
23 August 2023, Preprint v1  ·  CC-BY 4.0 PREPRINT

Research Article

Determining Af�nity of Social Network

using Graph Semirings

Gete Umbrey1, Saifur Rahman2,3

1. Department of Mathematics, Rajiv Gandhi University, India; 2. Rajiv Gandhi University, India; 3. Department of Mathematics, Jamia Millia

Islamia, New Delhi, India

In this article, we take an example of the Facebook friendship network to propose an algorithm for

determining the stability or af�nity of connections between different social groups within a complex

social network by decomposing the given network into certain components of prede�ned categories.

We take the graph as the principal tool, and its operations, namely, union and intersection that form

semirings on the set of graphs as the primary operations.
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1. Introduction

The graph theory has been a favorite platform for describing and analyzing the networks in a more

abstract and general way [1], where some of the popularly known algorithms, like the Dijkstra algorithm

and the Traveling Salesman Problem, are presented in the context of studying network analysis and

routing problems. A graph    is a connected graph if there is a path between every pair of vertices. A

graph is disconnected if there exists at least a pair of vertices that is disconnected. Various computer and

mathematical sciences problems essentially involve the study of graph connectivity theories namely,

network applications, routing transportation networks, network tolerance, etc. are few to be named. The

Beta index gives the simplest measure of the degree of connectivity of a graph. It measures the level of

connections and is de�ned as  , where    is the total number of edges, and    is the total

number of vertices in the graph or network. Trees or simple networks (without loops) have a Beta value

of less than one. A connected network with one cycle has a Beta value of  , and complex networks have a

high Beta value. Twice the Beta index of a graph is the average vertex degree of that graph. The average

vertex degree of a graph is the ratio of the summation of all node's degrees to the total number of nodes.
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For ease of notation, let the average vertex degree of    be given by  .

Noteworthily, the notion of beta index and average vertex degree is used to determine the decision graph

using algebraic graph operations like graph union and intersection [2].

A graph is a suitable tool for expressing real-life problems, and it can represent a variety of information.

For basic background and fundamental notions of graph theory, we refer to a textbook by Deo [3]. There is

no general way to compare the average vertex degree of a graph   and its subgraphs. Thus, to

establish a numerical (or connectivity) comparison of a graph and its subgraphs, a ration is de�ned,

which is a function of an average vertex degree, denoted and expressed as  

[2]. For a discrete graph,    while for a complete

graph   with   vertices,  . Therefore,  . Clearly,   of a graph   will always be greater

than or equal to that of its subgraphs. Note that in considering the graph connectivity, the empty graph 

 is excluded. Both   and   are the measures of connectivity of a graph  . The main difference

is that the least value of    and    are    and  , respectively, while the greatest value of    and 

 of a graph   with   vertices are   and  , respectively. Unlike the average vertex degree   its

function   is a consistent rule to compare a graph's connectivity with its subgraphs.

Many decision problems in real life may involve the interplay of various factors. The problems that we are

considering here are presumed to be complex, which may also involve vagueness. To deal with such

varied problems, merely assigning the average vertex degree as a graph's weight may not be suf�cient.

Or, so to say, an average vertex degree of a graph merely tells us the intensity of the connectivity of the

graph and may fail to address other parameters. Suppose the problem is intended to determine the

maximum degree of agreement or, conformity of participants without undermining the number of

participants, then we may need more than an average vertex degree to arrive at an ef�cient conclusion. In

such contexts,   will be a preferred choice over  . An interesting property of   is that it preserves

the importance of order and size besides measuring its connectivity. Its value keeps on decreasing with

the subsequent subgraphs, and increases or decreases proportionally with that of  ; this property

will also help us to decide the stability of complex networks.

In thesis  [4], the authors use the graphs (mostly simple graphs) as algebraic elements and the graph

operations like union, join, intersection, etc. as algebraic operations to study various properties of graphs

and algebraic structures, particularly the properties of semirings. Consequently, the authors have

proposed and discussed various properties of the semiring structure (of graphs) like completely, regular

semiring, conditions for regularity of a semiring of graphs, etc.  [5]. Rajkumar et al.  [6]  have started
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studying the properties of semiring by assigning vertices of graphs as semiring elements, and also the

weights of the graphs are taken from the semiring structure. Graph theory has important applications in

�nding shortest paths, using algebraic properties (for example, see {m/1/}). There is an interesting

initiative of connecting the graph elements and operations to model biological networks like the food

web and food chain, and study their features using graph energy [7]. Praprotnik, et al. [8] nicely proposed

the combined use of semiring axioms and the notions of graph theory in network analysis by combining

weights on parallel edges using semiring addition and the weights on the sequential edges using

semiring multiplication.

2. Facebook: An Example of Network Analysis using Algebraic Graph

Operations

One of the largest social networking sites in the world today is Facebook. People use Facebook for

different reasons or motives. One of the scienti�c research projects conducted by Robinson, et

al.  [9]  suggests that there are four types of Facebook users. However, there may be some overlapping

behavior exhibited by the users. The examples are summarized as follows.

1. Relationship builders

This type of Facebook user primarily focuses on fortifying real-life friendships. They will usually

respond to other's posts and use Facebook to connect with family and friends.

2. Town criers

They use Facebook as a platform to inform about the events and happenings in the world and

community. They are generally not actively engaged in posting status updates or uploading pictures of

themselves.

3. Sel�es

They use the site primarily for self-promotion or self-validation with status updates, pictures, and videos.

They often post to collect likes and comments.

qeios.com doi.org/10.32388/XAVXHO 3

https://www.qeios.com/
https://doi.org/10.32388/XAVXHO


4. Window shoppers

This group of Facebook users feels to have some sort of social obligation to be on the site. They are rarely

interested in sharing details of their own lives, and nor do they do much liking or commenting, although

they see Facebook as an inescapable part of modern life.

Note that different investigations suggest different categories of Facebook users. As highlighted, the

categories are purely based on speci�c research or particular regions, that don't guarantee any rigid

boundaries among different categories. Nor do we intend to comment on the validity of such

categorizations. Without considering any statistical proof, we just take an intuition of such social

categorizations within a bigger social network for our decision problems, where Facebook has been

chosen as an example. We intuitively consider that there are no rigid boundaries among the categories

such that a Facebook user preferably belongs to more than one category, and there may also be some

other Facebook users who do not �t any of the given categories.

In this section, we take an example of a Facebook friendship network to propose an algorithm for

determining the stability or af�nity of connections between different social groups within a complex

social network by decomposing the given network into certain components of prede�ned categories. We

take the graph as the principal tool, and its operations, namely,    and    that form

semirings on the set of graphs as the primary operations.

2.1. Algorithm

The following table shows the Facebook users belonging to �ve different intuitive categories.

The following graph represents the network of Facebook friendships.

union intersection
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Figure 1.

The given graph    is comparatively a complex network. Decompose the vertex set of    into �ve

respective categories as listed above, forming �ve different components of    such that in each

component, the respective edge set consists of all the edges in   that have both ends in the respective

components. That is, components   and   are induced subgraphs of  . In this process, the

original edges of    that connect across the components will be momentarily removed. Any two

components will be connected by a path instead only if their intersection is a non-empty graph. The

following is the reduced network of   decomposed into �ve connected components.
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Figure 2.

The network   can be further represented by the following simpli�ed network, where each edge is an

intersection graph of the corresponding end vertices. Subsequently, each edge is assigned its beta index.

G′

G′
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Figure 3. 

While reducing the graph    to   or  , we have temporarily lost the original edges of  , connecting

across different components. But this loss incurred will be compensated in the subsequent calculations

as follows.

Let   be a path connecting   and   in the network  , and   be the graph formed by the union of

all the edges on the path  , whose edge set and vertex set are denoted by    and  ,

respectively. Let   be the beta index of the graph  . Then we express the weight of the graph   in

terms of average vertex degree as  , where    is the average vertex

degree of  , and the stability of the path   is

where  . For instance, in this problem, four

paths connecting   and  , namely,  ;  ;  ,

and  . The following are different graphs formed by the union of all the edges on

the respective paths connecting   and  .
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Figure 4. Graphs   are formed by the union of all the edges on the paths 

, respectively.

The stabilities of the paths are calculated in the following.

Calculation of the stability of  : From the above �gure, the beta index of   is given by  .

The number of edges in    formed by the vertex set    is  , namely,   and  ,

and the number of edges in    is  , i.e.,  , namely,    and  . Therefore, 

. Hence the stability of the path    is 

.

Similarly, the stability of the remaining paths is obtained as  ;  , and  . Thus,

we conclude that    is the most stable path connecting the relationship builders and the sel�es in the

given network.

Geometrical signi�cance. One of Facebook's clever features is its friend suggestion, "People You May

Know (PYMK)." It is for sure that Facebook doesn't suggest friends at random, but there are almost

endless ways in which Facebook can suggest friends. The most common reason for PYMK pop-ups

seems to be due to friendship networks. In line with this argument, we refer to an instance of the PYMK

history of A's Facebook page. For example, at an instance we came across   individuals in the list of the

PYMK; most of them have mutual friends with A, while  -  of them have no mutual friends with A.
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Interestingly, one individual among them,   (say), has only three friends in total, and none of her friends

is A's mutual friend. The individual   is completely stranger to A; there is no way they would have shared

their contacts, etc. They are supposedly neither on the same Facebook page nor do they have been to the

same organization. We also presume that none of them would have visited one another's pro�le before.

Despite this, how does she appear in A's PYMK list? To explore a probable reason, we browsed the list of

her only three friends, and what we found is a likely convincing reason.  One among her three friends, 

 (say), has one mutual friend   (say) with A. Again,   has   mutual friends with A, and each of those 

  friends has an average of 146 mutual friends with A and so forth. Apart from that,    also has some

non-mutual friends, namely,  ,   and  , etc., having a high number of mutual friends with A. Particularly, 

 and   have  , and  , respective mutual friends with A. Therefore, in this case, this friendship

network is an important reason for   being included in A's PYMK list.

Our algorithm can most appropriately be linked with a way in which Facebook recommends friends. For

instance, if   is a friend of  , and   is  's friend, then Facebook may suggest   as a friend of   and vice

versa. Here, the point is that Facebook may suggest an unknown friend if you have some mutual friends.

Another instance is when   and   are friends of   and  , where   and   are not friends, and    is a

friend of  . Then, Facebook may recommend   as a friend of   and vice-versa. Here,   and   have no

mutual friends, but the PYMK may traverse the friendship networks either    or 

 or, both.  Although such an algorithm may not always work. In line with this algorithm,

we propose a geometrical signi�cance of our algorithm. As per our calculation, the path    is the most

stable or, so to say, it has the greatest value of social af�nity connecting two distinct groups of Facebook

users. We note that   is the graph corresponding to the path  , obtained by combining all the edges on

that path, whose vertex set is  . Therefore, we conclude that Facebook users  , and 

 play the most vital role in connecting the relationship builders and the sel�es in the given Facebook

network. Consequently, Facebook may recommend members in relationship builders as potential friends

of members in the sel�es and vice-versa, because of the members  , and   in the network. In this

problem, we see that every member of the relationship builders is either friends or has some mutual

friends with the corresponding member of sel�es except   and  . That is,   and   are neither friends nor

have mutual friends, but   and   being a friend of   and  , respectively are friends or have mutual friends,

namely,    and  , and so forth. So, we conclude that every member of the relationship builders is a

potential friend of sel�es (except those who are already friends), and vice-versa.
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REMARK 1. If all the members in the respective categories are all strangers or so to say, all the

components in   are discrete graphs, then the graph   will be discrete, hence   or  .

Therefore, the stability of the path   is given by

Clearly, in this case, if  , then the number of edges in   formed by the vertex set   must also

be zero, showing that none of the Facebook users in the set   are friends.
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