comparison of the SFT Process

Figure 9 illustrates a qualitative comparison of our model at different stages, where we mark the differences
in the prediction results of different models. From these differences, it can be seen that introducing temporal
localization information in the first SFT stage significantly reduces the problem of hallucination in the
model. However, the introduction of temporal localization information may also result in certain events
being subdivided into finer actions. To address this issue, the second stage of training further improved the

accuracy of the model description and optimized the output style.
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2 : |10 TS 2
Reference: A person stands in the swimming pool, with both hands braced again:
stand up and walk forward out of the frame.

st the edge of the pool. With a forceful leap, they step onto the ground and finally

Pretrain: A woman wearing a black swim cap and goggles is seen in a swimming pool. She is holding onto the edge of the pool with both hands. The pool has clear
blue water with lane dividers visible in the background. The poolside is lined with a beige-colored deck. The woman then releases her grip on the pool edge,

submerges herself underwater, and swims forward. After swimming, she emerges from the water, places her hands on the pool edge, and begins to climb out of the
pool. She steps onto the deck, leaving the pool area.

SFT-1: <frame: 1> A woman is seen in a swimming pool, holding onto the edge with both hands. <frame: 2-5> She begins to submerge herself into the water, still
holding the edge. As she goes underwater, her hands remain on the edge for support. <frame: 6> She then starts to push herself up from the water, preparing to
stand. <frame: 7-8> The woman uses her hands to push herself up onto the pool edge, with water splashing around her. <frame: 9-10> She continues to lift her

body out of the water, placing her feet on the edge. <frame: 11-12> The woman stands up on the pool edge, with water dripping from her body. <frame: 13-16>
She then walks away from the pool, leaving the edge behind.

SFT-2: A woman in a black swimsuit and swim cap is in a swimming pool, holding onto the edge with both hands. She submerges her head underwater while still
holding the edge. She then pushes herself up from the water, using her hands for support. The woman stands up in the shallow water, water dripping from her body.
She steps out of the pool, walking along the edge. The pool area is empty after she leaves.

Figure 9. Qualitative comparison of our model at different stages.

Appendix H. DREAM-1K cases

Figures 10-14 display the detailed video descriptions generated by Tarsier2-7B and other models (GPT-4o0,
Gemini-1.5-Pro and LLaVA-Video-7B-Qwen2) for different video categories in DREAM-1K. Click the play
button on the first frames to view the raw video. The correct descriptions of key objects/actions/events are

marked in green, and the incorrect descriptions are marked in red.
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GPT-40: A person is seen in a dimly lit room filled with glass bottles and various objects. The person lights a match and
ignites a substance, causing a brief flame. They then use a syringe to mix a green glowing liquid in a bowl. The person retrieves
tools from a mirrored tray. The video focuses on the person's precise actions of lighting, mixing, and handling objects in the
room.

Gemini-1.5-Pro: A young woman wearing a black dress stands at a bar, listening to someone out of frame. She then uses a
long metal tool to scoop burning rose petals from one small bowl to another, creating a shower of sparks. As the sparks fall into
the second bowl, they transform into a bubbling, bright green liquid. The woman uses a syringe to draw some of the liquid out
of the bowl before placing the syringe onto a tray beside a pair of metal tongs.

LLaVA-Video-7B-Qwen2: The video opens with a shot of a person wearing a black sleeveless top and multiple necklaces,
standing in front of a bar counter. The background is dimly lit, with shelves filled with various bottles and glasses. The scene
transitions to a close-up of a hand holding a lighter, igniting a flame that is used to light a bow! containing red rose petals. The
next frame shows the same person, now holding a small object that emits a spark, possibly a lighter or a matchstick. Following
this, there is a close-up of a bowl with a green liquid that has a glowing effect, being stirred with a metal tool. The final frames
show a hand placing a metallic object, which appears to be a syringe, on a reflective surface, possibly a mirror.

Tarsier2-7B: A woman with braided hair and wearing a black outfit with multiple necklaces and bracelets looks at a person in
front of her in a room filled with various bottles and glassware. She lights a match and uses it to ignite rose petals in a small
bowl, creating a burst of sparks. She then uses a syringe to draw a green liquid from a bowl and places the syringe on a
reflective tray along with some metal tools.

Figure 10. Qualitative comparative analysis of various Video-MLLMs on Dream-1K dataset (Live-action Subset).
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GPT-40: The video clip features two children on a rooftop. They are initially seen pulling on a string that is attached to a
colorful kite. The kite is then launched into the sky, and the children look up as it ascends. The background shows a cityscape
with buildings. The children continue to hold the kite string and watch the kite as it flies higher into the sky.

Gemini-1.5-Pro: A boy and a girl are standing on a rooftop preparing to launch a kite. With a powerful throw, the kite soars
high into the air, resembling a team of three dogs pulling a sled. The children watch with delight as their kite dances in the wind.
However, their joy turns to concern as they notice the kite string has snapped, leaving them staring at the broken connection
with worry.

LLaVA-Video-7B-Qwen2: The video opens with two children standing on a rooftop, one holding a kite string and the other
holding a kite. The child with the string is wearing a striped shirt and shorts, while the other child is in a green dress with star
patterns. They are both looking up at the sky, which is a clear blue with a few clouds. The kite is colorful, predominantly pink
with yellow accents and has a long tail. As the video progresses, the children appear to be struggling to control the kite, which
is flying erratically. The background shows a cityscape with buildings and trees below them. The video ends with the children
looking at each other, seemingly discussing their next move.

Tarsier2-7B: Two children run to the edge of a rooftop and throw a colorful kite into the sky. The kite starts to fly, but it soon
begins to descend. The children, holding the kite string, look surprised and lower their hands. They then look at the kite string

and start talking. Suddenly, the kite returns, and the children react to its sudden return.

Figure 11. Qualitative comparative analysis of various Video-MLLMs on Dream-1K dataset (Animation Subset).
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GPT-40: A person in white clothing approaches a bar counter and places two cocktails on it. The cocktails are in clear,
patterned glasses, one with a slice of orange and the other with a slice of lime. Two other individuals, one with a visible
wristwatch and the other with painted nails, reach for the cocktails. The person with painted nails picks up the cocktail with the
lime, gestures with it, and then places it back down on the counter. Both individuals hold the cocktails in their hands
momentarily before setting them back on the bar counter. The background consists of a variety of bottles and dim lighting,
typical of a bar setting.

Gemini-1.5-Pro: A blurry shot of a brightly lit bar with numerous bottles and glasses provides a lively backdrop to the scene.
A bartender, dressed in white, leans into the frame and places two colorful cocktails on the counter. The cocktails, a pale
yellow drink garnished with an orange slice and a vibrant blue drink with a lime wedge, are each adorned with two black straws.
A man and woman, seated at the bar, reach out, the woman taking the blue drink and the man selecting the yellow. They bring
their glasses together in a toast, the clinking sound barely audible above the implied music and chatter of the bar. The hands
retract, leaving the cocktails standing on the bar as the focus shifts entirely to the vibrant ambiance of the setting.

LLaVA-Video-7B-Qwen2: The video opens with a close-up of a bar counter, where the focus is on the gleaming surface and
the blurred background filled with colorful bottles. The lighting is dim, creating a moody atmosphere typical of a bar setting. A
bartender, dressed in a white shirt, appears holding two glasses filled with drinks—one with ice and an orange slice garnish, the
other with a dark liquid and a lime wedge. The bartender places the drinks on the counter, and a customer's hand reaches out to
take one of the drinks. The scene transitions to a similar close-up of the bar counter, where the same two drinks are now being
held by the customer's hands. The customer takes a sip from the drink with the orange slice, and the bartender is seen in the
background, partially obscured by the drinks. The final scene shows the bar counter again, this time with the two drinks placed
side by side. The customer's hand is no longer visible, but the drinks remain untouched, emphasizing their presentation.

Tarsier2-7B: The bar counter is shown with a blurred background of various bottles and colorful lights. A bartender
approaches the counter, holding two drinks. The bartender places the two drinks on the counter, one with an orange slice and
the other with a lime slice, both with black straws. Two hands, one from the left and one from the right, reach for the drinks.
The person on the left picks up the drink with the orange slice, and the person on the right picks up the drink with the lime slice.
The counter is left empty momentarily. The person on the right places the drink with the lime slice back on the counter,
followed by the person on the left placing the drink with the orange slice back on the counter. Both drinks are now back on the
counter, ready to be enjoyed.

Figure 12. Qualitative comparative analysis of various Video-MLLMs on Dream-1K dataset (Stock Subset).
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GPT-40: A person is seen holding a small item over a filled trash bin. The bin is shown with various items including bottles.
Text on screen indicates the bin is filled, and the person appears to be contemplating options. The person then presses a button
on the bin. The trash bin begins to compact the trash inside and seals the trash bag automatically. The sealed trash bag is then
lifted out from the bin. The video demonstrates the functionality of an automatic trash bin that can seal and lift the trash bag
with the press of a button.

Gemini-1.5-Pro: The video starts with a hand putting trash into a bin that's already full. The text on the screen highlights the
dilemma of a full trash bin. Then, it introduces a solution: a smart trash bin called "Townew". By pressing a single button, the
Townew bin automatically seals the full trash bag and replaces it with a new one. A person's hand is shown pulling out the
sealed bag from the bin.

LLaVA-Video-7B-Qwen2: The video begins with a close-up of a white trash bin filled to the brim with various types of waste.
A hand is seen holding a small white object, presumably a button or sensor, above the bin's lid. The text on the screen reads
"Your bin is filled to the brim." The scene transitions to the same bin with the text changing to "But you are lazy." The next
frame shows the bin without any text, followed by the text "What options do you have?" The video then cuts to a plain white
background with the text "Check out this" in the center. The final frame returns to the trash bin, now with a new feature: a blue-
lit compartment at the top. The text on the screen reads "By pressing one button, Townew deals with it all." The video
continues with a close-up of the same white trash bin, now with the blue-lit compartment visible. The bin is shown from a side
angle, and the compartment appears to be in operation, as indicated by the blue light. The background remains plain white,
emphasizing the bin and its features.

Tarsier2-7B: A hand holding a small object approaches an overflowing trash bin, with the text 'Your bin is filled to the brim'
appearing on the screen. The hand drops the object into the bin, and the text changes to 'But you are too lazy.' The hand retracts,
and the text "What options do vou have?' appears. The screen briefly shows 'Check out this' before transitioning to 'By pressing
one button, Tounew deals with it all.' The hand presses a button on the bin, causing the lid to close and the trash to be
compressed. The bin's mechanism retracts a black garbage bag, and the text disappears. A hand reaches in and pulls out the full
garbage bag from the bin.

Figure 13. Qualitative comparative analysis of various Video-MLLMs on Dream-1K dataset (Youtube Subset).
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GPT-40: A person is involved in processing and crafting shells. Initially, shells are collected in a basket and washed thoroughly in
water. The person then uses a foot-powered saw to cut the shells into strips. The saw is operated by moving a foot pedal up and
down, which in turn moves the blade. The cut shell strips are then sorted and further refined by using a smaller tool to make
precise cuts. The person carefully holds the shells and ensures they are properly cut and shaped.

Gemini-1.5-Pro: A man is cleaning an iridescent abalone shell. He then uses a foot-powered saw to cut another abalone shell into
thin strips. He secures the shell to a wooden frame with twine and carefully saws through it, creating a pile of shimmering strips.

LLaVA-Video-7B-Qwen2: The video begins with a close-up of a basket filled with various seashells, some of which are open to
reveal their interiors. The shells have a glossy appearance and come in different colors, including shades of green, brown, and
white. The next scene shows hands holding the basket, which is placed on a surface that appears to be wet, possibly indicating it
was recently submerged in water. Following this, there is a shot of water being poured over a surface, creating ripples and bubbles,
suggesting a natural setting like a stream or river. The subsequent frames show hands handling a large, rough-textured shell,
possibly preparing it for further processing. The hands are seen using a tool, likely a knife, to cut or scrape the shell. The final
scenes depict hands arranging thin, elongated pieces of shell on a flat surface, possibly for drying or further processing.

Tarsier2-7B: A basket filled with several shells is placed in water, and a pair of hands lifts the basket out of the water. The basket,
now containing various shells, is placed on a surface. A person, wearing dark shoes, uses a foot to hold the shell in place while
sawing it with a handsaw. The person continues to saw the shell into strips, which are then collected and tied together with a string.
The person then uses the saw to further refine the shell strips.

Figure 14. Qualitative comparison of different Video-MLLMs on Dream-1K dataset (Shorts Subset).

Footnotes

Lhttps://www.scenedetect.com/

2 An obvious counter example is that a low-dynamic video will not be significantly affected by the down-

sampling perturbation.

3 Given a reference description (d,. #) and a description to be assessed (dy.q), AutoDQ scorer outputs the

recall score (DQr: the ratio of events in d,.; that are entailed by dp.q) and the precision score (DQp: the

ratio of events in d,.; that are entailed by dpreq).

4 For consistency across all checkpoints, we evaluate the Qwen2-VL-7B model using the same frame

sampling strategy applied to other checkpoints. This may differ from the official sampling strategy in some

benchmarks. For instance, the official setting of Video-MME uses 768 frames, while we sample 128 frames.

5 Tarsier2-Recap-585K is available on HuggingFace.
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